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Emotion Recognition from Multiple Modalities:
Fundamentals and Methodologies

Sicheng Zhao, Senior Member, IEEE, Guoli Jia, Jufeng Yang, Guiguang Ding, Kurt Keutzer, Life Fellow, IEEE

Humans are emotional creatures. Multiple modalities are
often involved when we express emotions, whether we do so
explicitly (e.g., facial expression, speech) or implicitly (e.g.,
text, image). Enabling machines to have emotional intelli-
gence, i.e., recognizing, interpreting, processing, and simu-
lating emotions, is becoming increasingly important. In this
tutorial, we discuss several key aspects of multi-modal emo-
tion recognition (MER). We begin with a brief introduction
on widely used emotion representation models and affective
modalities. We then summarize existing emotion annotation
strategies and corresponding computational tasks, followed
by the description of main challenges in MER. Furthermore,
we present some representative approaches on representation
learning of each affective modality, feature fusion of different
affective modalities, classifier optimization for MER, and
domain adaptation for MER. Finally, we outline several real-
world applications and discuss some future directions.

I. INTRODUCTION

Emotion is present everywhere in human daily life and
can influence or even determine our judgment and decision
making [1]. For example, in marketing, a widely advertised
brand can generate a mental representation of a product in the
consumers’ mind and influence their preference and action;
inducing sadness and disgust during a shopping trip would
respectively increase and decrease consumers’ willingness to
pay1. In driving, drivers experiencing strong emotions, such as
sadness, anger, agitation, and even happiness, are much more
likely to be involved in an accident2. In education — especially
current online classes during the COVID-19 epidemic pe-
riod — students’ emotional experiences and interactions with
teachers have a big impact on their learning ability, interest,
engagement, and even career choices3.

The importance of emotions in artificial intelligence was
recognized decades ago. Minsky, a Turing Award winner in
1970, once claimed that “The question is not whether intelli-
gent machines can have any emotions, but whether machines
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What an exciting day!
I will never forget it.
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Fig. 1. Illustration of multiple modalities for emotion recognition: explicit
affective cues (top) and implicit affective stimuli (bottom).

can be intelligent without emotions.” [2]. Enabling machines
to have emotional intelligence i.e., recognizing, interpreting,
processing, and simulating emotions has recently become
increasingly important with wide potential applications in-
volving human-computer interaction [3]. On the one hand,
emotionally intelligent machines can provide more harmonious
and personal services for human beings, especially the elderly,
disabled, and children. For example, the companion robots that
can work with emotions can better meet the psychological and
emotional needs of the elderly and help them stay comfortable.
On the other hand, by recognizing humans’ emotions automat-
ically and in real-time, intelligent machines can better identify
humans’ abnormal behaviors, send reminders to their relatives
and friends, and prevent extreme behaviors to themselves and
even to the rest of society. For example, an emotional driv-
ing monitoring system can automatically play some soothing
music to relax angry drivers who might be dissatisfied with a
traffic jam and can remind them to focus on driving safely.

The first step for intelligent machines to express human-
like emotions is to recognize and understand humans’ emo-
tions typically through two groups of affective modalities:
explicit affective cues and implicit affective stimuli. Explicit
affective cues correspond to specific physical and psycholog-
ical changes in humans that can be directly observed and
recorded, such as facial expression, eye movement, speech,
action, and physiological signals. These signals can be either
easily suppressed or masked, or difficult and impractical to
capture. Meanwhile, the popularity of mobile devices and
social networks enables humans to habitually share their ex-
periences and express their opinions online using text, image,
audio, and video. Implicit affective stimuli correspond to these
commonly-used digital media, the analysis of which provides
an implicit way to infer humans’ emotions [4].
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Regardless of whether emotions are expressed explicitly
or implicitly, there are generally multiple modalities that can
contribute to the emotion recognition task, as shown in Fig. 1.
As compared to uni-modal emotion recognition, multi-modal
emotion recognition (MER) has several advantages. First, data
complementarity. Cues from different modalities can augment
or complement each other. For example, if we see one post
from a good friend, "What great weather!", it is of high
probability that the friend is expressing a positive emotion;
but if there is also an auxiliary image of a storm, we can infer
that the text is actually a sarcasm and that a negative emotion
is intended to be expressed. Second, model robustness. Due
to the influence of many normally occurring factors in data
collection, such as sensor device failure, some data modalities
might be unavailable, which is especially prevalent in the
wild. For example, in the CALLAS dataset containing speech,
facial expression, and gesture modalities, the gesture stream is
missing for some momentarily motionless users [5]. In such
cases, the learned MER model can still work with the help
of other available modalities. Finally, performance superiority.
Joint consideration of the complementary information of dif-
ferent modalities can result in better recognition performance.
Meta-analysis indicates that as compared to the best uni-modal
counterparts, MER achieves 9.83% performance improvement
on average [6].

In this article, we will give a comprehensive tutorial on
different aspects of MER, including psychological models,
affective modalities, data collections and emotion annotations,
computational tasks, challenges, computational methodolo-
gies, applications, and future directions. There have been
several reviews/surveys on MER related topics [4, 6, 7, 8, 9].
In particular: [7] and [9] cover different aspects of general
multi-modal machine learning with few efforts on emotion
recognition; [6] focuses on the quantitative review and meta-
analysis of existing MER systems; [4] and [8] are survey-
style MER articles with the technical emphasis on multi-
modal fusion. Differently, this tutorial-style article aims to
give a quick and comprehensive MER introduction that is also
suitable for non-specialists.

II. PSYCHOLOGICAL MODELS

In psychology, categorical emotion states (CES) and di-
mensional emotion space (DES) are two representative types
of models to measure emotion [10]. CES models define
emotions as a few basic categories, such as binary sentiment
(positive and negative, sometimes including neutral), Ekman’s
six basic emotions (positive happiness, surprise and negative
anger, disgust, fear, sadness), Mikels’s eight emotions (positive
amusement, awe, contentment, excitement, and negative anger,
disgust, fear, sadness), Plutchik’s emotion wheel (eight basic
emotion categories by three intensities), and Parrott’s tree
hierarchical grouping (primary, secondary and tertiary cate-
gories). The development of psychological theories motivates
CES to be increasingly diverse and fine-grained. DES models
employ continuous 2D, 3D, or higher dimensional Cartesian
spaces to represent emotions; the most widely used DES
model is valence-arousal-dominance (VAD), where valence,

arousal, and dominance represent the pleasantness, intensity,
and control degree of emotion, respectively.

CES models agree better with humans’ intuition, but no
consensus has been reached by psychologists on how many
discrete emotion categories should be included. Further, emo-
tion is complex and subtle, which cannot be well reflected
by limited discrete categories. DES models can theoretically
measure all emotions as different coordinate points in the con-
tinuous Cartesian space, but the absolute continuous values are
beyond users’ understanding. These two types of definitions of
emotions are related, with possible transformation from CES
to DES. For example, anger relates to negative valence, high
arousal, and high dominance.

Besides emotion, there are several other widely used con-
cepts in affective computing, such as mood, affect, and senti-
ment. Emotions can be expected, induced, or perceived. We do
not aim distinguishing them in this article. Please refer to [11]
for more details on the differences or correlations between
these concepts.

