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The Cramér-Rao Bound for Signal Parameter

Estimation from Quantized Data

Petre Stoica, Fellow, IEEE, Xiaolei Shang and Yuanbo Cheng

INTRODUCTION AND RELEVANCE

Several current ultra-wide band applications, such as millimeter wave radar and communication

systems [1][2][3], require high sampling rates and therefore expensive and energy-hungry analog-

to-digital converters (ADCs). In applications where cost and power constraints exist, the use

of high-precision ADCs is not feasible and the designer must resort to ADCs with coarse

quantization. Consequently the interest in the topic of signal parameter estimation from quantized

data has increased significantly in recent years.

The Cramér-Rao bound (CRB) is an important yardstick in any parameter estimation problem.

Indeed it lower bounds the variance of any unbiased parameter estimator. Moreover, the CRB

is an achievable limit, for instance it is asymptotically attained by the maximum likelihood

estimator (under regularity conditions), and thus it is a useful benchmark to which the accuracy

of any parameter estimator can and should be compared.

A formula for the CRB for signal parameter estimation from real-valued quantized data has

been presented in [4] but its derivation was somewhat sketchy. The said CRB formula has been

extended for instance in [2] to complex-valued quantized data, but again its derivation was rather

sketchy. The special case of binary (1-bit) ADCs and a signal consisting of one sinusoid has

been thoroughly analyzed in [5]. The CRB formula for a binary ADC and a general real-valued

signal has been derived, e.g., in [6][7].
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In this lecture note, we will present a textbook derivation of the CRB for a general signal

model and quantizer. We also show that the said CRB monotonically decreases and in the limit

converges to the standard CRB (for unquantized data) as the quantization becomes finer and

finer. We then consider the special case of binary quantization and present the corresponding

CRB. Finally, we show that if the threshold of the binary ADC is allowed to vary in time, then

the optimal threshold that minimizes the CRB is the signal itself and the corresponding CRB is

only π/2 times larger than the standard CRB (a result derived in a different way in [5] for the

special case of one sinusoid in noise).

For the sake of clarity, in the main part of the lecture note we focus on the specific case

of normally distributed data, which is most commonly examined in the literature. However,

in the appendix titled “Extensions to general distributions” we consider data with an arbitrary

distribution and show that the principal results on the CRB derived in the previous sections for

the normal distribution can be readily extended to the general case.

PREREQUISITES

While we will try to make this lecture note as self-contained as possible, basic knowledge

of statistical signal processing, estimation theory and calculus will be beneficial for fully under-

standing it.

PROBLEM STATEMENT

Consider the following general model for the noisy measurements of a signal:

yn = sn(θ) + en, n = 1, . . . , N, (1)

where the index n indicates the sample number, N is the total number of (temporal or spatial)

samples, sn(θ) is the signal model which is a known (differential) function of the unknown

parameter vector θ, and en denotes the noise. We assume that {en}Nn=1 is a sequence of i.i.d.

normal random variables with zero mean and known variance σ2. We also assume that all quan-

tities in (1) are real-valued (the extension to complex-valued measurements is straightforward

under the assumption that the normal distribution of the noise is circular, that is real(en) and

imaginary(en) are independent of each other, see e.g. [2]). Because σ2 is known, we can divide

both sides of (1) by σ and thus can assume that the noise variance is equal to one, which we

will do in what follows to simplify the notation. The extension to the case of unknown σ is not
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difficult but it leads to more complicated expressions and in order to keep the exposition here

as simple as possible, we will not consider it. When there is no risk for confusion, we will omit

the dependence of different functions (such as sn(θ)) on θ also to simplify the notation and

some of the expressions in the following sections.

