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AUTONOMOUS DRIVING: PART 1

s a bio-inspired and emerging sensor, an event-based neu-
romorphic vision sensor has a different working principle 
compared to the standard frame-based cameras, which 

leads to promising properties of low energy consumption, low 
latency, high dynamic range (HDR), and high temporal resolu-
tion. It poses a paradigm shift to sense and perceive the envi-
ronment by capturing local pixel-level light intensity changes 
and producing asynchronous event streams. Advanced tech-
nologies for the visual sensing system of autonomous vehicles 
from standard computer vision to event-based neuromorphic 
vision have been developed. In this tutorial-like article, a com-
prehensive review of the emerging technology is given. First, 
the course of the development of the neuromorphic vision sen-
sor that is derived from the understanding of biological retina 
is introduced. The signal processing techniques for event noise 
processing and event data representation are then discussed. 
Next, the signal processing algorithms and applications for 
event-based neuromorphic vision in autonomous driving and 
various assistance systems are reviewed. Finally, challenges 
and future research directions are pointed out. It is expected 
that this article will serve as a starting point for new research-
ers and engineers in the autonomous driving field and provide 
a bird’s-eye view to both neuromorphic vision and autonomous 
driving research communities.

Introduction
Over the past few decades, the rapid development of electron-
ics, information technologies, and artificial intelligence have 
made great progress in artificial visual sensing and percep-
tion systems. For example, the vision system of an autonomous 
vehicle becomes more intelligent by using deep learning tech-
nology. However, it still has some shortcomings compared 
with biological counterparts, such as the human and animal 
visual systems. Even small insects, such as bees, outperform 
the most advanced artificial vision systems such as high-qual-
ity cameras in routine functions, including real-time sensing 
and processing, low-latency motion control, and so on. More 
importantly, such biological neural systems can well perform 
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tasks with small energy consumption. In fact, biological neural 
systems usually consist of a large number of relatively simple 
elements. They operate in a massively parallel principle, which 
is different from the most common type of vision sensors such 
as CMOS cameras. Thus, some researchers and engineers have 
tried to mimic the working principles of the biological visual 
systems and come up with a new artificial visual system.

Recently, the developments of material technologies, litho-
graphic processes, very large-scale integration (VLSI) design 
techniques, neuroscience, and neuromorphic 
technologies have enabled the novel concep-
tion and fabrication of bio-inspired visual 
sensors and processors. These new sensors 
and processors provide different methods 
to sense and perceive the world. The event-
based neuromorphic vision sensor is such a 
bio-inspired vision sensor mimicking bio-
logical retina from both the system level and element level; 
it poses a paradigm shift in the way of visual information 
acquisition, processing, and modeling. The dynamic vision 
sensor (DVS) proposed by the group of Tobi Delbruck [1] is 
the first practicable event-based neuromorphic vision sensor 
based on the biological principle. DVS captures the per-pixel 
brightness changes (called events) asynchronously instead of 
measuring the absolute brightness of all pixels at constant 
rate, resulting in promising properties compared to standard 
frame-based cameras, such as low power consumption and 
low latency (in the order of microsecond), HDR (120 dB), and 
high temporal resolution [2]. Thus, an alternative visual sens-
ing and perception system for autonomous vehicles is pro-
vided in challenging scenarios that state-of-the-art standard 
frame-based cameras cannot well perform [3], [4], such as 
high-speed scenes of the autonomous highway driving, low 
latency of motion control, and low power consumption of the 
vehicle onboard system.

It is well known in the research of autonomous driving that 
radar, lidar, ultrasound, and cameras form the backbone of sen-
sor systems of the autonomous vehicle [5]–[7]. These sensors 
acquire the visual data as a sequence of snapshots recorded 
at discrete time stamps; therefore, visual information is com-
pressed and quantized at a predefined frame rate. Consequent-
ly, a problem that is often known from the signal processing 
domain (undersampling) arises due to the timescale of motions 
in the observed scenes and the frame-rate of the recording 
camera. Things occurring between the adjacent frames, along 
with the consequent information, would get lost. Generally, 
the advanced algorithms with multiple-sensor fusion are usu-
ally developed to compensate single-sensor shortcomings in 
demanding applications such as highly piloted driving systems 
with low-latency motion control and visual feedback loops. 
Rather than solving this problem from an algorithmic perspec-
tive, it is better to explore alternative methods from a novel 
sensing perspective, such as event-based neuromorphic vision 
sensors. This results in providing great value for promoting 
subsequent tasks to become more robust, accurate, and com-
plementary together with advanced algorithm development.

As an emerging sensing technology, the algorithms and 
applications of event-based neuromorphic vision are in the 
preliminary stage. Some works have been summarized in [8]. 
Unlike [8], this article aims to provide a thorough overview 
of the event-based neuromorphic vision for autonomous driv-
ing, from a signal processing perspective with a focus on visual 
perception algorithms and applications (see Figure 1). Specifi-
cally, the introduction starts from the operation principle of 
this bio-inspired neuromorphic vision sensor; then, the unique 

advantages of the sensor and its connection 
with the perception system of autonomous 
vehicles are discussed. Taking these prom-
ising properties into consideration, the sig-
nal processing techniques about event noise 
processing, event data representation, and  
meaningful event-based neuromorphic vi
sion algorithms of given autonomous driv-

ing tasks are illustrated. Afterward, the works of event-based 
neuromorphic vision that are dedicated to specific applications 
in autonomous driving are reviewed. Finally, we address the 
problems remaining to be tackled and the directions for fu
ture research.

Bio-inspired vision

A biological retina
The retina of vertebrates, such as humans, is a highly devel-
oped multilayer neural system consisting of light sensitive cells 
which contain millions of photoreceptors. It is the place where 
the acquisition and preprocessing of the visual information 
happen. As shown in Figure 2(c), the retina has three primary 
layers including the photoreceptor layer, the outer plexiform 
layer, and the inner plexiform layer.

The photoreceptor layer consists of light-sensitive cells that 
convert incoming light into electrical signals and drive the 
horizontal cells and bipolar cells in the outer plexiform layer. 
There are two major types of bipolar cells: ON- and OFF-bipo-
lar cells. The ON- and OFF-bipolar cells are responsible for 
coding the bright and dark spatial-temporal contrast changes, 
respectively. Particularly, the firing rate of the ON-bipolar 
cells will increase while the OFF-bipolar cells will no longer 
generate spikes if the illumination is increasing. This, in turn, 
increases the firing rate of OFF-bipolar cells in the case of illu-
mination decreasing (such as getting darker). In the absence of 
a light stimulus, both cells generate few random spikes. This 
phenomenon is achieved by comparing the photoreceptor’s sig-
nals with the spatial-temporal values, which are determined by 
the mean value of the horizontal cells, facilitating the connec-
tion between photoreceptors and bipolar cells laterally. In the 
outer plexiform layer, the ON- and OFF-bipolar cells synapse 
onto the amacrine cells and ON- and OFF- ganglion cells in 
the inner plexiform layer. The amacrine cells mediate signal 
transmission between bipolar cells and ganglion cells. The 
ganglion cells carry information along with different parallel 
pathways in the retina, which is conveyed to the visual cortex. 
Thus, the retina is responsible for converting spatial-temporal 

As an emerging sensing 
technology, the algorithms 
and applications of event-
based neuromorphic vision 
are in the preliminary stage.
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illumination changes into pulses, which is transmitted to the 
visual cortex via the optic nerve.