III. AFFECTIVE MODALITIES

In the area of MER, multiple modalities are employed to
recognize and predict human emotions. The affective modal-
ities in MER can be roughly divided into two groups based
on whether emotions are recognized from humans’ physical
body changes or from external digital media: explicit affective
cues and implicit affective stimuli. The former group includes
facial expression, eye movement, speech, action, gait, and
electroencephalogram, all of which can be directly observed,
recorded, or collected from an individual. Meanwhile, the
latter group indicates the commonly-used digital media types
such as text, audio, image, and video. We use these data
types to store information and knowledge as well as transfer
them between digital devices. In this way, emotions may be
implicitly involved and evoked. Although the efficacy of one
specific modality as a reliable channel to express emotions
cannot be guaranteed, jointly considering multiple modalities
would significantly improve the reliability and robustness [12].

A. Explicit Affective Cues

A facial expression is an isolated motion of one or more
human face regions/units, or a combination of such motions.
It is commonly agreed that facial expressions can carry infor-
mative affective cues and are recognized as one of the most
natural and powerful signals to convey the emotional states
and intentions of human [12]. Facial expression is also a form
of nonverbal communication conveying social information
between humans. We can deduce how an individual is feeling
by observing his/her eyes movement4. The eyes are often
viewed as important cues of emotions. For example, if a
person is nervous or lying, the blinking rate of his/her eyes
may become slower than normal4. Eyes movement signals
can be easily collected via an eye tracker system, and have
been widely used in human-computer interaction research.
Speech is a significant vocal modal to carry emotions [13, 14].

4https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00736/full

https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00736/full
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Speakers may express their intentions like asking or declaring
by using various intonations, degrees of loudness, and tempo.
Specifically, emotions can be revealed when people talk with
each other, or just mutter to themselves. As an important
part of human body language, action, also conveys massive
emotional information. For instance, an air punch is an act
of thrusting one’s clenched fist up into the air, typically as
a gesture of triumph or elation. Similar to action, emotions
can be perceived from a person’s gait, i.e., their walking
style. Psychology literature has proven that participants can
identify the emotions of a subject by observing the subject’s
posture, including long strides, collapsed upper body, etc.5

Body movement (e.g., walking speed) also plays an important
role in the perception of different emotions. High arousal
emotions such as anger and excitement are more associated
with rapid movements than low arousal emotions, such as sad-
ness and contentment. Last but not least, electroencephalogram
(EEG), as one representative psychological signal, is another
important method to record the electrical and emotional ac-
tivity of the brain [15]. Compared to other aforementioned
explicit cues, the collection of EEG signals is typically more
difficult and unnatural, regardless of whether electrodes are
placed noninvasively along the scalp, or invasively using
electrocorticography.

B. Implicit Affective Stimuli

Text is a form to record the natural language of human be-
ings, which can implicitly carry informative emotions [16, 17].
Text has different levels of linguistic components, including
word, sentence, paragraph, and article, which are well stud-
ied; many off-the-shelf algorithms have been developed to
segment text into small pieces. Then, the affective attribute
of each linguistic piece is recognized with the help of a pub-
licly available dictionary like SentiWordNet, and the emotion
evoked by the text can be deduced. A digital audio signal
is a representation of sound, typically stored and transferred
using a series of binary numbers [12]. Audio signals may be
synthesized directly or may originate at a transducer such as
a microphone or a musical instrument. Different from speech
that mainly focuses on human vocal information and whose
content may be translated into natural language, audio is
more general including any sound like music or birdsong.
An image is a distribution of colored dots over space6. It
is well known that “a picture is worth a thousand words”.
It has been demonstrated in psychology that emotions can
be evoked in humans by images [18]. The explosive growth
of images shared online and the powerful descriptive ability
of scenes enable images to become crucial affective stimuli
with extensive research efforts attracted [10]. Video naturally
contains multiple modalities at the same time, such as visual,
audio, and textual information [19]. That means temporal,
spatial, and multi-channel representations can be learned and
utilized to recognize the emotions in videos.

5https://www.pnas.org/content/102/45/16518.short
6https://en.wikipedia.org/wiki/Image#cite_note-1

IV. DATA COLLECTIONS AND EMOTION ANNOTATIONS

Two steps are usually involved in constructing an MER
dataset: data collection and emotion annotation. The collected
data can be roughly divided into two categories: selecting from
existing data and new recording in specific environments. On
the one hand, some data is selected from movies, reviews,
videos, and TV shows in online social networks, such as
YouTube and Weibo. For example, the review videos in ICT-
MMMO and MOUD are collected from YouTube; audio-
visual clips are extracted from the TV series in MELD; online
reviews from the Food and Restaurants categories are crawled
in Yelp; the video-blogs or vlogs typically with one speaker
looking at the camera from YouTube are collected in CMU-
MOSI to capture the speakers’ information. Some collected
data provides a transcription of speech either manually (e.g.,
CMU-MOSI, CH-SMIS) or automatically (e.g., ICT-MMMO,
MELD). On the other hand, some data is newly recorded with
different sensors in specifically designed environments. For
example, the participants’ physiological signals and frontal
facial changes induced by music videos are recorded in DEAP.

There are different kinds of emotion annotation strategies.
Some datasets have target emotions and do not need to be
annotated. For example, in EMODB, each sentence performed
by actors corresponds to a target emotion. For some datasets,
the emotion annotations are obtained automatically. For ex-
ample, in Multi-ZOL, the integer sentiment score for each
review, ranging from 1 to 10, is regarded as the sentiment
label. Several workers are employed to annotate the emotions
in some datasets, such as VideoEmotion-8. The datasets with
recorded data are usually annotated by participants’ self-
reporting, such as MAHNOB-HCI. Besides, the emotion labels
of most datasets are obtained by major voting. For DES model,
‘FeelTrace’ and ‘SAM’ are often used for annotation. The
former one is based on activation-evaluation space, which
allows observers to track the emotional content of stimulus
as they perceive it over time. The latter one is a tool that
accomplishes emotion rating based on different Likert scales.
Some commonly used datasets are summarized in Table I.

V. COMPUTATIONAL TASKS

Given multi-modal affective signals, we can conduct differ-
ent MER tasks, including classification, regression, detection,
and retrieval. In this section, we will briefly introduce what
these tasks do.

A. Emotion Classification

In the emotion classification task, we assume that one
instance can only belong to one or a fixed number of emotion
categories, and the goal is to discover class boundaries or
class distributions in the data space [16]. Current works
mainly focus on the manual design of multi-modal features
and classifiers or employing deep neural networks in an end-
to-end manner. As defined as a single label learning (SLL)
problem, MER assigns a single dominant emotion label to each
sample. However, emotion may be a mixture of all compo-
nents from different regions or sequences rather than a single
representative emotion. Meanwhile, different people may have

https://www.pnas.org/content/102/45/16518.short
https://en.wikipedia.org/wiki/Image#cite_note-1
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TABLE I
BRIEF SUMMARY OF RELEASED DATASETS FOR MER.

dataset modalities samples data sources emotion labels website

IEMOCAP face, speech, t-text, video 10039 turns recording ang, sad, hap, dis, fea, sur, fru, exc, neu link
VAD on 5 point ratings

YouTube face, eye, speech, t-text, video 47 videos YouTube pos, neg, neu link
MOUD face, speech, t-text, video 412 utterances YouTube pos, neg link