Consider a quantizer with b bits and A = 2b adjacent intervals defined as follows:

Ik = [lk, uk) , k = 1, . . . , A,

l1 = −∞, uA =∞, lk+1 = uk (k = 1, . . . , A− 1). (2)

When the input to the quantizer lies in Ik, the output, denoted zk, is given by

zk = Q(y) if y ∈ Ik (3)

and it belongs to a set of size A. When the input is yn, the output will be one of the elements

in the said set with an index that depends on n:

zk(n) = Q(yn) for yn ∈ Ik(n). (4)

The discussion in this lecture note is valid for any desired set of the quantizer output, conse-

quently there is no need to specify the {zk} (for example, in the case of binary ADCs this set

can be {−1, 1} or {0, 1} etc.).

Let L(θ) denote the likelihood function of {zk(1), . . . , zk(N)}, and let J be the Fisher infor-

mation matrix (FIM) (see [8],[9]):

J = E

[
∂ lnL(θ)

∂θ

∂ lnL(θ)

∂θT

]
. (5)

Because

CRB = J−1 (6)

(whenever J is nonsingular) our problem is to derive an expression for J , which we will do in

the next section.
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SOLUTION: FIM FOR GENERAL QUANTIZERS

A. Derivation of the FIM formula

Under the assumptions made, {yn}Nn=1 are independent random variables, therefore so are

{zk(n)}Nn=1. This observation implies that:

L(θ) = p(zk(1), . . . , zk(N)) =
N∏
n=1

p(zk(n)), (7)

where

p(zk(n)) = p(yn ∈ Ik(n)) = φ(uk(n) − sn)− φ(lk(n) − sn) (8)

with φ(x) being the cumulative distribution function (cdf) of the normal standard distribution

φ(x) =
1√
2π

∫ x

−∞
e
−t2

2 dt. (9)

From (7) we have that
∂ lnL(θ)

∂θ
=

N∑
n=1

∂p(zk(n))/∂θ

p(zk(n))
. (10)

Using (8) and the following standard property of φ(x),

φ
′
(x) =

dφ(x)

dx
=

1√
2π
e−

x2

2 (the pdf), (11)

we obtain

∂p(zk(n))

∂θ
=

1√
2π

[
e−

[lk(n)−sn]
2

2 − e−
[uk(n)−sn]

2

2

]
∂sn
∂θ

, n = 1, . . . , N. (12)

Because {zk(n)} is a sequence of independent random variables, the terms in (10) are independent
of each other. Furthermore, the mean of these terms is equal to zero (for n = 1, . . . , N ):

E

[
∂p(zk(n))/∂θ

p(zk(n))

]
=

A∑
k=1

∂p(zk)/∂θ

p(zk)
p(zk) =

∂

∂θ

[
A∑

k=1

p(zk)

]
︸ ︷︷ ︸

=1

= 0. (13)
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It follows from (5), (10) and the discussion above that

J =
N∑
n=1

A∑
k=1

∂p(zk)/∂θ

p(zk)

∂p(zk)/∂θ
T

p(zk)
p(zk)

=
N∑
n=1

A∑
k=1

∂p(zk)/∂θ ∂p(zk)/∂θ
T

p(zk)
. (14)

Inserting (8) and (12) in (14) yields the following expression for J :

J =
N∑
n=1

[
A∑
k=1

[
φ
′
(uk − sn)− φ

′
(lk − sn)

]2
φ(uk − sn)− φ(lk − sn)

]
∂sn
∂θ

∂sn

∂θT
(15)

or, more explicitly,

J =
1

2π

N∑
n=1


A∑
k=1

[
e−

(uk−sn)2

2 − e−
(lk−sn)2

2

]2
φ(uk − sn)− φ(lk − sn)

 ∂sn∂θ ∂sn

∂θT
. (16)

We note in passing that (13) is rarely mentioned in the derivations of the CRB in the literature.

However, without (13), the expression for J would be more complicated (in particular it would

include all cross-terms in the product of (10) with its transpose).

B. Interval splitting increases the FIM

Let {Ĩk}Ãk=1 denote a set of intervals obtained by splitting some or all of {Ik}Ak=1 in smaller

subintervals (hence Ã > A) and let J̃ be the FIM corresponding to {Ĩk}. Intuitively, we would

expect that J̃ dominates J , i.e.