Silicon retina
Silicon retinas are visuals that model the biological retina and 
follow neurobiological principles. Pioneers of silicon retinas 
are Mahowald and Mead, who introduced their silicon VLSI 
retina in 1991 [9]. This kind of sensor is equipped with adapt-
able photoreceptors and a chip with a 2D hexagonal grid of 
pixels. It replicates parts of cell types of biological retinas, in-
cluding the photoreceptors, bipolar cells, and horizontal cells. 
Therefore, this kind of sensor represents merely the photore-
ceptor layer and the outer plexiform layer. Later, Zaghloul and 

Boahen built the Parvo-Magno retina, which is superior to the 
silicon VLSI retina, by modeling five retina layers.

Despite the promising structure, many of the early silicon 
retinas originate from the biological sciences community and 
are mainly used to demonstrate neurobiological models and 
theories without considering real-world applications. Recently, 
an increasing amount of effort from Tobi Delbruck’s team has 
been put into the development of practicable silicon retina DVS 
based on biological principles [1]. In Figure 2, the three-layer 
model of a human retina [Figure 2(c)], and corresponding DVS 
pixel circuitry [Figure 2(a)] are presented. Typical signals of 
the pixel circuits are displayed in Figure 2(b). The upper trace 
denotes a voltage waveform at the node ,vlog  which tracks 
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FIGURE 1. An overview of event-based neuromorphic vision sensors for autonomous driving, with representative examples for emerging systems and ap-
plications: (a) tracking (adapted from [22]), (b) optical flow (adapted from [29]), (c) depth estimation (adapted from [29]), (d) object detection (adapted 
from [52]), (e) semantic segmentation (adapted from [35]), (f) steering prediction (adapted from [3]), (g) image reconstruction (IR) (adapted from [45]), 
(h) panoramic stereo vision (adapted from [47]), (i) DET data set (adapted from [16]), (j) DDD17 data set [18] (adapted from [3]), (k) N-Cars data set 
(adapted from [17]), and (l) MVSEC data set (adapted from [4]). 
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the photocurrent through the photoreceptor layer circuit. The 
outer plexiform layer circuit responds with spike events ( )vdiff  
of different polarities to positive and negative changes of the 
photocurrent. Spikes are transported to the next processing 
stage by the inner plexiform layer circuit. A large number of 
log-intensity changes are encoded in the events. Figure 2(d) 
illustrates the accumulated events including ON event (illumi-
nation increased) and OFF event (illumination decreased) that 
are drawn as white and black dots. 

Today’s representatives of silicon retinas are mainly from 
pioneers Tobi Delbruck and Christoph Posch and represent 
a compromise between biological and technical aspects. In 
their development, one prominent challenge posed is usually 
regarded as a wiring problem, indicating that each pixel of the 
silicon retina needs its own cable, which is impossible for chip 
wiring. A key technique for the solution, named address event 
representation (AER) was originally from the Caltech group of 
Carver Mead; it is used as an event-controlled and asynchro-
nous point-to-point communication protocol for prototypes of 
the silicon retina.

As illustrated in Figure 3, the basic functionality of AER 
is implemented by an address encoder (AE), an address de
coder (AD), and a digital bus. All neurons and pixels could 
transmit the time-coded information on the same line because 
the digital bus implements a multiplex strategy. The AE of 

the sending chip generates a unique binary address for each 
neuron or pixel in case of a change. The bus transmits the 
address at high speed to the receiver chip. Then, the AD 
determines the position and generates a spike on the receiver 
neuron. Event streams are employed in AER to communi-
cate among chips. An event is a tuple ( , , , );x y t p  x and y 
are pixel addresses; t is the time stamp; and p represents the 
polarity. The polarity indicates the increase and decrease 
in the lighting intensity, corresponding to an ON event and 
OFF event, respectively.

This article focuses mainly on the first practically usable 
silicon retina, the DVS, which follows the natural, frame-free, 
and event-driven approach that triggers a plethora of research 
in event-based neuromorphic vision and autonomous driving. 
[A recent approach by Tobi Delbruck is the so-called dynamic 
and active pixel vision sensor (DAVIS) that combines dynamic 
and static visual information into a single pixel.] The DVS pixel 
models a simplified three-layer biological retina by mimicking 
the information flow of the photoreceptor–bipolar–ganglion 
cells (see Figure 2). Pixels operate independently and attach 
special importance to the temporal development of the local 
lighting intensity. The DVS pixel would automatically trig-
ger an event (either ON event or OFF event) when the relative 
change in intensity exceeds the threshold. Therefore, the work-
ing principle of the DVS is fundamentally different from the 
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FIGURE 2. A practicable silicon retina DVS based on biological principles (adapted from [53]): (a) DVS pixel circuitry, (b) typical signals of the pixel 
circuits, (c) a three-layer model of a human retina, and (d) the accumulated events from a DVS. The accumulated event map has ON event (illumination 
increased) and OFF event (illumination decreased) drawn as white and black dots. 
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frame-based camera. There are three key properties of biologi-
cal vision that are kept in this silicon retina: the relative illu-
mination change, the sparse event data, and the separate output 
channels (ON/OFF). The major consequence of the DVS is that 
the acquisition of visual information is no longer controlled 
by any form of external timing signals such as frame clock or 
shutter, while the pixel itself controls its own visual informa-
tion individually and autonomously.

Advantages of bio-inspired vision sensors
Due to the fundamentally different working principle and the 
mimicking of the biological retina, the event-based neuro-
morphic vision sensors have several advantages over standard 
frame-based cameras.

■■ Energy-friendly properties: Since event-based neuromor-
phic vision sensor transmits only events and autonomously 
filter redundant data, power is only used to process active 
pixels (e.g., the events triggered by illumination changes). 
Particularly, an energy-friendly sensor is more important 
than advanced algorithms for the onboard computers and 
devices in autonomous vehicles.

■■ Low latency: There is no need for the global exposure of 
the frame because each pixel works independently. Ideally, 
the minimal latency is 10 s.n  The low-latency control of 
the autonomous vehicle is highly dependent on the percep-
tion systems. A low-latency perception system such as an 
object-detection system based on an event-based neuro-
morphic vision sensor would save lots of time in avoiding  
obstacles for the control systems.