ICT-MMMO face, eye, speech, t-text, video 370 segments Youtube, ExpoTV pos, neg link
News Rover face, speech, t-text, video 929 videos News pos, neg, neu link
CMU-MOSI face, eye, speech, t-text, video 2199 clips YouTube -3 to 3 sentiment score link

CMU-MOSEI face, eye, speech, t-text, video 23453 sentences YouTube hap, sad, ang, fea, dis, sur; -3 to 3 sentiment score link
MELD face, speech, t-text, video 13708 utterences TV series Friends hap, sad, ang, fea, dis, sur, neu, non-neu; pos, neg, neu link

CH-SIMS face, eye, speech, t-text, video 2281 segments movies, TV series -1 to 1 sentiment score link
variety shows

eNTERFACE’05 face, speech, video 1166 sequences recording ang, fea, hap, sad, sur link
SEMAINE face, speech, t-text, video 959 conversations recording val, act, pow, exp, int; bas-em, eps, ipa, val link

EMDB video, SCL, HR 52 clips films ero, hor, neg, pos, sce, obm; VAD on 9 point ratings link
DEAP face, EEG, GSR, RA, ST 1280 samples recording VAD-L on 9 point ratings; F on 5 point ratings link

ECG, BVP, EMG, EOG
MAHNOB-HCI face, eye, audio, EEG 532 samples recording sad, joy, dis, neu, hap, amu, ang, fea, sur, anx link

ECG, GSR, ST, RA VAD-P on 9 point ratings

Multi-ZOL image, text 28K aspect-review pairs ZOL 0 to 10 sentiment score link
Yelp image, text 244K images, 44K reviews Yelp sentiment score on 5 point ratings link

Tourism image, text 1796 weibos WeiBo pos, neg, neu link

LIRIS-ACCEDE video (audio, image) 9800 clips movies rank along Valence link
VideoEmotion-8 video (audio, image) 1101 videos YouTube, Flickr ang, ant, dis, fea, joy, sad, sur, tru link

Ekman-6 video (audio, image) 1637 videos YouTube, Flickr ang, dis, fea, joy, sad, sur link

Modalities: t-text, EEG, PPS, GSR, RA, ST, ECG, BVP, EMG, EOG, SCL, and HR are short for transcript text,
Electroencephalogram, Peripheral-Physiological-Signal, Galvanic-Skin-Response, Respiration-Rmplitude, Skin Temperature,
Electrocardiogram, Blood-Volume-Pressure, Electromyogram, Electrooculogram, Skin-Conductance-Level, and Heart-Rate,
respectively. Emotion labels: ang, sad, hap, dis, fea, sur, fru, exc, neu, pos, neg, joy, amu, anx, ero, hor, sce, obm, ant, and

tru are short for angry, sadness, happiness, disgust, fear, surprise, frustration, excited, neutral, positive, negative, joy,
amusement, anxiety, erotic, horror, scenery, object-manipulation, anticipation, and trust, respectively; -L, F, and -P are short

for liking, familiarity, and predictability, respectively.

different emotional reactions to the same stimulus, which is
caused by a variety of elements like personality. Thus, multi-
label learning (MLL) has been utilized to study the problem
where one instance is associated with multiple emotion labels.
Recently, to address the problem that MLL does not fit some
real applications well where the overall distribution of different
labels’ importance matters, label distribution learning (LDL) is
proposed to cover a certain number of labels, representing the
degree to which each emotion label describes the instance [20].

B. Emotion Regression
Emotion regression aims to learn a mapping function that

can effectively associate one instance with continuous emotion
values in a Cartesian space. The most common regression
algorithms for MER aim to assign the average dimension
values to the source data. To deal with the inherent sub-
jectivity characteristic of emotions, researchers propose to
predict the continuous probability distribution of emotions
which are represented in dimensional valence-arousal (VA)
space. Specifically, VA emotion labels can be represented by
a Gaussian mixture model (GMM), and then the emotion dis-
tribution prediction can be formalized as a parameter learning
problem [21].

C. Emotion Detection
As the raw data does not ensure carrying emotions, or

only part of the data can evoke emotional reactions, emotion

detection aims to find out which kind of emotion lies where
in the source data. For example, a restaurant review on Yelp
might be “This location is conveniently located across the
street from where I work, being walkable is a huge plus for
me! Food wise, it’s the same as almost every location I’ve
visited so there’s nothing much to say there. I do have to
say that the customer service is hit or miss.” Meanwhile, the
overall rating score is three stars out of five. This review
contains different emotions and attitudes: positive in the first
sentence, neutral in the second sentence, and negative in
the last sentence. As such, it is crucial for the system to
detect which sentence corresponds to which emotion. Another
example is affective region detection in images [22].

D. Emotion Retrieval

How to search affective content based on human percep-
tion is another meaningful task. The existing framework first
detects local interest patches or sequences in the query and
candidate data sources. Then, it discovers all matched pairs
by determining whether the distance between two patches or
sequences is less than a given fixed threshold. The similarity
score between the query and each candidate is calculated as the
quantity of matched components, followed by ranking the can-
didates of this query accordingly. While an affective retrieval
system is useful for obtaining online content with desired
emotions from a massive repository [10], again the abstract

https://sail.usc.edu/iemocap
http://multicomp.cs.cmu.edu/rsources/youtube-dataset-2
http://web.eecs.umich.edu/$\sim $mihalcea/downloads.html#MOUD
http://multicomp.cs.cmu.edu/resources/ict-mmmo-dataset
https://www.ee.columbia.edu/n/dvmm/newsrover/sentimentdataset
http://multicomp.cs.cmu.edu/resources/cmu-mosi-dataset
http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset
https://affective-meld.github.io
https://github.com/thuiar/MMSA
http://www.enterface.net/enterface05
http://semaine-db.eu
EMDB@psi.uminho.pt
http://www.eecs.qmul.ac.uk/mmv/datasets/deap
https://mahnob-db.eu/hci-tagging
https://github.com/xunan0812/MIMN
https://github.com/PreferredAI/vista-net
https://github.com/wlj961012/Multi-Modal-Event-awareNetwork-for-SentimentAnalysis-in-Tourism
https://liris-accede.ec-lyon.fr
http://www.yugangjiang.info/research/VideoEmotions/index.html
http://bigvid.fudan.edu.cn/data/Ekman.zip
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and subjective characteristics make the task challenging and
difficult to evaluate.

VI. CHALLENGES

As stated in Section I, multi-modal emotion recognition
(MER) has several advantages as compared to uni-model
emotion recognition but it also faces more challenges.

A. Affective Gap

The affective gap is one main challenge for MER, which
measures the inconsistency between extracted features and
perceived high-level emotions. The affective gap is even more
challenging than the semantic gap in objective multimedia
analysis. Even if the semantic gap is bridged, there might
still exist an affective gap. For example, a blooming rose
and a faded rose both contain a rose but can evoke different
emotions. For the same sentence, different voice intonations
may correspond to totally different emotions. Extracting dis-
criminative high-level features and especially those related
to emotions can help to bridge the affective gap. The main
difficulty lies in how to evaluate whether the extracted features
are related to emotions.