J̃ ≥ J (17)

in the sense that (J̃−J) is a positive semi-definite (PSD) matrix. To prove (17) we introduce the

following notation (we omit the dependence of some of these variables on k and n to simplify
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the notation):

mk ∈ [lk, uk) ,

a = φ
′
(lk − sn)− φ

′
(mk − sn),

b = φ
′
(mk − sn)− φ

′
(uk − sn),

α = φ(uk − sn)− φ(mk − sn),

β = φ(mk − sn)− φ(lk − sn). (18)

Below we prove that
(a+ b)2

α + β
≤ a2

α
+
b2

β
, (19)

which clearly implies (17). A simple calculation shows that (19) is equivalent to the following

inequalities:

(19)⇔ αβ(a+ b)2 ≤ (α + β)(βa2 + αb2)

⇔ (αb− βa)2 ≥ 0. (20)

Because the last inequality above is obviously true, the proof of (17) is concluded.

The optimal splitting point mk that maximizes the increase of the FIM could be determined by

maximizing the right hand side of (19). However, it will depend not only on k but also on sn and

hence it would be of little use from a practical standpoint. This appears to be a general problem

for any attempt to optimize the intervals of the quantizer, and some efforts to circumvent it by

assuming that sn ≈ 0 (for n = 1, . . . , N ), see e.g. [4], are bound to have only a limited success.

Optimizing the intervals {Ik} by maximizing the FIM is an interesting research problem that

awaits a practically useful general solution (an efficient global solver for this interval design

problem will be presented in the forthcoming paper [10]).

C. Upper and lower bounds on the FIM

Let

ρ =
A∑
k=1

[
φ
′
(ũk)− φ

′
(l̃k)
]2

φ(ũk)− φ(l̃k)
, (21)
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where φ(x) and φ′(x) are as defined in (9) and (11), and

ũk = uk − sn, l̃k = lk − sn (ũk > l̃k) (22)

(we omit the dependence of ρ, ũk and l̃k on n to simplify the notation).

In comparison with (15), the standard CRB (for unquantized data) has a simpler expression

that corresponds to setting ρ ≡ 1 in (15):

J0 =
N∑
n=1

∂sn
∂θ

∂sn

∂θT
(23)

(see, e.g., [8][9]). Because the output of the quantizer provides less “information” about the

signal than the unquantized data {yn}, we expect that

J ≤ J0. (24)

Proving that (24) indeed holds is an interesting exercise that we undertake in what follows. First

we note that[
φ
′
(ũk)− φ

′
(l̃k)
]2

=

[∫ ũk

l̃k

φ
′′
(x) dx

]2
=

[∫ ũk

l̃k

φ
′′
(x)√
φ′(x)

√
φ′(x) dx

]2

≤
[∫ ũk

l̃k

φ
′
(x) dx

] [∫ ũk

l̃k

[φ
′′
(x)]2

φ′(x)
dx

]
=
[
φ(ũk)− φ(l̃k)

] ∫ ũk

l̃k

[φ
′′
(x)]2

φ′(x)
dx. (25)

The inequality in (25) follows from the Cauchy-Schwarz inequality for integrals. Using (25) in

the definition of ρ yields the following inequality:

ρ ≤
A∑
k=1

∫ ũk

l̃k

[φ
′′
(x)]2

φ′(x)
dx =

∫ ∞
−∞

[φ
′′
(x)]2

φ′(x)
dx =

1√
2π

∫ ∞
−∞

x2e−
x2

2 dx. (26)

However the last expression in (26) is nothing but the second-order moment of a normal random

variable with zero mean and variance equal to 1, therefore:

ρ ≤ 1 (27)

and (24) is proved.

It follows from (27) and the analysis in the previous subsection that, as the splitting of the
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intervals becomes finer, the corresponding values of ρ form a monotonically increasing sequence

of numbers that are bounded above by 1. The monotonic convergence theorem (see, e.g., [11])

then implies that this sequence converges. In the appendix titled “The convergence of ρ” we

prove that

ρ→ 1 (28)

and thus

J → J0 (29)

as A→∞ and the quantization becomes infinitely fine.