■■ HDR: The event-based neuromorphic vision sensor such as 
DVS has an HDR (120 dB), which far exceeds that of the 
frame-based cameras (60 dB). Event-based neuromorphic 
vision sensors such as the DVS can simultaneously adapt 
to very dark and bright stimuli ensuring a highly robust 
perception system even in a light-changing scene such as 
an autonomous vehicle driving through a tunnel.

■■ Microsecond resolution: The brightness changes can be cap-
tured quickly in analog circuity. With a 1-MHz clock, events 
can be detected and time-stamped with microsecond resolu-
tion. Considering the fast response requirement of the con-
troller in autonomous vehicles in emergency driving scenes, 
this property is quite useful in autonomous driving.

■■ No motion blur: In the high-speed driving scenario, the 
motion blur problem occurs when the motion of the mov-
ing objects is beyond the sampling frequency of the frame-
based camera; this may cause the failure of the perception 
system. An event-based neuromorphic vision sensor can 
capture dynamic motion precisely with no motion blur; it 
is of great value to autonomous driving community.

Event noise processing
The preprocessing of the raw data is essential for extract-
ing meaningful information for sensor systems. An event-
based neuromorphic vision sensor not only captures the change in 
the light intensity caused by moving objects, it also generates 
some noise activities due to the movements of background 
objects and the sensor noise such as temporal noise and junc-
tion leakage currents [10]–[12]. As shown in Figure 4, the 
event noise processing technique is responsible for excluding 
the event noises from the event stream. Two commonly used 
methods in the literature, namely the spatial-temporal correla-
tion filter and the motion consistency filter, are illustrated 
as follows.

Spatial-temporal correlation filter
For a newly incoming event ( , , , ),e x y t pi i i i i=  the spatial-tempo-
ral filter searches the most recent neighborhood event around 
the current pixel location ( , )x yi i  within a distance D. The in-
coming event would be regarded as a nonnoise event if the time 
difference meets:

	 ,t t di n t1- � (1)
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FIGURE 3. The AER communication protocol: (a) three neurons on the sending chip generate spikes; (b) spikes are interpreted as binary events. A binary 
address is generated by the AE and transmitted to the receiver chip by the bus line; (c) the binary address is decoded to the binary event by the AD; and 
(d) spikes are emitted on the corresponding neurons of the receiver chip where the positions of the neurons are determined by the AD.
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where ti  is the time stamp of the event; tn  is the time stamp of 
the most recent neighborhood event; and dt  is the predefined 
threshold. The search for the most recent event checks eight 
neighborhood pixels around ( , ),x yi i  as shown in Figure 4. It 
lacks temporal correlation with events in their spatial neigh-
borhood because the event noise occurs randomly. Hence, 
the spatial-temporal correlation filter can effectively filter out 
event noise.

Motion consistency filter
In Figure 4, the principle of the motion consistency filter [13] is 
depicted. The blue dot denotes an incoming event caused by 
the object motion and the black dot represents an event noise. 
In the spatial-temporal domain, a newly incoming event 
should be consistent with the previous events (represented 
by red dots) caused by the same moving object. In a local 
region, the incoming event can be modeled as a consistent 
“moving plane” M. In this way, the velocity ( , ),v vx y  can be 
used to assess the motion consistency, and the event noise can 
be removed because the previous events (the red dots, signal) 
and the black dot are not on the same plane. Concretely, the 
motion consistency plane for each active event ei  can be for-
mulated as

	 ,ax by ct d 0i i i+ + + = � (2)

where ( , , , )a b c d R4!  defines the plane M; ( , )x yi i  is the 
coordinate of event ;ei  and ti  is the time stamp of event 

.ei  The event noise processing is an essential step to ex-
tract useful information from unwanted noise data for bio-
inspired visual sensing and perception tasks of autonomous 
driving; it can promote the accuracy and speed of subse-
quent algorithms.

Event data representation
As an emerging sensing modality, event-based neuromorphic 
vision sensors only transmit local pixel-level changes caused 
by movement or light intensity change in a scene. The output 
data are sparse and asynchronous event streams which can-
not be directly processed by standard vision pipelines, such 
as convolutional neural network (CNN)-based architecture. 
Therefore, encoding methods are utilized to convert asyn-
chronous events into synchronous image- or grid-like repre-
sentations for subsequent tasks such as object detection and 
tracking. According to whether or not the methods contain 
temporal information in the converted representations, we 
introduce two state-of-the-art encoding methods: spatial en-
coding and spatial-temporal encoding methods.

Spatial encoding
The spatial encoding methods convert event streams into event 
frames by storing event data at pixel location ( , )x yi i  with ei-
ther fixed-time interval (e.g., 30 ms, constant time frame) or 
fixed number of events (e.g., 500 events, constant count frame). 
For an event frame, the value of the pixel is usually represented 
by the polarity of the last event (the positive event is 1 and the 
negative event is −1) or the statistical characteristics (such as the 
event count in a fixed-time interval, event count frame) of the 
events in the fixed interval. Assuming that ( , , , )e x y t p [ , ]i i i i i i N1!  
represents event stream, typical approaches based on spatial 
encoding can be defined as follows:
1)	 Constant time frames:

	 ( ( ) ),F e T j t T j1cardj
t

i i$ $; # #= - � (3)

	 where F j
t  represents the jth frame of time interval T; 

card() is the cardinality of a set; and ei  is the ith event of 
the event stream.
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FIGURE 4. Event noise processing. The top branch is the spatial-temporal correlation filter; the bottom branch is the motion consistency filter. 
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2)	 Constant count frames:

	 ( ( ) ) .F e E j i E j1cardj
e

i $ $; # #= - � (4)

	 The constant count frame is defined similarly to constant 
time frame. F j

e  is the jth frame that contains E events.
3)	 Event count frames:

	 .( , ) ( , )Hist x y x x y y
,p t T

i i
1i i

d= - -
!

+

=+

/ � (5)

Two separate histograms for positive and negative events 
are generated in a fixed-time interval T. ( , )Hist x y+  denotes 
the histogram for positive events, where d  is the Kronecker 
delta function. The same goes for the negative-events his-
togram, which is represented by Hist-  with .p 1i =-  The 
final representation of the events in the fixed-time interval 
T is an event frame, which consists of two histograms Hist+  
and ,Hist-  as shown in Figure 5. Since the principle of the 
spatial encoding method is to project the events onto the 
spatial plane ( ,x y plane)-  it loses the temporal information 
of all of the events.