B. Perception Subjectivity

Due to many personal, contextual, and psychological fac-
tors, such as the cultural background, personality, and so-
cial context, different people might have different emotional
responses to the same stimuli [10]. Even if the emotion
is the same, their physical and psychological changes can
also be quite different. For example, all the 36 videos in
the ASCERTAIN dataset for MER are labeled with at least
four out of seven different valence and arousal scales by 58
subjects [15]. This clearly indicates that some subjects have
the opposite emotional reactions to the same stimuli. Take a
short video with storm and thunder for instance, some people
may feel in awe because they have never seen such extreme
weather, some may feel fear because of the loud thunder
noise, some may feel excited to capture such rare scenes,
some may feel sad because they have to cancel their travel
plans, etc. Even for the same emotion (e.g., excitement), there
are different reactions, such as facial expression, gait, action,
and speech. For the subjectivity challenge, one direct solution
is to learn personalized MER models for each subject. From
the perspective of stimuli, we can also predict the emotion
distribution when a certain number of subjects are involved.
Besides the content of the stimuli and direct physical and
psychological changes, jointly modeling the above-mentioned
personal, contextual, and psychological factors would also
contribute to the MER task.

C. Data Incompleteness

Because of the presence of many inevitable factors in
data collection, such as sensor device failure, the information
in specific modalities might be corrupted, which results in
missing or incomplete data. Data incompleteness is a com-
mon phenomenon in real-world MER tasks. For example,

for explicit affective cues, an EEG headset might record
contaminated signals or even fail to record any signal; at
night, the cameras cannot capture clear facial expressions.
For implicit affective stimuli, one user might post a tweet
only containing an image (without text); for some videos,
the audio channel does not change much. In such cases,
the simplest feature fusion method, i.e., early fusion, does
not work, because we cannot extract any features given no
captured signal. Designing effective fusion methods that can
deal with data incompleteness is a widely employed strategy.

D. Cross-modality Inconsistency

Different modalities of the same sample may conflict with
each other and thus express different emotions. For example,
facial expression and speech can be easily suppressed or
masked to avoid being detected, but EEG signals that are
controlled by the central nervous systems can reflect humans’
unconscious body changes. When people post tweets on social
media, it is very common that the images are not semantically
correlated to the text. In such cases, an effective MER method
is expected to automatically evaluate which modalities are
more reliable, such as by assigning a weight to each modality.

E. Cross-modality Imbalance

In some MER applications, different modalities may con-
tribute unequally to the evoked emotion. For example, online
news plays an important role in our daily lives, and in addition
to understanding the preferences of readers, predicting their
emotional reactions is of great value in various applications,
such as personalized advertising. However, a piece of online
news usually includes imbalanced texts and images, i.e., the
length of the article may be very long with lots of detailed
information, while only one or two illustrations are inserted
into the news. Potentially more problematic, the editor of the
news may select a neutral image for an article with an obvious
sentiment.

F. Label Noise And Absence

Existing MER methods, especially the ones based on deep
learning, require large-scale labeled data for training. However,
in real-world applications, labeling the emotions in the ground-
truth generation is not only prohibitively expensive and time-
consuming but also highly inconsistent, which results in a large
amount of data but with few or even no emotion labels. With
the increasingly diverse and fine-grained emotion requirement,
we might have enough training data for some emotion cate-
gories but not for others. One alternate solution to manual
annotation is to leverage the tags or keywords of social tweets
as emotion labels, but such labels are incomplete and noisy. As
such, designing effective algorithms for unsupervised/weakly-
supervised learning and few/zero shot learning can provide
potential solutions.

Meanwhile, we might have sufficient labeled affective data
in one domain, such as synthetic facial expression and speech.
The problem turns to how to effectively transfer the trained
MER model on the labeled source domain to another unlabeled
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Fig. 2. Illustration of a widely used MER framework, which consists of three components: representation learning to extract feature representations, feature
fusion to combine features from different modalities, and classifier optimization to learn specific task models (e.g., classification, regression, detection, and
retrieval). n is the number of different modalities.

target domain. The presence of domain shift causes significant
performance decay when a direct transfer is used [23]. Multi-
modal domain adaptation and domain generalization can help
to mitigate such domain gap. Practical settings, such as mul-
tiple source domains, should also be considered.

VII. COMPUTATIONAL METHODOLOGIES

Generally, there are three components in an MER frame-
work with sufficient labeled training data in the target domain:
representation learning, feature fusion, and classifier optimiza-
tion, as shown in Fig. 2. In this section, we will introduce
these components. Further, we will describe domain adaptation
when there is no labeled training data in the target domain
and when sufficient labeled data is available in another related
source domain.

A. Representation Learning of Each Affective Modality

To represent the text as a form that can be understood
by computers, the following aspects are required: first, rep-
resenting the symbolic words as real numbers for the next
computation; second, modeling the semantic relationships;
and finally, obtaining a unified representation for the whole
text [16]. In the beginning, words are represented by one-hot
vectors with the length of vocabulary size, where for the t-
th word in the vocabulary, wt, only the position t is 1 and
the other positions are 0. As the scale of the data increases,
the dimension of this one-hot vector increases dramatically.
Later, researchers use language models to train word vectors
by predicting context, obtaining word vectors with vectors of
fixed dimension. Popular word vector representation models
include word2vec, GLOVE, BERT, XLNet, and so on. The
text feature extraction methods have developed from simple
ones to complex ones as well. Text features can be obtained
by simply averaging word vectors. A recurrent neural network
(RNN) is used to model the sequential relations of words in
the text. A convolutional neural network (CNN) which has
been widely used in the computer vision community, is also
used to extract contextual relations between words.

To date, plenty of methods have been developed to design
representative features for emotion stimuli in audios [13, 14].
It has been found that audio features such as pitch, log energy,
zero-crossing rate, spectral features, voice quality, and jitter,
are useful in emotion recognition. The ComParE acoustic
feature set is commonly used as the baseline set for the
ongoing Computation Paralinguistics Challenge series since
2013. However, because of possible high similarities in certain
emotions, single type of audio feature is not discriminative
enough to classify emotions. To solve this problem, some
approaches propose to combine different types of features.
Recently, with the development of deep learning, CNN is
shown to achieve state-of-the-art performance on large-scale
tasks in many domains dealing with natural data, and audio
emotion recognition is of course also included. Audio is
typically transferred into a graphical representation, such as
a spectrogram, to be fed into a CNN. Since CNN uses shared
weight filters and pooling to give the model better spectral
and temporal invariant properties, it typically yields better
generalized and more robust models for emotion recognition.

Researchers have designed informative representations for
emotional stimuli in images. In general, images can be divided
into two types, non-restrictive images and facial expression
images. For the former, e.g., natural images, various hand-
crafted features including color, texture, shape, composition,
etc., are developed to represent image emotion in the early
years [10]. These low-level features are developed with inspi-
ration from psychology and art theory. Later, mid-level fea-
tures based on the visual concepts are presented to bridge the
gap between the pixels in images and the emotion labels. The
most representative engine is SentiBank, which is composed
of 1, 200 adjective-noun pairs and shows remarkable and ro-
bust recognition performance among all the hand-engineering
features. In the era of deep learning, CNN is regarded as a
strong feature extractor in an end-to-end manner. Specifically,
to integrate various representations of different levels, features
are extracted from multiple layers of CNN. Meanwhile, an
attention mechanism is employed to learn better emotional
representations of specific local affective regions [22]. For the
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facial expression images, firstly the human face is detected
and aligned, and then the face landmarks are encoded for the
recognition task. Note that for those non-restrictive images
that contain human faces by chance, facial expression can be
treated as an important mid-level cue.