For a finite A, however, in general J will be strictly less than J0. In the last part of this

subsection, we will derive a lower bound on J that can be used to determine how large the

difference (J0 − J ) can be. To that end, we will use the notation introduced in (22), and the

following result that is a consequence of the Cauchy-Schwarz inequality:

(
A∑
k=1

|ak|)2 = (
A∑
k=1

|ak|√
bk

√
bk)

2 ≤ (
A∑
k=1

a2k
bk
)(

A∑
k=1

bk) for {bk > 0}Ak=1

which implies that:

A∑
k=1

a2k
bk
≥ (

A∑
k=1

|ak|)2 for {bk > 0}Ak=1 and
A∑
k=1

bk = 1. (30)

Using the following definitions,

|ak| =
∣∣∣∣e− ũ2k

2 − e−
l̃2k
2

∣∣∣∣
bk = φ(ũk)− φ(l̃k) (31)

in (30) we obtain the inequality:

ρ =
1

2π

A∑
k=1

a2k
bk
≥ 1

2π

[
A∑
k=1

|ak|

]2
. (32)

Now, let d be such that sn ∈ [ld, ud) or equivalentlyl̃k ≤ 0 for k = 1, . . . , d

l̃k > 0 for k = d+ 1, . . . , A
(33)
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(the dependence of d on n is omitted to simplify the notation; this dependence on n will be

reinstated when it becomes important). Using the above definition of d it is straightforward to

check that:

η ,
1

2

A∑
k=1

|ak| =
1

2

[
(e−

ũ21
2 − e−

l̃21
2 ) + (e−

ũ22
2 − e−

l̃22
2 ) + · · ·+

∣∣∣∣e− ũ2d
2 − e−

l̃2d
2

∣∣∣∣
+(e−

l̃2d+1
2 − e−

ũ2d+1
2 ) + (e−

l̃2d+2
2 − e−

ũ2d+2
2 ) + · · ·+ (e−

l̃2A
2 − e−

ũ2A
2 )

]

=


e−

ũ2d
2 if ũ2d ≤ l̃2d

e−
l̃2d
2 if ũ2d > l̃2d.

(34)

Combining (32) and (34) yields the following lower bound on J :

J ≥ 2

π

N∑
n=1

η2(n)
∂sn
∂θ

∂sn

∂θT
. (35)

As already mentioned, sn lies in the interval
[
ld(n), ud(n)

)
. The smaller this interval the larger

η(n), and thus the larger the lower bound in (35).

SOLUTION: FIM FOR A BINARY QUANTIZER

D. Derivation of the FIM formula

For b = 1, we have l1 = −∞, u1 = l2 = 0, and u2 =∞. Consequently,

J1 =
1

2π

N∑
n=1

[
e−s

2
n

φ(−sn)
+

e−s
2
n

1− φ(−sn)

]
∂sn
∂θ

∂sn

∂θT
(36)

or equivalently

J1 =
1

2π

N∑
n=1

e−s
2
n

φ(sn)φ(−sn)
∂sn
∂θ

∂sn

∂θT
. (37)

A proof of (37) was presented in [7] but it relied on a specific choice of the set {zk} (namely

z1 = −1 and z2 = 1), while the above derivation holds for any choice of {zk}.

E. Upper and lower bounds on the FIM

The analysis in [5] of the special case of one sinusoid in noise found out that

J1 ≤
2

π
J0 (38)



10

where J0 is the standard FIM, see (23). We will show that (38) also holds for the general signal

model considered here, but before doing so we should like to determine if the upper bound

in (38) is achievable. To provide an answer to this question, we will consider quantizers with

time-varying thresholds, e.g., like in [6]. In other words, instead of comparing yn to zero, we

compare it to a known threshold denoted hn. The only modification of the expression of J1 that

this change of threshold entails is that the first factor in (37) should be replaced by:

ρ1 =
e−(sn−hn)

2

φ(sn − hn)φ(hn − sn)
. (39)