Spatial-temporal encoding
The microsecond temporal resolution of the event stream pro-
vides a highly precise recording and description of the scene 
dynamics, which is valuable in many perception tasks such 

as high-speed moving object detection (e.g., vehicles). Spatial-
temporal encoding methods combine spatial and temporal in-
formation of the events and convert events into a compact repre-
sentation. A comparison of spatial-temporal encoding methods 
is presented in Table 1. A detailed description of these methods 
is displayed as follows.

Surface of active events
The surface of active events (SAE) uses time-stamp values in-
stead of intensity values to represent the pixel values. For each 
incoming event :ei  

	 : ( , ),SAE t P x yi i i7 � (6)

where ti  is the time stamp of the most recent event at each pixel, the 
pixel value P at ( , )x yi i  is directly determined by the occurrence 
time of the events. The disadvantage of the SAE method is that it 
completely ignores the information of previous events happening 
at ( , )x yi i  and only uses the time stamp of the most recent event.

Leaky integrate-and-fire
Leaky integrate-and-fire (LIF) is an artificial neuron in-
spired by biological perception principles and computation 
primitives. A neuron receives input spikes (events) generated 
from a DVS, which modifies its membrane potential. If the 
membrane potential exceeds a predefined threshold, a spike 
stimulus will be sent to the output. The LIF neuron can be 
modeled as

Hist +(x, y)

Hist –(x, y)

Hist +(x, y) + Hist –(x, y)

Asynchronous Event Stream

x

t

y

Integration Over Time T

Event Frame–Channel One

Event Frame–Channel Two

FIGURE 5. The process of converting asynchronous event data into an event frame. An event frame consists of two histograms from the positive events 
and negative events, respectively. 

Table 1. The comparison of different event data representations of spatial-temporal encoding. 

Representation Dimensions Polarity Channel Intensity Weakness 
SAE H # W 2 Time stamp of the most recent event Without temporal history 
LIF H # W 1 Event spikes Without polarity information 
Voxel grid B # H # W 1 Sum event polarities Without polarity information 
EST B # H # W 2 Sample event point-set into the grid Without the least amount of information

The polarity channel is 2 if the encoding method considers the polarities of events; otherwise, it is 1. H and W represent the image height and width dimensions, respectively;  
B denotes the number of temporal bins.
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	 ( ( ) ) ( ),
dt
dV V t V RI tresetx =- - + � (7)

where, V(t) is the membrane potential, which is a function 
across time; I(t) is the total synaptic current; R is the membrane 
resistance; and x  is the membrane time constant. The neuron 
fires (produces an output spike) when the membrane potential 
reaches the threshold voltage ( )Vth  and then resets to reset volt-
age ( ).Vreset  As shown in Figure 6, the spatial-temporal events 
are encoded by an LIF neuron, in which each event updates 
membrane potential of the neuron and the final converted rep-
resentation is composed of the output spikes. An LIF neuron 
can not only transform event data into representation, it also 
serves as the basic unit of a spiking neural network (SNN) (see 
the section “SNNs”).

Voxel grid
Voxel grid is a novel event representation aiming to improve 
the resolution of event stream in the temporal domain. Giv-
en a set of N events ( , , , ) ,x y t p [ , ]i i i i i N1!  B bins are used to 
split the time dimension; then, the time stamps of events 

are scaled to the range of [ , ].B0 1-  The event voxel grid 
is defined as

	 /( ) ( ) ( ),t B t t t t1 i N1 1= - - -t � (8)

	 ( , , ) ( ) ( ) ( ),V x y t p k x x k y y k t ti
i

N

i i= - - - t/ � (9)

	 ( ) ( , ),maxk z z0 1 ; ;= - � (10)

where, k(z) is the trilinear voting kernel, which is equivalent 
to the definition in [14]. As shown in Figure 7, events are con-
verted into voxel grid representation with the fixed kernel. This 
representation retains the distribution of the events across the 
spatial-temporal dimensions.

Event spike tensor
Event spike tensor (EST) is an end-to-end learned repre-
sentation [15]. In a given time interval T, EST can be formed 
by sampling the convolved signal,

	 [ , , ] ( , , ) ( , , ),S x y t f x y t k x x y y t t
e p

i i i c i i i

i

= - - -! !

! !

/ � (11)
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FIGURE 7. The process of converting asynchronous event data into grid-based representation with a fixed kernel [14] and a learnable kernel [15].

Spike
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FIGURE 6. An LIF representation: Asynchronous spatial-temporal events are converted into event data representation by LIF neurons.
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where, ( , , )f x y ti i i!  is a measurement assigned to each event to 
represent the corresponding intensity value at the pixel loca-
tion; kc  is the kernel convolution function to derive meaningful 
signal from the event stream. Generally, both the measurement 
and kernel are handcrafted functions in previous works, as il-
lustrated in Figure 7. Particularly, the EST deploys a multilayer 
perception replacing the handcrafted kernel function in (11) to 
fit the data with the purpose of finding the best function for 
event streams. Simultaneously, the measurement function is 
chosen from a set of fixed functions. Examples of such func-
tion are the event polarity ;f 1!=!  the event 
count ;f 1=!  the time stamp ;f t=!  and the 
normalized time stamp ( ) / .f t t T0= -!

Event-based neuromorphic vision 
algorithms and applications of 
autonomous driving
The fundamental algorithms are the basis of 
the perception system of autonomous driv-
ing. For emerging systems and applications of bio-inspired vi-
sion, event-based neuromorphic vision algorithms are designed 
to extract features from event streams to fulfill given tasks. These 
methods can run directly on the event stream or take event rep-
resentations as input (see the section “Event Data Representa-
tion”). They have been applied successfully in many vision tasks.

Event-based data sets of autonomous driving
In recent years, researchers have started to investigate the us-
age of event-based neuromorphic vision sensor such as DVS 
and DAVIS in the visual sensing and perception system of the 
autonomous driving system. There are many data sets that are 
built to promote the research of event-based neuromorphic vi-
sion, neurorobotics, and autonomous vehicles. In this section, 
four public event-based data sets dedicated to autonomous driv-
ing are discussed.

DET data sets
The performance of conventional lane extraction algorithms is 
limited because a frame-based camera cannot work well when 
the light is extremely dark or changes rapidly. To tackle this 
problem, [16] uses event-based neuromorphic vision sensors to 
build a high-resolution data set, called the DET data sets, for 
lane extraction. The DET data set containing various traffic 
scenes is collected by driving on tunnels, bridges, overpasses, 
and urban areas. The data set includes 5,424 event frames of 
1,280 × 800 pixels with corresponding labels and consists of 
a training set of 2,716 frames, a validation set of 873 frames, 
and a test set of 1,835 frames. Two kinds of labels (per-pixel 
label without distinguishing lanes and per-pixel label with dis-
tinguishing lanes) are provided. The DET data set is the first 
bio-inspired vision data set for lane detection—a fundamental 
problem in autonomous driving.

