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Graph signal processing for machine learning:

A review and new perspectives
Xiaowen Dong*, Dorina Thanou*, Laura Toni, Michael Bronstein, and Pascal Frossard

The effective representation, processing, analysis, and visualization of large-scale structured data,

especially those related to complex domains such as networks and graphs, are one of the key questions in

modern machine learning. Graph signal processing (GSP), a vibrant branch of signal processing models

and algorithms that aims at handling data supported on graphs, opens new paths of research to address this

challenge. In this article, we review a few important contributions made by GSP concepts and tools, such

as graph filters and transforms, to the development of novel machine learning algorithms. In particular,

our discussion focuses on the following three aspects: exploiting data structure and relational priors,

improving data and computational efficiency, and enhancing model interpretability. Furthermore, we

provide new perspectives on future development of GSP techniques that may serve as a bridge between

applied mathematics and signal processing on one side, and machine learning and network science on the

other. Cross-fertilization across these different disciplines may help unlock the numerous challenges of

complex data analysis in the modern age.

I. INTRODUCTION

We live in a connected society. Data collected from large-scale interactive systems, such as biological,

social, and financial networks, become largely available. In parallel, the past few decades have seen

a significant amount of interest in the machine learning community for network data processing and

analysis [1]–[3]. Networks have an intrinsic structure that conveys very specific properties to data,

e.g., interdependencies between data entities in the form of pairwise relationships. These properties are

traditionally captured by mathematical representations such as graphs.

In this context, new trends and challenges have been developing fast. Let us consider for example a

network of protein-protein interactions and the expression level of individual genes at every point in time.
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Fig. 1: Illustrative example of a typical graph-based machine learning task and the corresponding challenges.
The input of the algorithm consists of i) a typical protein-protein interaction network captured by a graph,
and ii) a signal on the graph (color-coded) that is an expression level of individual genes at any given
time point. The output can be a classical machine learning task such as clustering of the proteins, or
prediction of the gene expression over time. Figure inspired by Figure 1 in [4].

Some typical tasks in network biology related to this type of data are i) discovery of key genes (via

protein grouping) affected by the infection and ii) prediction of how the host organism reacts (in terms

of gene expression) to infections over time, both of which can inform the best intervention strategies.

These are two classical machine learning tasks, which involve learning with graph-structured data (see

Fig. 1 for an illustration). Furthermore, the rapid growth of gene and protein sequence data stretches the

limit of graph-based algorithms, which need to be robust and stable against potential noise. Finally, the

understanding and interpretability of the learning model (such as the interpretation of the coefficients

of the regression model) are of crucial importance to clinical decision-making, for example the vaccine

somministration.

The quest for more efficient representation of signals collected in new structured observation domains

has led to the recent development of graph signal processing (GSP) [5]–[7]. GSP is a fast-growing field

at the intersection of applied mathematics and signal processing, which has seen a significant amount of

research effort in the signal processing community at large. In these settings, data are modeled as signals

defined on the node set of a weighted graph, which provide a natural representation that incorporates

both the data (node attribute) and the underlying structure (edge attribute). By extending classical signal

processing concepts, such as sampling, convolution, and frequency-domain filtering, to signals on graphs,

GSP provides new ways of leveraging the intrinsic structure and geometry of the data in the analysis.

This provides a generic framework and numerous appealing tools to address some of the new challenges
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encountered by current machine learning models and algorithms that handle network data.

On the one hand, GSP provides new ways of exploiting data structure and relational priors from a

signal processing perspective. This leads to both development of new machine learning models that

handle graph-structured data, e.g., graph convolutional networks for representation learning [8], [9], and

improvement in the efficiency and robustness of classical network algorithms, e.g., spectral clustering

to detect network communities [10]. On the other hand, GSP provides a new perspective about the

interpretability of popular machine learning models, e.g., the deep neural networks (DNNs), and gives

additional insights on understanding real-world systems, e.g., by inferring the underlying network structure

from observations [11], [12]. Hence, GSP tools interestingly serve as a bridge that connects machine

learning, signal processing, and network science towards solving important challenges in modern data

analysis.

In this article, we review the application of GSP concepts and tools in developing novel as well as

improving existing machine learning models. Our discussion revolves around three broad categories of

GSP-based ideas: 1) regularization techniques to enforce smoothness of signals on graphs; 2) sampling

techniques, filters, and transforms defined on graphs; 3) learning models inspired or interpretable by GSP

concepts and tools. We highlight their utilization for: 1) exploiting data structure and relational priors;

2) improving data efficiency, computational efficiency, and robustness; and 3) designing interpretable

machine learning and artificial intelligence (AI) systems. We further provide a number of open challenges

and new perspectives on the design of future GSP algorithms for machine learning and data analysis

applications in general.