Clearly for hn = sn, we get ρ1 = 4 and thus the bound in (38) is attained. Consequently the

optimal threshold that minimizes the CRB = J−11 is the signal itself. While {sn} of course is

unknown (at least initially), this choice of threshold could be implemented sequentially in n as

more data are collected and better estimates of {sn} become available. However, we should keep

in mind the fact that generating a time-varying threshold {hn} will require DACs, which can be

as expensive and energy-hungry as the ADCs, and therefore may also be limited in the number

of bits they can use. It is an interesting question if a simple binary ADC combined with a DAC

that uses b bits to generate an approximation of the optimal threshold hn = ŝn (from the most

recent estimate ŝn of sn) yields better (or worse) performance than using only one b-bit ADC

(see the discussion at the end of this section and the numerical evaluation section for a partial

answer).

We now return to the inequality in (38) and present a proof of it based on elementary

arguments. Clearly (38) follows if we can show that:

e−s
2

φ(s)φ(−s)
≤ 4,∀s (40)

or, equivalently,

f(s) , 4φ(s)φ(−s)− e−s2 ≥ 0,∀s. (41)

For later use note that

f(−∞) = 0, f(0) = 0, and f(∞) = 0. (42)
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A simple calculation yields

f
′
(s) =

4√
2π

[
e−

s2

2 φ(−s)− e−
s2

2 φ(s)
]
+ 2se−s

2

= 2e−
s2

2 g(s) (43)

where

g(s) =
2√
2π

[φ(−s)− φ(s)] + se−
s2

2 . (44)

Clearly

f
′
(s) = 0⇔ g(s) = 0 and sign[f

′
(s)] = sign [g(s)] , ∀|s| <∞. (45)

Also,

g(−∞) =

√
2

π
, g(0) = 0, and g(∞) = −

√
2

π
. (46)

Next we note that

g
′
(s) =

2

2π

[
−e−

s2

2 − e−
s2

2

]
+ e−

s2

2 − s2e−
s2

2 = e−
s2

2

[
(1− 2

π
)− s2

]
. (47)

Let

s1 = −
√

1− 2/π, s2 =
√

1− 2/π (48)

denote the finite roots of (47) and observe that

g
′′
(si) = −2sie−

s2i
2 , (i = 1, 2) (49)

which implies that

s1 = min point of g(s), s2 = max point of g(s). (50)

Combining the facts shown above, see Fig. 1 and its caption, shows that f(s) has a minimum

at s = 0 (where f(0) = 0) and two maximum points, and therefore it satisfies (41). With this

observation, the proof is concluded.

At the end of this subsection, we present a lower bound on J1 and compare it with the lower

bound in (35) on J . In the case of a binary quantizer d in (33) is either 1 or 2 (depending on
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(b)

(a)

Fig. 1. (a) sign[g
′
(s)] (indicated by circles) is positive in [s1, s2] and negative elsewhere (see (47)). This observation along

with the fact that s1 is a minimum of g(s) and s2 a maximum (see (50)), and that g(s) takes on the values in (46) lead to
the plot of g(s) in this part of the figure. (b) Using the fact that sign[f

′
(s)] = sign[g(s)] (see (45)) we get the variation of

sign[f
′
(s)] indicated by squares. This variation along with the values of f(s) in (42) and the fact that f

′
(s) = 0⇔ g(s) = 0

for any |s| <∞ (see (45)) lead to the plot of f(s) in this subfigure, which shows that f(s) ≥ 0 ∀s.

whether sn < 0 or sn ≥ 0). In either case η in (34) is given by e−
s2n
2 and hence (35) reduces to:

J1 ≥
2

π

N∑
n=1

e−s
2
n
∂sn
∂θ

∂sn

∂θT
. (51)

The lower bound in (51) will typically be significantly smaller than that in (35), in agreement

with the fact that the estimation performance corresponding to a binary quantizer is inferior to

that of a quantizer using more bits (see (17)). On the other hand, if e−s2n in (51) is replaced

by e−(hn−sn)2 (as in (39)), with the threshold hn = ŝn generated using a DAC with b bits, then

the lower bounds in (35) and (51) become quite similar to one another. In such a case, if b is

sufficiently large (for example b ≥ 4) the two bounds are well approximated by 2
π
J0. For the

binary ADC, this matrix is also an upper bound, see (38), and hence it corresponds to the apex

performance of this quantizer. However, the FIM for an ADC with b > 1 can be larger than
2
π
J0, which means that the estimation performance afforded by a b-bit ADC can in principle be

better than that of a 1-bit ADC even if the latter uses an optimal threshold generated by a b-bit
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DAC. (see the next section for an illustration).