N-CARS data sets
The N-CARS data set introduced by [17] provides recording 
cars in urban environments with a DVS. The data set con-

sists of 12,336 car samples and 11,693 noncar (background) 
samples. Specifically, 7,940 car samples and 7,842 background 
samples are training samples, and others are testing samples. 
Each example is labeled by semiautomatic protocol with man-
ual correction of the wrong one.

MVSEC data sets
In [4], the multivehicle stereo event camera data set (MVSEC) 
created for 3D perception with multiple sensors was presented. 
The MVSEC is the first data set with a synchronized stereo 

event-based neuromorphic vision system. 
The ground-truth depth data are generated 
from a calibrated lidar system contributing 
to stereo depth estimation with the event-
based vision sensor. The MVSEC data set 
consists of long outdoor sequences in a va-
riety of illuminations and driving speeds, 
which can be used for the evaluation of 
event-based visual odometry, localization, 

obstacle avoidance, and 3D reconstruction in challenging and 
real-word driving scenes.

DDD17 data set
For self-driving applications, end-to-end learning of the control 
model is a fascinating direction. The DDD17 data set [18] is the 
first large-scale public data set with a DAVIS sensor. The data 
are recorded in highway and city scenes driving from Switzer-
land to Germany. It has more than 12 h of data collected under 
different weather, road, and light conditions, covering the dis-
tance of more than 1,000 km. Furthermore, vehicle data, such 
as speed, GPS position, driver steering, throttle, and brake are 
also recorded.

Handcrafted feature
The concept of time surface is proposed to track the activ-
ity of the object due to the lack of effective low-level feature 
representations and descriptors for an event-based vision 
mission. It represents temporal characteristics and describes 
the spatial-temporal context around an event. For an event 
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where ( , )C x yi i i=  is the pixel coordinates of the incoming 
event ,ei  R is the radius of the spatial neighborhood around ,ei  

( , )T C R Pi +  is the time stamp of the last event with polarity P 
received from pixel ,C Ri +  and x  is a constant decay factor. 
The exponential decay expands the activity of past events and 
records history information of the activity in the neighbor-
hood. Time surface has been effectively used in various vision 
tasks, such as object recognition and feature tracking. Further, 
a hierarchy of time surface is introduced for object recogni-
tion [19]. Relying on a time-oriented approach, this model is 
used to extract valuable spatial-temporal features from event 

There are many data sets 
that are built to promote 
the research of event-
based neuromorphic 
vision, neurorobotics, and 
autonomous vehicles.
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streams. Based on the findings in [19], a sparse coding basis 
decomposition was used to reduce the number of prototypes 
in a hierarchy structure for lowering computational cost and 
memory need [20]. However, they only achieved better recog-
nition performance for simple shapes, such as numbers and 
letters, while they cannot well perform for complex objects, 
such as cars. Inspired by the histogram of orientation gra-
dient feature widely used in frame-based vision, an effective 
event descriptor named histogram of averaged time surfaces 
(HATS) was constructed [17]. Then, better classification per-
formance and real-time computation were obtained. HATS 
convert event streams into local memory time surfaces and 
computes the histograms to formulate the final descriptor. After 
these features are extracted from event streams, a simple linear 
support vector machine classifier is used to recognize objects in 
the N-CARS data set. 

Clustering
A classical unsupervised learning approach is clustering. Given 
a set of data, the clustering algorithm can be used in this study 
to generate different groups. The data with different character-
istics are grouped into different clusters. The clustering meth-
ods can be applied directly to generate object proposals because 
the event stream from the DVS can be treated as sparse point 
cloud data where each point is an event. For example, a cluster-
ing method named Gaussian mixture models (GMMs) is used 
to track the pedestrian [22]. The method achieves accurate de-
tection and tracking of pedestrian objects by extending GMMs 
with a stochastic prediction of objects’ states. The goal of track-
ing is to estimate the state of one or multiple objects over time. 
In case of a possible collision with other traffic participants, the 
autonomous vehicle requires sufficient reaction time to ensure a 
safe brake distance. It is difficult to track a pedestrian because a 
pedestrian can suddenly change his or her moving direction. The 
results in [22] indicated that applying clustering to spatial-tem-
poral event data has a large potential for robust object tracking.

Bio-inspired feature learning

SNNs
An SNN is a bio-inspired approach that can operate directly 
on spatial-temporal event data. The computational pattern of 
SNNs mimics the working principle of receptive fields in the 
primary visual cortex. As basic building blocks of SNNs, LIF 
and adaptive exponential are both inspired by the biological 
neurons found in the visual cortex of mammalians, which en-
code temporal information and make them naturally fit asyn-
chronous event streams. The basic principle of SNN is that a 
neuron will not emit any spike if it has not received any in-
put spike from the preceding SNN layer. Moreover, the cor-
responding neuron will generate spikes that are fed to the next 
layer only if the membrane voltage caused by received spikes 
exceeds a predefined threshold. The predefined network units, 
such as the difference of Gaussians or Gabor filters, are usu-
ally used in the first layer of SNN to extract features. Features 
are transmitted from the first layer of SNN to the deeper lay-

ers in parallel [23]–[25]. The major disadvantage of conven-
tional SNNs is not differentiable, causing the popular training 
methods to be inapplicable. In the context of autonomous driv-
ing, a SNN architecture consisting of refractory, convolution, 
and clustering layers was presented [26]. It was designed with 
biorealistic LIF neurons and synapses. The LIF neurons are 
used as basic building blocks in the proposed algorithm, where 
the refractory layer filters off fraction of the input events to 
generate spike. Then, the spikes are convolved by convolution 
layer to produce region proposal boxes. Moreover, the cluster-
ing layer combines these boxes to cluster together to form the 
shapes of objects. This method is validated on object detection 
with real traffic scenes including humans, bikes, cars, vans, 
trucks, and buses.

SNN with backpropagation
SNN with handcrafted feature extractors (such as Gabor filters) 
cannot learn weights naturally from the data. To overcome this 
drawback, researchers established a novel architecture of SNN 
with LIF neuron and winner-takes-all (WTA) circuits [21]. The 
LIF neuron uses dynamic weights rather than a simpler refrac-
tory mechanism to update its membrane potential. In a WTA 
circuit, it would inhibit other neurons from spiking once an 
output spike occurs in a neuron. Furthermore, the lateral in-
hibition is employed to put the dynamic weights of all inhib-
ited neurons in the WTA circuit into the refractory state. The 
differentiable transfer functions are derived in the WTA con-
figuration to make SNN trainable with backpropagation; more-
over, the performance of SNN architecture is also improved. In 
Figure 8, an SNN network with backpropagation is illustrated. 
However, trainable SNN is only tested on simple data sets (such 
as MNIST) and has not been applied in specific autonomous 
driving scenarios. As the output of event-based neuromorphic 
vision sensor is a spatial temporal event stream which is fun-
damentally different from frame-based camera, it requires the 
design of specifically tailored algorithms to accommodate the 
nature of events, and [21] indicates the prospect of implement-
ing deep SNNs.