II. GSP FOR EXPLOITING DATA STRUCTURE

GSP typically permits to model, analyze, and process data supported on graphs. Consider a weighted

and undirected1 graph G = {V, E} with the node set V of cardinality N and edge set E . A graph signal is

defined as a function x : V → R that assigns a scalar2 value to each node. The main research effort in GSP

is therefore concerned with the generalization of classical signal processing concepts and tools to graph

signals. One key development is that the set of eigenvectors of the graph Laplacian matrix or a graph

shift operator (a generic matrix representation of the graph) provides a notion of frequency on graphs and

1We assume an undirected graph for ease of discussion.
2In the more general case, the values on each node can be modeled as a vector as well.
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helps define the so-called graph Fourier transform (GFT). For example, consider the combinatorial graph

Laplacian L = D−W, where W is the weighted adjacency matrix of the graph and D is the degree

matrix. The graph Laplacian L admits the eigencomposition L = ΦΛΦT , where Φ is the eigenvector

matrix that contains the eigenvectors as columns, and Λ is the eigenvalue matrix diag(λ1, λ2, · · · , λN )

that contains the associated eigenvalues (conventionally sorted in an increasing order) along the diagonal.

Due to the analogy between the continuous Laplace operator and the graph Laplacian L, the operation

〈Φ,x〉 = ΦTx can be thought of as a GFT for the graph signal x, with the i-th entry of ΦTx being

the Fourier coefficient that corresponds to the discrete frequency λi [5]3. This observation is useful in

two aspects. First, the notion of frequency helps define a measure of smoothness for signals on graphs,

and provides new interpretation of the theory of kernels and regularization on graphs [13]. Second, this

enables the generalization of operations such as convolution and frequency-domain filtering for graph

signals. GSP-based ideas thus provide new tools for exploiting data structure and relational priors. Since

their inception, they have been applied in the context of a wide range of machine learning problems. In

this section, we discuss the application of GSP in supervised and unsupervised learning problems when

the underlying graph is known; alternatively, it may be inferred from observations of different variables

(see Section IV-A for further discussion on this point).

A. Regression for multiple response variables

Regression is one of the basic forms of supervised learning where, in its simplest setting, we are

interested in learning a mapping from a set of inputs (or features) to a real-valued output (or response). Of

particular interest is the generalized problem of multivariate regression, where we learn such a mapping for

multiple response variables. Existing approaches in the literature usually rely on some types of modeling

of the interdependencies between the response variables. For example, in a parametric model, such

interdependencies are implicitly captured by the coefficients of a multivariate autoregressive process; in a

nonparametric model, they may be explicitly modeled by the kernel function of a multi-output Gaussian

process (GP). In particular, in the case of separable kernels for multi-output GP, a positive semidefinite

(PSD) matrix is incorporated into the kernel function to encode the interactions among the response

variables (see Section 4 of [14]).

3Similar transforms could be defined using a general graph shift operator [6], [7].
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GSP provides an interesting alternative to tackling such regression problem, by assuming that observations

of the response variables form graph signals with certain properties (e.g., smoothness) on a predefined

graph. For example, a globally smooth graph signal y ∈ RN can be obtained by solving a regularization

problem on the graph and interpreted as outcome of the low-pass filtering of an input signal x ∈ RN (see

Example 2 in [5]):

y = Bx = (I + αL)−1x = Φ(I + αΛ)−1ΦTx, (1)

where I is an identity matrix, and α is a hyperparameter. Notice that the filter matrix B, which is a

function of the graph Laplacian L, encodes relationships between observations on different nodes. Based

on this, the authors of [15] have gone on to propose a GP model on graphs, whose kernel function

is reminiscent of that in a multi-output GP, where B is used to construct the PSD matrix that relates

observations of the response variables.

The above example demonstrates the usefulness of GSP tools, e.g., graph regularization and graph filters,

in designing models that capture interdependencies between multiple response variables in a regression

setting. In particular, this enriches the multi-output GP literature by providing new ways of designing the

kernel functions. For example, in addition to the example in [15], the recent work in [16] has proposed to

learn a graph filter that leads to the most suitable GP kernel for the observed graph data, hence improving

the prediction performance.

B. Graph-based classification

Another basic form of supervised learning is classification, which is similar to regression but with

a categorical response variable. Recent advances in deep learning, in particular convolutional neural

networks (CNNs), have led to significant improvements in tasks such as image classification [17]. However,

classical CNNs cannot be directly applied to classify signals that are supported on a graph structure, due

to a lack of notion of shift and convolution in the irregular graph domain.