We remark in this context that a tighter upper bound on J than J ≤ J0 (similar to the bound

in (38)) is not available. Derivation of such a bound on J , which would generalize (38) to the

case of b > 1, is an open research problem. However, we must note that, while such a bound

would be theoretically interesting, its practical usefulness would be limited. Indeed, ρ is quite

close to one (and hence J to J0) even for relatively small values of b, such as b = 3 or b = 4

(for which max
{Ik}

ρ is 0.97 and 0.99, respectively), and for all practical purposes max
{Ik}

ρ becomes

indistinguishable from one as b increases. Consequently, an efficient and reliable algorithm for

computing the optimum {Ik} that maximize ρ appears to be a more useful practical contribution

than an upper bound on ρ (see the future paper [10] for such an algorithm).

NUMERICAL EXAMPLE

We consider a signal comprising two sinusoids:

sn(θ) = a1 sin(ω1n+ ϕ1) + a2 sin (ω2n+ ϕ2), n = 1, 2, . . . , N, (52)

where

N = 100, or 512,

θ =
[
a1 a2 ω1 ω2 ϕ1 ϕ2

]T
,

ω1 = 0.25, ω2 = 0.4,

a1 = 1, a2 = 1/r,

ϕ1 = π/3, ϕ2 = π/4. (53)

We vary r from 1 to 200. We also vary the noise variance to maintain the same SNR2 = 0 dB

for the weaker sinusoid, for all values of r, where:

SNR2 =
a22
2σ2

. (54)
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The intervals {Ik} are chosen as suggested in [12] for a Lloyd-Max quantizer. In the case of

b = 4, considered here, and for a signal with unit power these intervals are given by:

{ −∞,−2.401,−1.844,−1.437,−1.099,−0.7996,−0.5224,−0.2582,

0.0000, 0.2582, 0.5224, 0.7996, 1.099, 1.437, 1.844, 2.401,∞}.

Figs. 2 and 3 show four CRBs for ω1 and ω2, see the explanation in the figure’s caption.

The standard CRB for ω1, J−10 (ω1), decreases with r because σ2 decreases as r increases (as

explained above) and hence SNR1 increases with r. For the second sinusoid, J−10 (ω2) is constant

as r varies because SNR2 is the same for all values of r.

The 1-bit CRB, J−11 , is the largest of the considered bounds, which is the price paid for the

simplicity of the binary quantizer. Moreover the degradation of J−11 as r increases is significant

and can reach unacceptable levels if N is not large enough. Both J−14 and J−114 are much smaller

than J−11 , and both degrade more gracefully in the case of ω2, as r increases, and remain relatively

close to J−10 . As one can see from Figs. 2 and 3, typically, J−14 is not far from than J−114 , despite

the fact that the latter is based on information about the signal.

The bowl-shaped plot of J−11 (ω1) in Figs. 2(a) and 3(a) can be explained as follows. The

second sinusoid acts as (unknown) jitter on the first sinusoid and it is a well-known fact that

jitter can improve the accuracy of parameter estimation from binary data. The optimal power of

the jitter (or the corresponding value of r), which minimizes J−11 (ω1), is problem dependent. A

similar effect occurs due to the noise (we remind the reader that the noise variance decreases as r

increases), which acts as dither on the signal. This jittering/dithering effect causes the decrease of

the J−11 (ω1) in both Figs. 2(a) and 3(a), but as r increases the said effect vanishes and J−11 (ω1)

starts to increase. If we continue to increase r beyond the range in the figure, J−11 (ω1) increases

without bound, a fact which indicates that parameter identifiability has been lost.