In the above, we have mentioned how to identify emotions
in the isolated modalities. Here, we first focus on perceiving
emotions from successive frames. Then, we introduce how to
build joint representation for videos. Compared to a single
image, a video contains a series of images with temporal
information [19]. To build representations of videos, a wide
range of methods has been proposed. Early methods mainly
utilize hand-crafted local representations in this field, which
include color, motion, and shot cut rate. With the advent of
deep learning, recent methods extract discriminative represen-
tations by adopting a 3D CNN that captures the temporal infor-
mation encoded in multiple adjacent frames. After extracting
modality-specific features in videos, integrating different types
of features could obtain more promising results and improve
the performance.

To perceive emotions, there are mainly two aspects of ways
to learn the representations of gait [24]. For one thing, we
can explicitly model the posture and movement information
that is related to the emotions. To model this information, we
first extract the skeletal structure of a person and then repre-
sent each joint of the human body using the 3D coordinate
system. After getting these coordinates, the angles, distance,
or area among different joints (posture information), veloc-
ity/acceleration (movement information), their co-variance de-
scriptors, etc. can be easily extracted. For another thing, high-
level emotional representations can be modeled from gait by
long short-term memory (LSTM), deep convolutional neural
networks, or graph convolutional networks. Some methods
extract optical flow from gait videos and then extract sequence
representations using these networks. Other methods learn
skeletal structures of the gait and then feed them into multiple
networks to extract discriminate representations.

Since various information about emotions, such as fre-
quency band, electrodeposition, and temporal information, can
be explored from the brain’s response to emotional stimuli,
EEG signals are widely used in emotion analysis [15]. To
extract discriminative features for EEG emotion recognition,
differential entropy features from frequency band or elec-
trodeposition relationship are very popular in previous work.
Besides hand-crafted features, we can also directly apply end-
to-end deep learning neural networks such as CNN and RNN
on the raw EEG signals to obtain powerful deep features [25].
Inspired by the learning pattern of humans, spatial-wise at-
tention mechanisms are successfully applied to extract more
discriminative spatial information. Furthermore, considering
that EEG signals contain multiple channels, a channel-wise
attention mechanism can also be integrated into CNN to
exploit the inter-channel relationship among feature maps.

B. Feature Fusion of Different Affective Modalities

Feature fusion, as one key research topic in MER, aims
to integrate the representations from multiple modalities to
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Fig. 3. Illustration of different model-based fusion strategies, where n is the
number of different modalities.

predict either a specific category or a continuous value of emo-
tions. Generally, there are two strategies: model-free fusion
and model-based fusion [7, 9].

Model-free fusion that is not directly dependent on specific
learning algorithms has been widely used for decades. We can
divide it into early fusion, late fusion, and hybrid fusion [5].
All these fusion methods can be extended from existing
uni-modal emotion recognition classifiers. Early fusion, also
named feature-level fusion, directly concatenates the feature
representations from different modalities as a single repre-
sentation. It is the most intuitive method to fuse different
representations by exploiting the interactions between different
modalities at an early stage and only requires training a single
model. But since the representations from different modalities
might significantly differ, we have to consider the time syn-
chronization problem to transform these representations into
the same format before fusion. When one or more modalities
are missing, such early fusion would fail. Late fusion, also
named decision-level fusion, instead integrates the prediction
results from each single modality. Some popular mechanisms
include averaging, voting, and signal variance. The advantages
of late fusion include (1) flexibility and superiority – the
optimal classifiers can be selected for different modalities; and
(2) robustness – when some modalities are missing, late fusion
can still work. However, the correlations between different
modalities before decision are ignored. Hybrid fusion com-
bines early fusion and late fusion to exploit their advantages
in a unified framework but with higher computational cost.

Model-based fusion that explicitly performs fusion during
the construction of the learning models has been paid more
attention [7, 9], as shown in Fig. 3, since model-free fusion
is based on some simple techniques that are not specifically
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designed for multimodal data. For shallow models, kernel-
based fusion and graph-based fusion are two representative
methods; for recent popular deep models, neural network-
based fusion, attention-based fusion, and tensor-based fusion
are often used.

Kernel-based fusion is extended based on classifiers that
contain kernels, such as SVM. For different modalities, dif-
ferent kernels are used. The flexibility in kernel selection
and convexity of the loss functions make multiple kernel
learning fusion popular in many applications, including MER.
However, during testing, these fusion methods rely on the
support vectors in the training data, which results in large
memory cost and inefficient reference. Graph-based fusion
constructs separate graphs or hypergraphs for each modality,
combines these graphs into a fused one, and learns the weights
of different edges and modalities by graph-based learning. It
can well deal with the data incompleteness problem simply
by constructing graphs based on available data. Besides the
extracted feature representations, we can also incorporate prior
human knowledge into the models by corresponding edges.
However, the computational cost would increase exponentially
when more training samples are available.

Neural network-based fusion employs a direct and intuitive
strategy to fuse the feature representations or predicted re-
sults of different modalities by a neural network. Attention-
based fusion uses some attention mechanisms to obtain the
weighted sum of a set of feature representations with scalar
weights that are dynamically learned by an attention module.
Different attention mechanisms correspond to fusing different
components. For example, spatial image attention measures
the importance of different image regions. Image and text co-
attention employs symmetric attention mechanisms to gener-
ated both attended visual and attended textual representations.
Parallel co-attention and alternating co-attention methods can
be used to respectively generate attention for different modal-
ities simultaneously and one by one. Recently, a Multimodal
Adaptation Gate (MAG) is designed to enable Transformer-
based contextual word representations, such as BERT and
XLNet, to accept multi-modal nonverbal data [17]. Based on
the attention conditioned on the nonverbal behaviors, MAG
can essentially map the informative multiple modalities to a
vector with a trajectory and magnitude. Tensor-based fusion
tries to exploit the correlations of different representations by
some specific tensor operations, such as outer product and
polynomial tensor pooling. These fusion methods for deep
models are capable of learning from a large amount of data in
an end-to-end manner with good performance but suffer from
low interpretability.

One important property of the above-mentioned feature
fusion methods is whether they support temporal modeling
for MER in videos. It is obvious that early fusion can while
late fusion and hybrid fusion cannot, since the predicted
results based on each modality are already known before
late fusion. For model-based fusion, excluding kernel-based
fusion, all others can be used for temporal modeling, such as
hidden Markov models (HMM) and conditional random fields
(CRF) for graph-based fusion methods, and RNN and LSTM
networks for neural network-based fusion.

C. Classifier Optimization for Multi-modal Emotion Recogni-
tion

For the text represented as a sequence of word embeddings,
the most popular approaches to leverage the semantics among
words are RNN and CNN. LSTM, as a typical RNN, contains
a series of cells with the same structure. Every cell takes a
word embedding and the hidden state from the last cell as
input, computes the output, and updates the hidden state for
the following cell. The hidden state records the semantics
of previous words. CNN computes local contextual features
among consecutive words through convolution operations. And
average pooling or max-pooling layers are used to further
integrate the obtained features for the following sentiment
classification. Recently, researchers begin to use Transformer-
based methods, e.g., BERT and GPT-3. Transformer is im-
plemented as a series of modules containing a multi-head
self-attention layer followed by a normalization layer, a feed-
forward network, and another normalization layer. The order
of words in the text is also represented by another position
embedding layer. Compared with RNN, transformer does not
require sequential processing of words, which improves the
parallelizability. And compared with CNN, transformer can
model relationships between more distant words.