GSP provides a convenient tool to address such challenge. More specifically, by providing a notion of

frequency and a GFT, convolution may be implicitly defined via the graph spectral domain. Consider a

graph signal x and a convolutional kernel ĝ(λ), which is defined directly in the graph spectral domain as

a function applied to the Laplacian eigenvalues. We may define the convolution between x and g as:

x ∗ g = Φĝ(Λ)ΦTx = ĝ(L)x. (2)
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In Eq. (2), ĝ(Λ) = diag
(
ĝ(λ1), ĝ(λ2), · · · , ĝ(λN )

)
thus the convolution operator ĝ(L) can generally be

interpreted as a graph filter, whose characteristic is determined by the form of ĝ(·) that can be learned in

the context of a neural network. This is exactly the idea behind the work in [18], where the authors have

considered the problem of graph signal classification and proposed a spectral CNN whose architecture

resembles that of a classical CNN, with the spatial filter replaced by a graph filter:

xl+1,q = σ
( P∑
p=1

Φĝθq,p
(Λ)ΦTxl,p

)
. (3)

In Eq. (3), Xl ∈ RN×P = [xl,1,xl,2, · · · ,xl,P ] and Xl+1 ∈ RN×Q = [xl+1,1,xl+1,2, · · · ,xl+1,Q] are

the feature maps at layer l and l + 1, respectively, ĝθq,p
(Λ) = diag(θq,p) where θq,p ∈ RN are the

learnable parameters, and σ(·) is a nonlinearity applied to the node-wise signal values. In this construction,

node-domain convolution is implicitly carried out in the graph spectral domain by an element-wise

multiplication between the Fourier coefficients of the signal, ΦTxl,p, and the learnable parameter vector,

θq,p, before going back to the node domain. This early work thus highlights the benefits of GSP tools in

addressing an important challenge in the design of graph neural networks (GNNs) [8], [9].

The work in [18] is conceptually important, but it is limiting in a number of ways. In particular,

the convolutional filter defined in the graph spectral domain is not necessarily localized in the spatial

(node) domain, a property that is often desired in neural network design. Furthermore, the necessity for

computing the eigendecomposition (with a complexity of O(N3)) as well as the GFT via the matrix-vector

multiplication (with a complexity of O(N2)) prevents this framework to be applied to large-scale graphs.

Motivated by these limitations, Defferrard et al. have proposed a graph CNN framework, also known as

the ChebNet [19]. The key idea in [19] is the design of the convolutional filter via a finite polynomial of

the eigenvalues of the graph Laplacian:

ĝθ(Λ) =

K∑
j=0

θjΛ
j thus ĝθ(L) =

K∑
j=0

θjL
j , (4)

where θ = [θ0, · · · , θK ] ∈ RK+1 are the learnable parameters. It has been pointed out in [19] that, due

to the property of the K-degree polynomial of the Laplacian, the convolutional filter is guaranteed to

be localized within the K-hop neighborhood of each node. Furthermore, the convolution can be done

by matrix-vector multiplication using the powers of the graph Laplacian; no explicit computation of the

eigendecomposition or the GFT is required. Finally, to improve the stability of the convolution operation,

the authors of [19] consider a scaled version of the graph Laplacian, L̃, and a Chebyshev approximation
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Fig. 2: Graph convolution via polynomial spectral graph filters proposed in the ChebNet architecture. An
input graph signal is passed through three graph filters separately to produce output of the first graph
convolutional layer (before nonlinear activation and graph pooling) of the ChebNet. Figure inspired by
Figure 1 in [19].

to ĝθ(L̃), hence the name of the approach. ChebNet represents an important advance in GNN designs,

and its development is based on the core idea of graph convolution via polynomial spectral graph filters

in Eq. (4). An illustration of the graph convolutional layer of the ChebNet is shown in Fig. 2.