Note that the curves of J−114 (ω1) and J−14 (ω1) are much more stable for r in the range

considered in the figure. However if r is increased beyond a certain level (admittedly too large

for being of practical interest) then J−14 (ω1) also starts to increase and eventually this scheme

also loses parameter identifiability. In contrast to this in our experiments J−114 (ω1) has continued

to decrease even when we let r take on quite large values.

In sum, the main findings of this numerical evaluation are:

• a 4-bit quantizer appears to offer satisfactory estimation performance in a wide range of
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situations, including cases with signal components of rather different powers (but excluding

cases in which the signal is almost noise-free, a situation that obviously is unlikely to occur

in practical applications).

• the use of 1-bit ADC along with a 4-bit DAC for threshold generation does not appear

to offer any advantage, either in hardware or estimation performance, over employing a

single 4-bit ADC, even when the threshold generation block had full information about the

signal (unless there is very little noise in the data, which is a case of theoretical rather than

practical interest).

• when a 1-bit quantizer is the only feasible option, the user should keep in mind that the

estimation performance offered by this quantizer can degrade very quickly as the dynamic

range of the signal components increases, unless N is sufficiently large. A study of the

CRB using the formulas presented in this lecture note can offer guidelines for the cases in

which the use of a 1-bit quantizer can be a viable solution.
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(a) CRB(ω1), N = 100
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(b) CRB(ω2), N = 100

Fig. 2. CRB versus r for ω1 (a) and ω2 (b). J−1
0 = standard CRB (for unquantized data), J−1

1 =CRB for 1-bit ADC, J−1
4 =CRB

for 4-bit ADC, and J−1
14 =CRB for 1-bit ADC using the optimal threshold hn = sn generated via a 4-bit DAC. (N = 100).
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(a) CRB(ω1), N = 512
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(b) CRB(ω2), N = 512

Fig. 3. CRB versus r for ω1 (a) and ω2 (b). J−1
0 = standard CRB (for unquantized data), J−1

1 =CRB for 1-bit ADC, J−1
4 =CRB

for 4-bit ADC, and J−1
14 =CRB for 1-bit ADC using the optimal threshold hn = sn generated via a 4-bit DAC. (N = 512).

WHAT WE HAVE LEARNED

The clear derivation and simple form of the CRB expression for signal parameter estimation

from quantized data, presented in this lecture note, will hopefully encourage the more frequent

use of the CRB in applications where coarse-quantization ADCs are the only feasible choice, such

as in ultra-wide band radar and communication systems or in large sensor networks. Proving

that the said CRB monotonically decreases and in the limit converges to the standard CRB

(for the unquantized data) as the quantization becomes finer and finer can be viewed as an

interesting exercise in statistical signal processing and calculus; and so can the analysis leading

to the upper bound on the CRB as well as the achievable lower bound on the CRB associated

with 1-bit ADCs. The discussion on the optimal threshold in applications using 1-bit ADCs,

as well as the performance comparison between a system employing a b-bit ADC and another

system using a 1-bit ADC in combination with a b-bit DAC (for threshold generation), also are

of potential interest for applications.

Finally, this lecture note has illustrated the fact that, as the number of bits of the quantizers

decreases, the estimation accuracy for the small components degrades much more than for the

large components of the signal (as intuitively expected: when A = 2b is small, the few available

intervals of the quantizer are normally chosen sufficiently large to cover the variation of the

large components in the signal, and hence most information about the small components is lost

in the quantized data. ). This dynamic range problem also appears to be practically relevant and

worth of further study.
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APPENDIX

A. The convergence of ρ

We will use the following notation:

µk = φ(l̃k), νk = φ(ũk), (55)

and note that

0 = µ1 < ν1 . . . µA < νA = 1
(
i.e., [0, 1) = tAk=1[µk, νk)

)
. (56)

Since φ(t) is a strictly monotonically increasing function, its inverse function φ−1(t) exists and

therefore

l̃k = φ−1(µk), ũk = φ−1(νk). (57)