CNN
CNN is a popular feature extraction architecture, which is 
composed of three types of layers, including a convolutional 
layer, a pooling layer, and a fully connected layer. It uses spa-
tially localized convolutional filtering to capture local features 
of input image. Basic visual features, such as lines, edges, and 
corners, are learned in the first few layers, while more abstract 
features are learned in deeper layers. For an input image ma-
trix I, the correspondence activation map M is computed in the 
nth neuron of the CNN as follows
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where the image size is ,k2 1+  W is the nth convolutional 
filter, and v  is the nonlinear activation function. Generally, a 
max pooling layer follows each convolutional layer, in which 
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the local maximum is used to reduce the dimension of the 
matrix and prevent overfitting. Moreover, fully connected 
layers are usually added to learn the nonlinear combination 
of extracted features from previous layers. Over the decades, 
many variants of CNNs, such as fully CNNs and encoder–
decoder networks, have emerged. These networks have dif-
ferent structures from traditional CNNs, such as removing 
the full connection layer. The performance of CNNs has sur-
passed traditional machine learning methods in many vision 
tasks, relying on successful training algorithms and large 
amounts of data.

CNNs for optical flow, depth, and egomotion
Known as a 2D motion estimation, the optical flow is defined as 
the distribution of apparent velocities of movement of bright-
ness patterns between two images. It provides valuable infor-
mation about the scene and serves as input for several tasks, 
such as tracking and visual odometry. In the neuromorphic 
vision research community, some works attempt to estimate 
optical flow by taking advantage of high temporal resolution 
of event-based sensors [27]. EV-FlowNet, a self-supervised 
deep learning architecture for optical flow estimation for 
event-based sensors, is proposed in [28]. In this method, a 
four-channel event representation consisting of the histogram 
(5) and SAE (6) of different polarity is used to pass through a 
pipeline that is composed of four stride convolutional layers, 
two residual blocks, and four up-sampling convolutional layers 
for obtaining flow estimation. By evaluating an MVSEC data 
set, the network is able to accurately predict optical flow from 
event streams. In [29], a novel neural network framework is 
proposed to acquire motion information including optical flow, 
depth, and egomotion from a set of inputs (a voxel grid) that 
is an event data representation mentioned in the “Voxel Grid” 
section. The network architecture consists of encoder–decoder 
networks and pose models; among them, the encoder–decoder 
section is responsible for predicting optical flow and depth, 
while the pose model is responsible for estimating egomotion. 

Experimental results in the MVSEC data set indicate that the 
presented network can learn various motion information of 
events well. Recently, a lightweight evenly cascaded convo-
lutional network (ECN) using monocular event-based sensor 
input for dense depth, optical flow, and egomotion estimation 
was introduced in [30]. ECNs use an encoder network to pre-
dict pose; meanwhile, an encoder–decoder network is ap-
plied to obtain the scaled depth. The algorithm can operate at 
250 frames/s (fps) on a single NVIDIA 1,080 titanium GPU. 
Compared with previous works, it makes significant improve-
ments on the performance of the MVSEC data set.  

CNNs for object detection
Reliable object detection is essential to avoid accidents that 
might be life threatening because a self-driving car is shar-
ing the road with many traffic participants, such as vehicles 
and pedestrians. For instance, a supervised learning method 
is applied on event data for object detection under egomo-
tion [31]. The data set used in this article is DDD17, which is 
a large event-based data set applying DAVIS to record vari-
ous challenging scenarios under egomotion. The DAVIS is 
a sensor consisting of an event-based neuromorphic sensor 
and a synchronized gray-scale frame-based camera. In [31], 
gray-scale images are fed into a state-of-the-art frame-based 
CNN to generate outputs (pseudolabels), which are used as 
ground truths for subsequent training on event-based data. 
This method achieves high-speed detection (100 fps) in a real 
outdoor scenario within various backgrounds such as day and 
night. As pseudolabels are not explicit enough, the authors 
manually labeled the DDD17 data set to explore the poten-
tial of event-based neuromorphic sensor for vehicle detection 
in autonomous driving [32]. A convolutional SNN is utilized 
to generate visual attention maps for synchronizing with the 
frame-based stream. Two separate event-based and frame-
based streams are incorporated into a CNN detector to obtain 
detection output. With a joint decision model to postprocess 
the output, the algorithm outperforms the state-of-the-art 

Layer n –1 Layer n +1Layer n

Spikes

Input

Reset

Lateral
Inhibition

Spikes

Spikes

Spiking Neuron

Spike Propagation

Membrane Potential Reset

Lateral Inhibition

Backpropagation Path

FIGURE 8. An example of how an SNN network works with backpropagation [21]. 
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methods that only employ frame-based cameras. The detec-
tion for stationary and moving people around a self-driving 
car has attracted the attention of researchers. Specifically, a 
multicue event information fusion for pedestrian detection 
was proposed [33]; it was evaluated on the data set recorded 
by a neuromorphic vision sensor. Based on the advantages 
of leveraging various properties of event streams, this article 
performed better on positioning and recognition of pedes-
trians. Recently, a cross-modal approach was presented in 
[34]; wormhole learning was utilized to pair red, green, blue 
(RGB) camera and event-based neuromorphic vision sensors 
to improve the object detection performance under the sce-
nario of urban driving. This method is different from transfer 
learning as it can be transferred back to the original domain 
to improve performance on the task. The experimental results 
of wormhole learning reveal that there are many innovative 
approaches to combine data from different heterogeneous 
sensors, such as RGB cameras, infrared cameras and neuro-
morphic vision sensors.

CNNs for semantic segmentation
In the sensing and perception system of autonomous driving, a 
comprehensive understanding of the surrounding environment 
is provided by semantic segmentation. The first CNN-based 
baseline for semantic segmentation with an event-based neu-
romorphic vision sensor is introduced in [35]. In this article, 
the authors build an event-segmentation data set (Ev-Seg) that 
is an extended version of DDD17 for semantic segmentation. 
Inspired by the study in [31], the labels of Ev-Seg are gener-
ated by running a trained CNN on gray-scale images. Then, 
an Xception-based CNN architecture is trained to learn gener-
alization ability from event streams. Finally, the complemen-
tarity between the frame-based camera and event-based neu-
romorphic vision sensor is presented through comparing the 
semantic segmentation results produced from event data and 
corresponding gray-scale images.