The works in [18], [19] consider supervised learning (classification) of graph signals, an exact analogy

to image classification via traditional CNNs. Another popular graph-based classification problem is

semi-supervised node classification, where one is interested in inferring the label for a set of testing nodes

given labels on a set of training nodes, as well as the connectivity and any additional features for the full

set of nodes. Although there exists an extensive literature on semi-supervised learning on graphs [1], [20],

the perspective of neural network based approaches provides renewed interest in the problem from the

machine learning community. A major development along this line is the graph convolutional network

(GCN) proposed in [21], which can be thought of as a special case of the ChebNet design by letting

K = 1. After a series of simplifications, one can express the convolutional layer of the GCN as:

ĝθ(L) = θD̃−1/2W̃D̃−1/2. (5)

In Eq. (5), D̃ is a diagonal matrix with the i-th entry of the diagonal being D̃ii =
∑

j W̃ij , where W̃ij is

the ij-th entry of the matrix W̃ = W + I, and θ is the single learnable parameter for each filter. The
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GCN can be considered as a neural network that updates node features for node classification, hence does

not require a graph pooling layer as in the case of [18], [19]. The update process is a simple one-hop

neighborhood averaging, as implied by the choice of K = 1 for the convolutional filter and reflected by the

form of normalized adjacency matrix in Eq. (5). This also demonstrates the interesting point that, although

GNN designs such as the ChebNet and the GCN might be motivated from a graph spectral viewpoint, they

may be implemented in the spatial (node) domain directly. The work in [21] has demonstrated that the

GCN significantly outperforms a number of baselines in graph-based semi-supervised learning tasks, and

it has since sparked a major interest in developing GNN models from the machine learning community.

In summary, GSP tools, and especially the graph filters, have played an important role in some early

designs of GNN architectures. Furthermore, the recent study in [22] has shown that several popular

GNNs can be interpreted as implementing denoising and/or smoothing of graph signals. GNNs, especially

those designed from a spectral perspective, can therefore be thought of as learning models inspired or

interpretable by GSP concepts and tools. They have not only contributed to graph-based classification but

also other aspects of machine learning, as we explain in the following sections.

C. Graph-based clustering and dimensionality reduction

Unsupervised learning is another major paradigm in machine learning, where clustering and dimension-

ality reduction are two main problems of interest. Graph-based clustering, in its simplest form, aims to

partition the node set into mutually exclusive clusters using a similarity graph. This problem has attracted

major interest in the network science and machine learning communities [2]. Spectral clustering [23], for

example, is one of the most popular solutions that has been introduced in the last two decades.

Although graph-based clustering does not typically involve node attributes (i.e., graph signals), concepts

that are provided by GSP have found their application in a number of related problems. One example

is multi-scale clustering, where one is interested in finding a series of clustering results each of which

reflects the grouping of nodes at a particular scale. While classical solutions such as the work in [24]

are usually based on generalization of concepts such as modularity [25] to the multi-scale scenario,

multi-scale transforms in signal processing, such as the wavelet transform, provide a natural alternative.

For example, the work in [26] has utilized the spectral graph wavelets [27], a generalization of wavelets

to the graph domain, to address the problem. Specifically, the graph wavelet ψs,v centered around node v
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at a particular scale s is defined as:

ψs,v = Φĝ(sΛ)ΦTδv = ĝ(sL)δv, (6)

where ĝ(sΛ) = diag
(
ĝ(sλ1), ĝ(sλ2), · · · , ĝ(sλN )

)
, and δv is a delta impulse that has value 1 at node

v and 0 elsewhere. It is clear from Eq. (6) that the graph wavelet ψs,v can be interpreted as outcome

of a scaled (in the graph spectral domain) graph filter given the delta impulse as input. It provides an

“egocentered view” of the graph seen from node v, and correlation between such views therefore provides

a similarity between the nodes at scale s. A simple hierarchical clustering is then applied to the similarity

matrix at different scales to obtain multi-scale clustering. Another example of GSP approach for clustering

is proposed in [28], again based on the graph filters, which we explain in more detail in Section III from

an efficiency viewpoint.

Unsupervised learning can also take the form of dimensionality reduction problems. In the context of

graph-structured data, this usually means learning a low-dimensional representation for the data entities

in the presence of a graph that captures the pairwise similarity between them. Classical solutions to

dimensionality reduction, such as matrix factorization and autoencoders, have recently been combined with

advances in GNNs to provide novel solutions. For example, the work in [29] has proposed an architecture

based on the GCN to train a graph autoencoder for learning a low-dimensional representation of the data.

Another example is the work in [30], where the authors have proposed an architecture that combines the

ChebNet with a recurrent neural network architecture for matrix completion and factorization. Both the

GCN and ChebNet are based on the idea of polynomial spectral graph filters, which demonstrates how

such GSP-inspired models can benefit learning algorithms for dimensionality reduction problems.