The classification approaches used in audio emotion recog-
nition generally include the following two options: traditional
methods and deep learning-based methods. For traditional
methods, HMM is a representative method because of its
capability of capturing dynamic characteristics of sequential
data. SVM is also widely utilized in audio emotion recog-
nition. Deep learning-based methods have become more and
more popular since they are not restricted by the classical
independence assumptions of HMM models. Among these
methods, sequence-to-sequence models with attention have
shown success in an end-to-end manner. Recently, some
approaches significantly extend the state of the art in this
area by developing deep hybrid convolutional and recurrent
models [14].

In the early years, similar to this task in other modalities,
multiple hand-crafted image features are integrated and input
into SVM to train classifiers. Then, based on deep learning,
the classifier and feature extractor are connected and optimized
in an end-to-end manner by corresponding loss functions
like cross-entropy loss [26]. Besides, popular metric losses
such as triplet loss and N-pair loss also take part in the
network optimization to obtain more discriminative features.
With the above learning paradigm, each image is predicted
as a single dominant emotion category. However, based on
the theories of psychology, an image may evoke multiple
emotions in viewers, which leads to an ambiguous problem. To
address the problem, label distribution learning is employed to
predict a concrete relative degree for each emotion category,
where Kullback–Leibler divergence is the most popular loss
function. Some informative and attractive regions of an image
always determine the emotion of the image. Therefore, a series
of architecture with extra attention or detection branch is
constructed. With the optimization for multiple tasks including
attention and original task, a more robust and discriminative
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TABLE II
QUANTITATIVE COMPARISON OF SOME REPRESENTATIVE METHODS FOR MULTI-MODAL EMOTION RECOGNITION ON FIVE WIDELY USED DATASETS

USING GLOVE AS WORD EMBEDDINGS.

dataset CMU-MOSI YouTube ICT-MMMO MOUD IEMOCAP

train : val : test 1284 : 229 : 686 30 : 5 : 11 11 : 2 : 4 49 : 10 : 20 3 : 1 : 1

method
metric

A2↑ F1↑ A7↑ M↓ C↑ A3↑ F1↑ A2↑ F1↑ A2↑ F1↑ A9↑ F1↑ MV↓ CV↑ MA↓ CA↑

SVM 71.6 72.3 26.5 1.100 0.559 42.4 37.9 68.8 68.7 60.4 45.5 24.1 18.0 0.251 0.060 0.546 0.540
RF 56.4 56.3 21.3 - - 49.3 49.2 70.0 69.8 64.2 63.3 27.3 25.3 - - - -

THMM 50.7 45.4 17.8 - - 42.4 27.9 53.8 53.0 58.5 52.7 23.5 10.8 - - - -

MV-LSTM 73.9 74.0 33.2 1.019 0.601 45.8 43.3 72.5 72.3 57.6 48.2 31.3 26.7 0.257 0.020 0.513 0.620
BC-LSTM 73.9 73.9 28.7 1.079 0.581 47.5 47.3 70.0 71.1 72.6 72.9 35.9 34.1 0.248 0.070 0.593 0.400

TFN 74.6 74.5 28.7 1.040 0.587 47.5 41.0 72.5 72.6 63.2 61.7 36.0 34.5 0.251 0.040 0.521 0.550
MARN 77.1 77.0 34.7 0.968 0.625 54.2 52.9 86.3 85.9 81.1 81.2 37.0 35.9 0.242 0.100 0.497 0.650
MFN 77.4 77.3 34.1 0.965 0.632 61.0 60.7 87.5 87.1 81.1 80.4 36.5 34.9 0.236 0.111 0.482 0.645

Evaluation metrics: AN means emotion classification accuracy where N denotes the number of emotion classes, AN and F1
are in percentage, M is short for mean absolute error, C indicates the Pearson correlation, and V, A correspond to the results

of valence and arousal (the same for Table III).

TABLE III
QUANTITATIVE COMPARISON OF SOME REPRESENTATIVE METHODS FOR
MULTI-MODAL EMOTION RECOGNITION ON THE CMU-MOSI DATASET

USING BERT OR XLNET AS WORD EMBEDDINGS.

method
metric

A2↑ F1↑ M↓ C↑

TFN 74.8/78.2 74.1/78.2 0.955/0.914 0.649/0.713
MARN 77.7/78.3 77.9/78.8 0.938/0.921 0.691/0.707
MFN 78.2/78.3 78.1/78.4 0.911/0.898 0.699/0.713

FT 83.5/84.7 83.4/84.6 0.739/0.676 0.782/0.812
MAG 84.2/85.7 84.1/85.6 0.712/0.675 0.796/0.821

Human 85.7 87.5 0.710 0.820
The numbers on the left side and the right side of “/” are the MER

results based on BERT and XLNet, respectively.

model is obtained.
Most existing methods employ a two-stage pipeline to

recognize video emotion, i.e., extracting visual and/or audio
features and training classifiers. For training classifiers, many
machine learning methods have been investigated to model
the mapping between video features and discrete emotion
categories, including SVM, GMM, HMM, dynamic Bayesian
networks (DBNs), and conditional random fields (CRF). De-
spite the above methods have contributed to the development
of emotion recognition in videos, recent methods are proposed
to recognize video emotions in an end-to-end manner based
on deep neural networks due to their superior capability [27].
CNN-based methods first employ 3D convolutional neural
networks to extract high-level spatio-temporal features which
contain affective information, and then use fully connected
layers to classify emotions. Finally, the models are followed
by the loss function to optimize the whole network. Inspired by
the human process of perceiving emotions, CNN-based meth-
ods employ the attention mechanism to emphasize emotionally
relevant regions of frames or segments in each video. Further-
more, considering the polarity-emotion hierarchy constraint,
recent methods propose polarity-consistent cross-entropy loss,
to guide the attention generation.

The gait of a person can be represented as a sequence of 2D

or 3D joint coordinates for each frame in the walking videos.
To leverage the inherent affective cues in the coordinates of
joints, many classifiers or architectures have been used to
extract affective features in the gait. LSTM networks contain
many special units, i.e., memory cells, and can store the joint
coordinate information from particular time steps in a long-
time data sequence. Thus, it is used in some early work of
gait emotion recognition. The hidden features of the LSTM
can be further concatenated with the hand-crafted affective
features and are then fed into a classifier (e.g., SVM or random
forest (RF)) to predict emotions. Recently, another popular
network used in gait emotion prediction is the spatial-temporal
graph convolutional network (ST-GCN). ST-GCN is initially
proposed for action recognition from human skeletal graphs.
‘Spatial’ represents the spatial edges in the skeletal structure,
which are the limbs that connect the body joints. ‘Temporal’
refers to temporal edges, and they connect the positions of
each joint across different frames. ST-GCN can be easily
implemented as a spatial convolution followed by a tempo-
ral convolution, which is similar to the deep convolutional
networks.