CNNs for active perception
Controlling the autonomous vehicle in challenging scenes such 
as highway driving requires a low-latency perception system. 
Hence, researchers try to tackle this tough problem by unlock-
ing the low-latency potential of event-based neuromorphic vi-
sion sensors. An end-to-end autonomous driving system, map-
ping from the event streams to the driving actions, is proposed 
in [3]. This system converts events to event count frames (his-
togram of different polarities) mentioned in (5), which are fed 
into a residual neural network (ResNet)-inspired network to 
predict the steering angle of the vehicle. The proposed method 
can accurately predict the steering angle of vehicles and per-
forms better on DDD17 data sets than the state-of-the-art 
systems using gray-scale images.

CNNs-to-SNNs
CNNs have demonstrated their ability to deal with many difficult 
vision problems, such as object detection. SNNs have present-
ed their potential for low-power event-driven neuromorphic 

hardware. However, the applications of SNNs are limited due 
to their shallow neural network architecture. Furthermore, the 
CNN-to-SNN model is developed to combine the benefits of 
deep architecture in CNNs with the bio-inspired mechanism 
of SNNs. References [36]–[38] illustrate that widely used CNNs, 
such as VGG, ResNet, and Inception-V3 can be converted 
into spiking networks. It is worth mentioning that the network 
can achieve a more robust performance via conversion from 
CNNs, although the conversion process would lose some pre-
cision and increase computation. Some works have been re-
viewed in [39].

Transfer learning via pretrained network
Transfer learning is a very effective method to improve the 
training performance of the deep neural network. Knowledge 
learned from a different domain can be exploited to initial-
ize the weights of a deep neural network. The availability of 
event-based data sets collected with a DVS sensor is limited 
compared with the data set recorded by frame-based cameras. 
Thus, by starting the supervised training process from a bet-
ter set of initial weights, the requirement of the training data 
can be reduced, and the generalization ability of the network 
can be improved. Pretrained models, such as VGGnet and 
ResNet, can be applied to bio-inspired sensing and percep-
tion tasks of autonomous driving. Specifically, event streams 
can be transformed into a three-channel image-like represen-
tation to serve as input to pretrained CNNs. In [40], the au-
thors combined an inceptive event time surface (IETS) with 
transfer learning to improve performance of object classifica-
tion. IETSs are generated to utilized transfer learning from 
the GoogLeNet that is pretrained on ImageNet, including the 
millions of real-world images. Nearly 100% classification ac-
curacy on the event-based N-CARS data set is achieved by 
the algorithm. In [41], a robust event stream object tracking 
method is presented. A VGG-16 model pretrained on Ima-
geNet is used to extract features to represent the appearance 
of the object. Based on correlative filter mechanism, the cor-
relation response map is computed on the extracted features. 
The proposed approach performs well in various challenging 
visual scenarios.

Event-based assistance systems
After the basics of event-based perception system of autono-
mous driving are covered, the event-based assistance systems 
are discussed.

Image reconstruction
The event-based neuromorphic vision sensor generates HDR 
event data even in extreme illumination conditions and also 
avoids motion blur under rapid motion. Reconstructing HDR 
intensity images from event streams facilitates the adoption of 
mature computer vision techniques. Previous works focus on 
exploiting the low latency of neuromorphic vision sensor by 
directly processing event data (such as SNNs) or transferring 
events to image-like or grid-like representations as mentioned 
in the section “Event Data Representation.” However, the deep 
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neural network trained on real image data (such as ImageNet)  
cannot be effectively transferred to these representations, even 
though it achieves some performance improvements (see the 
section “Transfer Learning via Pretrained Network”). As an 
alternative method, image reconstruction (IR) from event 
streams is first proposed in [42]. IR can achieve both high 
frame-rate images and high-quality images with no motion 
blur. In [43], the authors utilize the time stamp of new events 
to define a manifold for IR. With consid-
ering IR as an energy minimization prob-
lem, the proposed method is optimized and 
achieves real-time performance on a GPU. 
Furthermore, an asynchronous comple-
mentary filter is presented to reconstruct 
event streams for continuous-time intensity 
estimate [44]. In this article, the gray-scale 
frames and events produced by DAVIS are fused into an im-
age with high temporal resolution and HDR. In addition, a 
new framework for IR, named E2VID, is introduced in [45]. 
E2VID converts event stream into 3D spatial-temporal voxel 
grid sequences (see the “Voxel Grid” section), which are taken 
as the input of the network. The algorithm is trained on a large 
synthetic event data simulated with ESIM [46] to generate re-
constructed image frames. The reconstructed image data from 
event streams can be used for various applications such as ob-
ject recognition, SLAM, and optical flow estimation.

Panoramic stereo vision
Panoramic vision in 3D offers a full 360° surrounding view 
which facilitates the navigation and localization tasks for au-
tonomous driving. A novel multiperspective panoramic ste-
reo event-based vision system is proposed in [47]. It is composed 
of a pair of line event-based neuromorphic vision sensors. The 
authors present a novel event-driven stereo matching approach 
for 3D panoramic vision. The process steps of the event-driv-
en stereo matchintg algorithm include event map generation, 
event distribution measure, cost calculation, disparity estima-
tion and refinement. The experimental results indicate that the 
tailored event-driven stereo method achieves accurately 3D re-
construction in real time out of 360° panoramic views.

Visual odometry
The goal of the visual odometry is to estimate the position 
and orientation of a vehicle with vision sensors. The visual 
odometry system of an autonomous vehicle with a traditional 
frame-based camera has been developed for many years, 
while the method based on an event-based neuromorphic vi-
sion sensor is still in the preliminary stage. For example, an 
event-based visual odometry system for intelligent vehicle 
applications is proposed in [48]. The events generated from 
a DAVIS sensor are aggregated into constant time frame de-
fined in (3) to serve as input to subsequent algorithms. The 
feature tracking is used by visual odometry system to de-
velop parallel pose estimation and mapping. The feasibility 
of event-based neuromorphic vision sensors for bio-inspired 
visual odometry systems in real-word outdoor driving scenes 

is confirmed by the results of their experiment on the MVSEC 
data set.

Drowsiness driving monitoring
Drowsiness driving monitoring is important to ensure that 
the autonomous driving vehicle is under the supervision of 
the drivers. In [49], an event-based drowsiness driving de-
tection system is proposed. The event-based neuromorphic 

vision sensor is considered as an efficient 
and effective detector for the drowsiness 
driving-related motions due to the unique 
output. [49] proposes to recognize and lo-
calize the driver’s eyes and mouth motions 
from event streams, and extracts event-
based drowsiness-related features directly 
from the event streams caused by eye and 

mouth motions. Experiments in [49] demonstrate the high ef-
ficiency and accuracy under different illumination conditions 
such as subjects wearing sunglasses.