III. GSP FOR IMPROVING EFFICIENCY AND ROBUSTNESS

Although GSP is a framework originally developed for incorporating the graph structure into data

analysis, since recently, many classical machine learning algorithms have also benefited from exploiting

typical GSP tools. Significant improvement in terms of robustness with respect to scarse and noisy training

data, or adversarial examples, has been shown in tasks such as (semi-)supervised learning, few-shot

learning, zero-shot learning, and multi-task learning. Furthermore, large-scale data analysis and statistical

learning can benefit from typical GSP operations such as sampling and filtering to reduce the computational

complexity and time of graph-based learning. We discuss some of these aspects in the following sections.
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A. Improvement on data efficiency and robustness

Graph regularization has been introduced in many learning architectures, including DNNs, in order to

improve the performance of supervised and semi-supervised learning tasks. In semi-supervised settings,

the loss term has been augmented by a graph-based penalization term that biases the network towards

learning similar representations for neighboring nodes on a graph that contains as nodes both labeled and

unlabeled data [31]. In supervised learning problems, regularization technique that encourages smoothness

of the label signal on a similarity graph constructed from the data [32] has been shown to improve

the robustness of deep learning architectures by maximizing the distance between outputs for different

classes. Similar regularization idea can be applied to intermediate representations in an DNN; for example,

the regularizer proposed in [33] is based on constructing a series of graphs, one for each layer of the

DNN architecture, where each graph captures the similarity between all training examples given their

representations at that layer. It aims at achieving robustness by penalizing large changes in the smoothness

of class indicator vectors from one layer to the next. Both [32] and [33] demonstrate the benefit of using

regularization techniques on graphs to introduce inductive bias towards more effective learning.

Few-shot learning is another domain of machine learning where GSP-inspired models, in particular

the GNNs, have been shown to improve generalization to novel tasks using only a few examples from

the unknown classes. For instance, GCNs have been introduced in classical learning architectures: in

[34], seen and unknown classes are represented by prototypes that are learned jointly; in [35], a graph

is constructed from images in all classes and it is eventually given as an input to a GCN. On the other

hand, zero-shot learning, i.e., when samples of the unknown classes do not even exist in the training set,

has also benefited from GSP tools such as transforms defined on graphs. As an example, the authors

of [36] have introduced the isoperimetric loss as a regularization criterion for learning the map from a

visual representation to a semantic embedding, in a zero-shot learning scenario. Sample embeddings are

modeled as nodes of a graph, whose connectivity is learned in the training phase. Smoothness on the

graph is then achieved through the isoperimetric loss, which is approximated using polynomial functions

that correspond to the spectral graph wavelets [27].

Generalization across tasks is also key to multi-task learning, a field of research that has been recently

addressed with GSP in [37]. In this setting, the graph captures the correlation between multiple tasks,

with each task being a node on the graph (see Fig. 3 for an illustration). The overall goal is for each task

to infer the parameter vector that optimizes a differentiable cost function. Looking at the cost function as
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Fig. 3: Illustrative example of a single-task network (left) and a multi-task network (right). Nodes represent
individual tasks each of which is to infer a parameter vector wo that optimizes a differentiable cost
function. In a single-task network, all tasks optimise for the same parameter vector wo, while in a
multi-task network, they optimise for distinct, though related, parameter vectors {wo

· }. Figure from [37]
with permission.

a signal on the graph, the knowledge from other tasks can be exploited by imposing a regularizer on the

task graph, promoting the existing relationships between the tasks. This work shows how the structure

between tasks can be inferred and exploited in learning-to-learn (or meta-learning) settings, generalizing

the learning process across tasks.

B. Robustness against topological noise

In addition to robustness in terms of data samples, another natural consideration is the stability and

robustness of graph-based models against topological noise. This usually means perturbation in the graph

topology, which may be due to noise observed in real-world graphs or inaccuracy in the inference of the

graph topology if one is not readily available. Stability and robustness against such perturbation is key to

generalization capability of graph-based machine learning models.

It is well known that Laplacian eigenvectors are not stable against perturbation in the graph topology.

Stability of GSP-based tools, especially the Laplacian-based spectral graph filters and spectral domain

designs of GNN architectures, has come under scrutiny. A few recent results have however shown that

spectral graph filters are, under certain conditions, indeed stable. For example, the work in [38] has shown

that spectral graph filters in the Cayley smoothness space are stable under absolute perturbation in the

graph Laplacian, in the sense that the change in the filter output is linear with respect to the amount of

perturbation. They have further analyzed the transferability of spectral domain designs of GNNs between
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graphs that discretize the same underlying metric space. The work in [39] has analyzed stability of graph

filters with respect to both absolute and relative graph perturbation, and used the results to bound the

change in the output of a GNN architecture as a function of properties of the perturbation (i.e., eigenvector

misalignment and upper bound for the norm of the perturbation matrix), filter characteristic (i.e., integral

Lipschitz constant of the filter), and design of the GNN architecture (i.e., number of filters and layers).