EEG-based emotion recognition usually employs various
classifiers such as SVM, decision trees, and k-nearest neighbor
to classify hand-crafted features in the early stage. Later, since
CNN and RNN are good at extracting spatial information and
temporal information of EEG signals, respectively, end-to-end
structures such as cascade convolutional recurrent network
(which combines CNN and RNN), LSTM-RNN, and paral-
lel convolutional recurrent neural networks are successfully
designed and applied to emotion recognition tasks.

1) Quantitative Comparison of Representative MER Meth-
ods: To give readers an impression on the performances of
state-of-the-art MER methods, we conduct experiments to
fairly compare some representative methods based on the
released codes of CMU-Multimodal SDK7 and Multimodal
Adaptation Gate8. Specifically, the compared non-deep meth-

7https://github.com/A2Zadeh/CMU-MultimodalSDK
8https://github.com/WasifurRahman/MAG

https://github.com/A2Zadeh/CMU-MultimodalSDK
https://github.com/WasifurRahman/BERT_multimodal_transformer
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Fig. 4. A generalized framework for multi-modal domain adaptation with one labeled source domain and one unlabeled target domain. The gray-scale
rectangles with text in bold represent different alignment strategies. Most existing multi-modal domain adaptation methods can be obtained by employing
different component details, enforcing some constraints, or slightly changing the architecture.

ods include SVM, RF, and Tri-modal HMM (THMM); the
compared deep methods include Multi-View LSTM (MT-
LSTM), Bi-Directional Contextual LSTM (BC-LSTM), Ten-
sor Fusion Network (TFN), Multi-attention Recurrent Net-
work (MARN), Memory Fusion Network (MFN), fine-tuning
(FT), and Multi-modal Adaptation Gate (MAG). We conduct
experiments on five datasets: CMU-MOSI, YouTube, ICT-
MMMO, MOUD, and IEMOCAP. All the datasets contain
three modalities: face, speech, and transcript text. For visual
features, Facet is used to extract per-frame basic and advanced
emotions and facial action units as indicators of facial muscle
movement. For acoustic features, COVAREP is employed
to extract 12 Mel-frequency cepstral coefficients (MFCCs),
pitch tracking and voiced/unvoiced segmenting features, glottal
source parameters, peak slope parameters, and maxima dis-
persion quotients. For linguistic features, three different pre-
trained word embeddings, i.e., GLOVE, BERT, and XLNet,
are employed to obtain the word vector. The input to the non-
deep methods is the early fusion of multi-modal features. For
emotion classification, we use accuracy (A) and F1 as metrics;
for emotion regression, we use mean absolute error (M) and
the Pearson correlation (C) as metrics. Higher values indicate
better performance for all the metrics, except M where lower
values denote better performance.

From the results in Table II and Table III, we have the
following observations: First, the performances of deep models
are generally better than non-deep ones. Second, for different
datasets, the methods with the best performances are different.
For example, RF achieves the best performance among non-
deep models except CMU-MOSI, which demonstrates its good
generalization ability, while the performance of SVM is much
better than RF and THMM on CMU-MOSI. Third, multi-
class classification is more difficult than binary classification,
such as 77.1 vs. 34.7 of MARN on CMU-MOSI. Fourth,
comparing the same method in the two tables on CMU-MOSI,
we can conclude that BERT and XLNet can provide better

word embeddings than GLOVE and XLNet is generally better
than BERT. Finally, although XLNet-based MAG achieves
near-human level performance on CMU-MOSI, there is still
some gap and more efforts are expected to achieve even better
performance than humans.

D. Domain Adaptation for Multi-modal Emotion Recognition

Domain adaptation aims to learn a transferable MER model
from labeled source domains that can perform well on unla-
beled target domains [23]. Recent efforts have been dedicated
to deep unsupervised domain adaptation [23], which employs a
two-streams architecture. One stream is used to train an MER
model on the labeled source domains, while the other is used
to align the source and target domains. Based on the alignment
strategy, existing uni-modal domain adaptation methods can be
classified into different categories [23], such as discrepancy-
based, adversarial discriminative, adversarial generative, and
self-supervision-based methods.

Discrepancy-based methods employ some distance metrics
to explicitly measure the discrepancy between the source
and target domains on corresponding activation layers of
the two network streams. Commonly used discrepancy loss
include maximum mean discrepancy, correlation alignment,
geodesic distance, central moment discrepancy, Wasserstein
discrepancy, contrastive Domain discrepancy, and higher-order
moment matching. Besides the used discrepancy loss, there
are some other differences between existing methods, such as
whether the loss is domain-level or class-level, which layer
the loss is operated on, whether the backbone networks share
weights or not, and whether the aligned distribution is marginal
or joint. Adversarial discriminative models usually align the
source and target domains with a domain discriminator by
adversarially making different domains indistinguishable. The
input to the discriminator ranges from original data to ex-
tracted features and the adversarial alignment can be global
or class-wise. We can also consider using shared or unshared
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feature extractors. Adversarial generative models usually em-
ploy a generator to generate fake source or target data to
make the domain discriminator indistinguishable from the
generated and real domains. The generator is typically based
on generative adversarial network (GAN) and its variants,
such as CoGAN, SimGAN, and CycleGAN. The input to
the generator and discriminator can be different in different
methods. Self-supervision-based methods combine some aux-
iliary self-supervised learning tasks, such as reconstruction,
image rotation prediction, jigsaw prediction, and masking,
with the original task network to bring the source and target
domains closer. We can compare these four types of domain
adaptation methods from the perspectives of theory guarantee,
efficiency, task scalability, data scalability, data dependency,
optimizability, and performance. We can combine some of
these methods to jointly exploit their advantages.

The main difficulty in domain adaptation for MER lies
in the alignment of multiple modalities between the source
and target domains simultaneously. There are some simple
but effective ways to extend uni-modal domain adaptation
to multi-modal settings, as shown in Fig. 4. For example,
we can use discrepancy loss or discriminator to align the
fused feature representations. The correspondence between
different modalities can be used as a self-supervised alignment.
Extending adversarial generative models from uni-modal to
multi-modal would be more difficult. Unlike image, other
generated modalities, such as text and speech, might have
confused semantics, although they can make the discriminator
indistinguishable. Generating intermediate feature representa-
tions instead of raw data can provide a feasible solution.

VIII. APPLICATIONS

Recognizing emotions from multiple explicit cues and im-
plicit stimuli is of great significance in a broad range of real-
world applications. Generally speaking, emotion is the most
important aspect of the quality and meaning of our existence,
which makes life worth living. The emotional impact of digital
data lies in that it can improve the user experience of existing
techniques and then strengthen the knowledge transfer between
people and computers [18].

Many people tend to post texts, images, and videos on social
networks to express their daily life feelings. Inspired by this,
we can mine people’s opinions and sentiments towards topics
and events happening in the real world [28]. For instance,
user-generated content in Facebook or Instagram can be used
to derive the attitudes of people from different countries
and regions when they face epidemics like COVID-19 [29].
Researchers also try to detect sentiment in social networks
and apply the results to predict political elections. Note that
when the personalized emotion of an individual is detected,
we can further group these emotions, which may contribute to
predicting the tendencies of society.