Spike compression
The event data compression is particularly important for main-
taining the real-time performance of the sensing system of au-
tonomous vehicles because both the data storage and transmis-
sion bandwidth of on-board event-based neuromorphic visions 
sensors equipped on the autonomous vehicles are limited. To ad-
dress this problem, a cube-based spike coding framework is pro-
posed by [50]. In the spatial-temporal dimension, an octree-based 
structure is put forward to adaptively cut the event (spike) stream 
into coding cubes, then address-prior mode and time-prior mode 
are designed to exploit the spatial and temporal characteristics of 
events for data compression. The proposed spike coding frame-
work is evaluated on the DDD17 data set. Experimental results 
indicate that it can achieve a better compression ratio against the 
raw event data. Reference [51] proposes to use mixture density 
autoencoder to learn a low-dimensional representation from an 
event stream, which preserves the nature of event-based data bet-
ter while being easy to feed to a sequence classifier.

Challenges and future directions 
in autonomous driving
Event-based neuromorphic vision is an emerging technique 
in the era of mature sensor hardware of autonomous driving. 
Comparing it with lidar, radar, and cameras is unfair because 
event-based sensors such as DVS are not at the same matu-
rity level as others. Conversely, there is substantial room for 
the development and improvement in the cross-research of 
event-based neuromorphic vision and autonomous driving. 
Challenges and future directions closely related to autono-
mous driving are pointed out in numerous opportunities, as 
described later.

Sensor fusion in perception system of autonomous driving
To fuse the event-based neuromorphic vision sensor with 
others, there is an unavoidable problem that the sensor fu-
sion brings back the disadvantages of providing a redundant, 

Event-based neuromorphic 
vision is an emerging 
technique in the era of 
mature sensor hardware 
of autonomous driving.
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sampled intensity output with linear encoding of intensity. 
On the contrary, the advantages are also obvious; that is, 
different kinds of sensors are complementary. For example, 
DVS contains no color information, which is provided by 
frame-based cameras. The distance and speed information 
can be provided by lidar and radar. It remains to be seen 
whether the DVS output can be used to 
trigger frame captures of other sensors. If 
it is, the DVS and other sensors can op-
erate together with mixed conventional 
machine vision, bio-inspired, and event-
based neuromorphic vision-based approach-
es. Therefore, some of the limitations of a 
traditional sensor-based perception system 
may be overcome; moreover, new scenari-
os that were previously inaccessible in the visual sensing and 
perception of autonomous vehicles might be reached.

Active vision system of autonomous driving
In robotics, the ability to directly fuse the perception with its 
motoric ability is often referred to as active perception. In au-
tonomous driving, it is found that the perception and action 
are often kept in separated spaces; this is a consequence of 
state-of-the-art sensors equipped on the autonomous vehicle 
being frame-based. The sensing and perception only exist in a 
discrete moment while the motion is a continuous entity. It can 
be argued that the event-based neuromorphic vision sensor can 
see the motion, which has the potential to cross the bridge be-
tween perception and motor control. New methods of encoding 
perceptions and actions could be meaningful to the active per-
ception system of autonomous driving. Moreover, this would 
create new opportunities for real-time navigation and obstacle 
avoidance for autonomous driving if the visual perception can 
be bound with the system dynamic to enable dynamic environ-
ment perception.

Large-scale autonomous driving benchmark based on an 
event-based neuromorphic vision sensor
It is well known that rapid development of autonomous driv-
ing is promoted by standardized benchmarks. For example, 
the growing popularity of deep neural networks in intelligent 
vehicles and large-scale benchmarks such as KITTI, Cityscale, 
and ImageNet, is interconnected and mutually reinforced. In 
the earlier days of event-based neuromorphic vison, most of 
the research work was done in an indoor environment due to 
the low resolution of sensors. Until recently, the event-based 
neuromorphic vision sensor has been expanded to outdoor 
scenarios, such as autonomous driving, by the teams of Tobi 
Debruck, Kostas Daniilidis, and David Scaramuzzsa. There is 
an emerging need for high-quality benchmarks in the fields of 
event-based neuromorphic vision and autonomous driving. A 
standard platform would bring the mainstream of computer vi-
sion-based intelligent vehicle research to pay attention to event-
based neuromorphic vision; furthermore, the unique strengths 
of bio-inspired vision would be leveraged to attract research 
interests in new sensing techniques for autonomous driving.

From simulated event data to real-world  
autonomous driving
Labeling the asynchronous event data is always a challenging 
problem because almost all of the annotation tools are developed 
for frame-based cameras. Additionally, there is not a standard 
format for the annotations. From one perspective, developing an 

easy-to-use tool for recording and labeling 
event data would make a significant con-
tribution to the community; from another 
perspective, the adoption of event-based 
neuromorphic vision technology would 
also be facilitated by developing simula-
tors. Particularly, the corresponding event 
streams, intensity frames, and depth infor-
mation could be generated by a simulator 

based on the working principle of the sensor. Simultaneously, 
the basic facts of all recording data including the trajectory of 
the sensor, the label of the object, and even the optical flow are 
also generated without the need for annotation. With photo-
realistic virtual driving scenes and realistic sensor models, 
the development of event-based visual sensing and perception 
system in autonomous vehicles will be accelerated by proto-
typing on simulated event data with transfer learning methods 
in the future.

Limitations that may exist as event-based neuromorphic 
vision sensors mature
There is no appearance feature such as color and texture be-
cause an event-based neuromorphic vision sensor only trans-
mits local pixel-level changes, making it perform poorly in 
some applications with high requirements for appearance fea-
tures. Although researchers have used the method of IR (men-
tioned in the section “Spatial Encoding”) to reconstruct image 
frames from event streams, the quality of reconstructed image 
frames is still not comparable to the output data produced by 
RGB cameras. The application of an event-based neuromor-
phic vision sensor is limited in some scenarios where energy, 
latency, and dynamic range are not important, especially in 
high-resolution complex scenarios.

Conclusions
Innovative solutions will emerge due to the challenges re-
maining on the road to fully autonomous driving. Concur-
rently, sophisticated signal processing techniques have been 
successfully applied to autonomous driving hardware such 
as cameras, lidars, and radars. Exploring alternative methods 
of visual sensing such as event-based neuromorphic vision is 
promising for promoting subsequent tasks to be more robust 
and complementary. It is reasonable to say that the research 
and development of an event-based neuromorphic vision for 
autonomous driving is still in its infancy. In this article, the 
advantages, signal processing techniques, emerging applica-
tions and systems, and future directions of an event-based 
neuromorphic vision for autonomous driving have been in-
troduced and analyzed. This article helps researchers and 
engineers take the first step in developing innovative signal 

There is an emerging 
need for high-quality 
benchmarks in the 
fields of event-based 
neuromorphic vision and 
autonomous driving.
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processing techniques toward bio-inspired visual sensing and 
perception of autonomous vehicles.
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