Similarly, the recent work in [40] has shown the stability of spectral graph filters that are based on

polynomials of the graph Laplacian.

In addition to the stability results above, there exist several other studies on the impact of perturbation

or uncertainty in the graph topology on GSP and network analysis in general. For example, the work in

[41] has analyzed polynomial spectral graph filters with random graph realizations, while the work in

[42] has focused on changes in the Laplacian eigenvalues and eigenvectors. The work in [43], on the

other hand, has looked at stability and continuity of centrality measures in weighted graphs. All these

examples are important attempts in understanding the robustness of network analysis, GSP operations,

and GSP-inspired models against topological noise.

C. Improvement on computational efficiency

The benefit of graph priors in machine learning tools in terms of data efficiency, robustness, and

generalization has been empirically and theoretically supported. Nevertheless, these learning frameworks

usually scale poorly with the number of graph nodes, resulting in high computational complexity in

large-scale problems. Hence, there exists a strand of research aimed at adopting GSP tools to reduce

the computational complexity of classical learning frameworks, such as spectral clustering and spectral

sparsification.

Spectral clustering is a typical example of highly useful yet expensive frameworks. The three main

steps of spectral clustering are: 1) graph construction for the N entities to cluster; 2) computation of

the first k eigenvectors of the graph Laplacian to identify a feature vector (embedding) for each entity;

and 3) application of the k-means algorithm to these feature vectors. Each of these three steps becomes

computationally intensive for large number of nodes N and/or target number of clusters k. Fundamental

GSP techniques, such as graph filtering and random signal sampling, have been proposed to simplify

the last two steps of spectral clustering, leading to a compressive spectral clustering algorithm [28]. In

particular, the computation of the eigenvectors is bypassed by filtering random signals on the graph. The

k-means step is then performed on a small number (instead of N ) of randomly selected feature vectors,
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exploiting the theory of random sampling of bandlimited graph signals. We refer the reader to [10] for an

overview of the recent works aimed at reducing the computational complexity of spectral clustering.

More broadly, analysis and processing of data that reside on large-scale graphs can be simplified by

factorizing the complex graph structure into the product of smaller graphs. This is the idea behind the

work in [44], which adopts product graph as a model for large graphs, and defines signal processing

operations, such as the GFT and filtering, in a more efficient manner. For example, a Cartesian product

graph can be used to modularize a regular grid image in order to gain in terms of computational efficiency

in the computation of eigendecomposition for the GFT. This enables efficient implementation of GSP

analysis on large graphs via parallelization and vectorization.

IV. GSP FOR ENHANCING MODEL INTERPRETABILITY

A third domain that has recently benefited from the advances in the GSP literature is the interpretation

of complex systems and well as classical machine learning algorithms. In this section, we focus our

discussion on two aspects: 1) inferring hidden structure from data that leads to a better understanding of

a complex system; and 2) explaining the outcome of classical “black-box” learning architectures.

A. Inference of hidden relational structure for interpretability

Analysis of complex systems typically involves large sets of data whose underlying structure is often

unknown. Such structure can be estimated from the data in order to permit effective understanding or

visualization of the system behavior. For example, in neuroscience, inferring a structure in the form of

the connectivity between brain regions from activation signals may lead to a better understanding of the

functionality of the brain.

The problem of structure or topology inference has been studied from classical viewpoints in statistics

(e.g., sparse inverse covariance estimation [45], [46]) or physics (e.g., cascade models [47], [48]). More

recently, the problem has been addressed from a GSP perspective, where the structure is modeled as a

graph that is to be inferred by exploiting the interplay between the graph and the signals observed on the

nodes. GSP-based graph-learning frameworks therefore have the unique advantage of enforcing certain

desirable representations of the signals via frequency-domain analysis and filtering operations on graphs.

For example, models based on assumptions such as the smoothness [49]–[52] or the diffusion [53]–[55] of

the graph signals have been successfully applied to identify weather patterns, brain connectivity, mobility

August 3, 2020 DRAFT



14

patterns, and 3D point cloud structure [56], [57]. Due to space limitation, we do not provide details of

these methods in this paper and refer the interested readers to two overview papers on the topic [11], [12].