Another important application of multi-modal emotion
recognition is business intelligence, especially marketing and
consumer behavior analysis [30]. Nowadays, most apparel e-
retailers use human models to present products. The model’s
face presentation is proved to have a significant effect on

consumer approach behavior. To be specific, for participants
whose emotional receptivity is high, smiling facial expression
tends to lead to the highest approach behavior. Besides,
researchers examine how online store specialization influ-
ences consumer pleasure and arousal, based on the stimulus-
organism-response framework. Emotion recognition can also
be used in call centers, the goal of which is to detect the
emotional states of both the caller and the operator. The system
recognizes the involved emotions through the intonation and
tempo, as well as the texts translated from the corresponding
speech. Based on this, we can receive feedback on the quality
of the service.

Meanwhile, emotion recognition plays an important role
in the field of medical treatment and psychological health.
With the popularity of social media, some people prefer to
sharing their emotions on the Internet rather than with others.
If a user is observed to be sharing negative information
(e.g., sadness) frequently and continuously, it is necessary
to track her/his mental status to prevent the occurrence of
psychological illness and even suicide. Emotional states can
also be used to monitor and predict fatigue states of a variety of
people like drivers, pilots, workers in assembly lines, and stu-
dents in classrooms. This technique both prevents dangerous
situations and benefits the evaluation of work/study efficiency.
Further, emotional states can be incorporated into various
security applications, such as systems for monitoring public
spaces (e.g., bus/train/subway stations, football stadiums) for
potential aggression. Recently, an effective auxiliary system is
introduced in the diagnosis and treatment process of autism
spectrum disorder (ASD) of children, to assist in collecting
the pathological information. To help professional clinicians
better and faster make a diagnosis and give treatment to
ASD patients, this system characterizes facial expressions and
eye gaze attention which are considered to be remarkable
indicators for early screening of autism.

Multi-modal emotion recognition is used to improve the
personal entertainment experience. For example, a recent work
in brainwave–music interface maps EEG characteristics to
musical structures (note, intensity, and pitch). Similarly, efforts
have been made to understand the emotion-centric correlation
between different modalities that are essential for various
applications. Affective image-music matching provides a good
chance to append a sequence of music to a given image,
where they may evoke the same emotion. This helps generate
emotion-aware music playlists from one’s personal album
photos in mobile devices.

IX. FUTURE DIRECTIONS

Existing methods have achieved promising performances
on various MER settings, such as visual-audio, facial-textual-
speech, and textual-visual tasks. However, all the summarized
challenges have not been fully addressed. For example, how to
extract discriminative features that are more related to emotion,
how to balance between common and personalized emotion
reactions, and how to emphasize the more important modalities
are still open. To help improve the performances of MER
methods and make them fit special requirements in real world,
we provide some potential future directions.
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New Methodologies for MER. 1) Contextual and prior
knowledge modeling. The experienced emotion of a user
can be significantly influenced by the contextual information,
such as the conversational and social environments. The prior
knowledge of users, such as personality and age, can also
contribute to emotion perception. For example, an optimistic
user and a pessimistic viewer are likely to see different
aspects of the same stimuli. Jointly considering these important
contextual and prior knowledge is expected to improve the
MER performance. Graph-related methods, such as graph
convolutional networks, are possible solutions to model the
relationships between factors and emotions. 2) Learning from
unlabeled, unreliable, and unmatched affective signals. In the
big data era, the affective data might be sparsely labeled or
even unlabeled, the raw data or labels can be reliable, and
the test and training data might be unmatched. Exploring
advanced machine learning techniques, such as unsupervised
representation learning, dynamic data selection and balancing,
and domain adaptation, and embedding the special properties
of emotions, can help to address these challenges. 3) Explain-
able, robust, and secure deep learning for MER. Due to the
black-box nature, it is difficult to understand why existing deep
neural networks perform well for MER and the trained deep
networks are vulnerable to adversarial attacks and inevitable
noises that might cause erraticism. Essentially explaining the
decision-making process of deep learning can help to design
robust and secure MER systems. 4) Combination of explicit
and implicit signals. Both explicit and implicit signals are
demonstrated to be useful for MER but they also suffer from
some limitations. For example, explicit signals can be easily
suppressed or are difficult to capture, while implicit signals
might not reflect the emotions in real-time. Jointly combining
them to explore the complementary information during viewer-
multimedia interaction would boost the MER performance. 5)
Incorporation of emotion theory into MER. Different theories
have been proposed in psychology, physiology, neurology,
and cognitive sciences. These theories can help to understand
how humans produce emotion but have not been employed in
the computational MER task. We believe such incorporation
would make more sense to recognize emotions.

More Practical MER Settings. 1) MER in the wild. Current
MER methods mainly focus on neat lab settings. However,
MER problems in the real world are much more complex. For
example, the collected data might contain much noise that is
unrelated to emotion; the users in the test set are from different
cultures and languages from those in the training set, which
results in different ways of emotion expression; different
emotion label spaces are employed across various settings;
training data is incrementally available. Designing an effective
MER model that is generalizable to these practical settings is
worth investigating. 2) MER on the edge. When deploying
MER models in edge devices, such as mobile phones and
security cameras, we have to consider the computing limi-
tation and data privacy. Techniques like auto pruning, neural
architecture search, invertible neural network, and software-
hardware co-design are believed to be beneficial for efficient
on-device training. 3) Personalized and group MER. Because
of the emotion’s subjectivity, simply recognizing the dominant

emotion of different individuals is insufficient. It is ideal but
impractical to collect enough data for each individual to train
personalized MER models. Adapting the well-trained MER
models for dominant emotions to each individual with a small
amount of labeled data is a possible alternate solution. On
the other hand, it would make more sense to predict emotions
for groups of individuals who share similar tastes or interests
and have a similar background. Group emotion recognition
is essential in many applications, such as recommendation
systems, but how to classify users into different groups is still
challenging.

Real Applications Based on MER. 1) Implementation of
MER in real-world applications. Although emotion recogni-
tion has been emphasized to be important for decades, it has
rarely been applied to real scenarios due to relatively low
performance. With the recent rapid progress of MER, we
can begin incorporating emotion into different applications
in marketing, education, health care, and service sectors.
The feedback from the applications can in turn promote the
development of MER. Together with emotion generation, we
believe an age of artificial emotional intelligence is coming. 2)
Wearable, simple, and accurate affective data collection. To
conduct MER tasks, the first step is to collect accurate affective
data. Developing wearable, simple and even contactless sen-
sors to capture such data would make users more acceptable.
3) Security, privacy, ethics, and fairness of MER. During
data collection, it is possible to extract users’ confidential
information, such as identity, age, etc. Protecting the security
and privacy of users and avoiding any chance of misuse
must be taken into consideration. Emotion recognition in real
applications might have a negative and even dangerous impact
on a person, such as emotional pressure. Methods to eliminate
such impact should also be considered from the perspectives
of ethics and fairness.

X. CONCLUSION

In this article, we provided a comprehensive tutorial on
multi-modal emotion recognition (MER). We briefly intro-
duced emotion representation models, both explicit and im-
plicit affective modalities, emotion annotations, and corre-
sponding computational tasks. We summarized the main chal-
lenges of MER in detail, and then we emphatically introduced
different computational methodologies, including representa-
tion learning of each affective modality, feature fusion of
different affective modalities, classifier optimization for MER,
and domain adaptation for MER. We ended this tutorial with
discussions on real-world applications and future directions.
We hope this tutorial can motivate novel techniques to facili-
tate the development of MER, and we believe that MER will
continue to attract significant research efforts.
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