Using the above notation, ρ can be written as:

ρ =
A∑
k=1

[
φ
′
(ũk)− φ

′
(l̃k)
]2

φ(ũk)− φ(l̃k)

=
A∑
k=1

[
φ
′
(φ−1(νk))− φ

′
(φ−1(µk))

νk − µk

]2
· (νk − µk). (58)

Next, we define a function ψ : [0, 1]→ R as follows:

ψ(t) = φ
′ (
φ−1(t)

)
, (59)

and rewrite (58) as

ρ =
A∑
k=1

[
ψ(νk)− ψ(µk)

νk − µk

]2
· (νk − µk). (60)

Making use of Lagrange mean value theorem yields:

ρ =
A∑
k=1

[ψ
′
(ζk)]

2 · (νk − µk), ζk ∈ (µk, νk)

→
∫ 1

0

[ψ
′
(t)]2 dt, (as A→∞ and max

1≤k≤A
{νk − µk} → 0). (61)

To evaluate the integral above, we use the following facts:

(
φ−1
)′
(t) =

1

φ′ (φ−1(t))
, (62)
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and

ψ
′
(t) = φ

′′ (
φ−1(t)

)
· (φ−1)′(t) (the chain rule)

=
φ
′′
(φ−1(t))

φ′ (φ−1(t))
. (63)

Consider the following change of variable:

x = φ−1(t)⇔ t = φ(x) (64)

(hence t|10 ⇒ x|∞−∞ and dt = φ
′
(x)dx). Using (63) we can rewrite (61) as:

ρ→
∫ ∞
−∞

[
φ
′′
(x)

φ′(x)

]2
φ
′
(x)dx =

∫ ∞
−∞

[φ
′′
(x)]2

φ′(x)
dx. (65)

Making use of the result in (26), we get

ρ→ 1√
2π

∫ ∞
−∞

x2e−
x2

2 dx = 1, (66)

and the proof of (28) is finished.

B. Extensions to general distributions

The FIM formula in (15),

J =
N∑
n=1

[
A∑
k=1

[
φ
′
(uk − sn)− φ

′
(lk − sn)

]2
φ(uk − sn)− φ(lk − sn)

]
∂sn
∂θ

∂sn

∂θT
, (67)

where now φ(x) denotes a general (differentiable) cdf, holds for any distribution of noise (indeed,

only the specific expression for FIM in (16) relies on the normal noise assumption; all the other

calculations in the proof of (15) are valid for a general cdf).

The inequality in (17), namely

J̃ ≥ J (68)

also holds in general as its derivation did not rely on any distributional assumption.

The standard CRB (for unquantized data), which generalizes (23) to an arbitrary distribution

(with zero mean and finite variance), is given by (see, e.g., [13]):

J0 = ρ0

N∑
n=1

∂sn
∂θ

∂sn

∂θT
(69)
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where

ρ0 =

∫ ∞
−∞

[φ
′′
(x)]2

φ′(x)
dx (70)

and where it was implicitly assumed that φ′(x) > 0 for any |x| < ∞. The result that ρ ≤ ρ0,

and therefore

J ≤ J0 (71)

also holds in the present general case, as can be seen directly from (26). An interesting fact in

this context is that ρ0 in (70) is lower bounded by 1 (see [13]), which means that the normal

distribution has the smallest matrix J0 (in the order of PSD matrices) in the class of standard

FIMs. Note that this is not true for quantized data: for a given set of intervals {Ik} the matrix

J associated with the normal distribution is not necessarily the smallest FIM (indeed we have

verified numerically that the FIM for the Laplace distribution, for example, may be smaller for

some intervals {Ik}).

Finally we show that the convergence result (28), or equivalently (29), continues to hold in

the general case. To that end we use the result in (65), whose derivation did not rely on the

normal distribution assumption,

ρ→
∫ ∞
−∞

[φ
′′
(x)]2

φ′(x)
dx = ρ0 (72)

which proves that J converges to J0.
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