Furthermore, topology inference has been introduced in the context of DNNs/GNNs in order to infer

hidden, and more interpretable, structures. For example, the authors in [58] have proposed to impose

a graph-based regularization on features of each layer of the DNN, based on the signal smoothness,

by simultaneously learning the feature space graph with nodes being the neurons. Specifically, features

associated with the neurons in the intermediate layers are constrained to take into account the structure

of a graph through a smoothness promoting regularizer. Such an approach is shown to increase the

interpretability of the DNN layers. Another example is the graph attention network (GAT) [59] which is

a form of GNNs that adaptively updates edge weights in a data-driven manner, and can thus be used

to interpret importance of neighbors in feature aggregation. Interestingly, the recent work in [22] has

shown that the GAT itself can be interpreted as implementing denoising of edge weights in a graph signal

denoising problem.

B. A posteriori interpretation of learning architectures

A first attempt to exploit GSP tools in order to better understand complex learning architectures is the

framework proposed in [60] called MARGIN. It provides a generic way to perform several meta-learning

tasks, by allowing the user to incorporate rich semantic information. More specifically, for each task, a

graph whose nodes represent entities of interest is constructed, and a hypothesis is defined as a function

or signal on that graph. For example, if the task is to determine faulty labels in a data set with corrupted

labels, the domain is the set of samples, and the hypothesis becomes a local label agreement signal that

measures how many neighbors have the same label as the current node. The central idea of MARGIN

is then to use GSP to identify fluctuations of the signal on the graph, which serve as explanations. In

particular, high-pass graph filtering reveals which nodes can maximally describe the variations in the label

agreement signal. The node influence scores are computed as the magnitude of the filtered signal value at

that node. The influence score is eventually translated into an interpretable explanation. A summary of

the different steps of the approach is illustrated in Fig. 4. MARGIN is an interesting attempt based on

GSP tools; however, one clear disadvantage of this method is the fact that if the domain is chosen to be

the entire data set, the graph construction and the filtering operators become computationally intensive as

the size of the data set increases.
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Fig. 4: Illustrative example of MARGIN. Figure from [60] with persimission.

Another example for improving interpretability is the work in [61], which uses GSP to monitor the

intermediate representations obtained in a DNN. Preliminary finding suggests that smoothness of the label

signal on a k-nearest neighbor graph, which is obtained using normalized Euclidean distance of features

in each layer, is a good measure of separation of classes in these intermediate representations. This thus

constitutes a first step towards exploiting the frequency behavior of the label signal on some well-defined

graphs across the layers in order to provide meaningful interpretations of the DNN layers. Besides global

smoothness, other spectral properties of graph signals such as local smoothness or sparsity, as well as

graph metrics such as centrality and modularity, could be worth investigating towards the same objective.

V. SUMMARY, OPEN CHALLENGES, AND NEW PERSPECTIVES

Handling complex and dynamic structures within large-scale data sets presents significant challenges in

modern data analytics and machine learning tasks. The novel signal processing perspective reviewed in

this article has therefore both theoretical and practical significance. On the one hand, GSP provides a

new theoretical framework for incorporating complex structure within the data, and contributes to the

development of new data analysis and machine learning frameworks and systems. Furthermore, GSP tools

have been utilized to improve existing machine learning models, mainly in terms of data and computational

efficiency, robustness against noise in data and graph structure, and model interpretability. Some of the

representative contributions discussed in this paper are summarized in Table I. On the other hand, machine

learning problems such as classification, clustering, and reinforcement learning, as well as their application

in real-world scenarios, also provide important motivations for new theoretical development in GSP. For

these reasons, there has been an increasing amount of interest in the GSP community in engaging with

machine learning applications. We provide below a few open challenges and new perspectives on future

investigation.
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TABLE I: A summary of contributions of GSP concepts and tools to machine learning models and tasks.

Graph-based smoothness
and regularization

Graph sampling, filters,
and transforms

GSP-inspired/interpretable
models

Exploiting data
structure

GP & Kernels on graphs [15], [16]
GP & Kernels on graphs [15], [16]

Multi-scale clustering [26]
Spectral GNNs

[18], [19], [21], [29], [30]

Improving efficiency
and robustness

Improving DNNs [31]–[33]
Multi-task learning [37]

Zero-shot learning [36]
Stability of filters & GNNs [38]–[40]

Spectral clustering [10], [28]
Large-scale data processing [44]

Few-shot learning
[34], [35]

Enhancing model
interpretability

Interpreting DNNs [58], [61]
Topology inference [11], [12]

Interpreting DNNs [60]
GAT [59]

A. GSP and probabilistic modeling

One important direction is the connection between GSP, machine learning, and probabilistic modeling of

the graph topology. Most existing GSP and machine learning frameworks and tools follow a deterministic

setting, where a fixed graph topology is predefined or inferred from data. Real-world networks, however,

are often noisy, incomplete, or evolving constantly over time. It is therefore important to take into account

the uncertainty in the graph topology in the analysis. First, it would be important to study analytical

models for noise in the graph topology and its impact on GSP analysis tasks. For example, the work

in [62] has used the Erdös-Rényi graph, a well-known random graph model, as model for topological

noise and analyzed its impact on the filtering operation and independent component analysis (ICA) of

graph signals. Second, it would be interesting to take a Bayesian viewpoint to model the uncertainty in

the graph topology. For example, the observed graph may be considered as an instance generated from a

parametric model, and the posterior of the parameters may be computed so that new instances of the

graph may be generated. This is exactly the idea behind the work in [63], which has adopted a mixed

membership stochastic block model for the graph and proposed a Bayesian GCN framework. Both are

promising future directions to combine GSP and machine learning in a coherent probabilistic framework.

B. GSP and decision-making strategy

It is interesting to notice the link recently established between GSP and decision-making strategies

(DMSs) under uncertainty, in which an agent needs to accomplish a task (maximize a cumulative or

long-term reward) without any prior information. The environment (state space in reinforcement learning

[64] or context in bandit problems [65]) can be modeled as a graph and instantaneous or long-term

rewards can be seen as a signal on the graph (see Fig. 5 for an illustration). GSP tools can then be used

to provide a sparse representation of the signal, and reduce the learning of the agent to a low-dimensional
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Environment Topology Value Function

Fig. 5: Maze as an RL problem: an environment is represented by its multiple states – (x, y) coordinates
in the space (left). We quantize the maze space into four positions (therefore states) per room. States are
identified as nodes of a graph, and state transition probabilities as edge weights (middle). The state value
function can then be modeled as a signal on the graph (right), where both the color and size of the nodes
reflect the signal values.

space. This improves the learning rate in DMS problems, which otherwise does not scale with the

dimension of the state space, leading to highly-suboptimal decisions in large-scale problems. Many open

challenges, however, still remain overlooked. First, the graph in these problems is usually constructed and

not adaptively inferred, a scenario where GSP-based topology inference ideas may be useful. Second,

most solutions to DMS problems involve either the inversion of the Laplacian matrix or an expensive

optimization problem, yet they need to be performed at each decision opportunity. GSP tools of lower

complexity could therefore be essential in this regard, and related theoretical results may prove to be

useful in establishing error quantification bound for safe DMSs. Finally, an open challenge in the design

of DMSs is the control over high-dimensional processes. From a network optimization perspective, several

works have provided appropriate models to characterize systems evolving on high-dimensional networks

[66]–[69]). However, the theory and optimization techniques developed there do not directly apply to

problems involving adaptive and online sequential decision strategies. GSP tools could be adopted to

overcome these limitations and tackle the challenge of online control of high-dimensional dynamic

processes.

C. GSP and model interpretability

GSP can play a significant role towards better defining what we call interpretable machine learning [70].

Currently, deep learning with large systems typically leads to non-robust and black-box decision systems,

which is insufficient in safety critical applications such as personalized medicine and autonomous systems.
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(a) (b)

Fig. 6: Examples of relational structures in real-world systems. (a) A molecule (left) as a graph (right),
where nodes represent atoms and edges correspond to bonds between them. (b) An n-body system (left)
as a graph (right), where nodes represent bodies and edges correspond to connections between them.
Figure from [71] with permission.

Modeling the structure of the data with a graph could be a way of introducing domain knowledge (e.g.,

physical interactions such as the ones illustrated in Fig. 6) in the learning process and eventually biases

the system towards relational learning, which is a core ingredient for human-like intelligence [71]. For

this reason, learning architectures that incorporate the graph structure, such as the GNNs described in

Section II, are significantly more explainable than typical black-box models. By extending GNNs towards

architectures that are built on more generic permutation invariant functions, we believe that a further

step could be made towards relational learning. In addition, creating anisotropic filters [72] and adapting

graph attention mechanisms such as the GAT could both open the door to more interpretable learning

architectures.

D. GSP and higher-order structures

There is a growing interest in recent years in analysing higher-order interactions in networks. In the

complex systems literature, it has been recently shown that higher-order structures such as network motifs

play a key role in detecting communities in complex networks [73]. Similar idea has been adopted in

machine learning, where motifs has been used to design GNN models that are capable of handling directed

graphs [74]. The extensions of GSP theories to deal with higher-order structures, such as motifs, simplicial

complexes and hypergraphs, are an interesting direction, and the topological signal processing framework

proposed in [75] is a promising first step. Such extensions might reveal more complex structure within

the data that goes beyond pairwise interactions; in addition, they may also help define machine learning

models with improved interpretability.
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