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Monte-Carlo Sampling Approach to Model

Selection: A Primer

Petre Stoica, Fellow, IEEE, Xiaolei Shang and Yuanbo Cheng

INTRODUCTION AND RELEVANCE

Any data modeling exercise has two main components: parameter estimation and model

selection. The latter will be the topic of this lecture note. More concretely we will introduce

several Monte-Carlo sampling-based rules for model selection using the maximum a posteriori

(MAP) approach. Model selection problems are omnipresent in signal processing applications:

examples include selecting the order of an autoregressive predictor, the length of the impulse

response of a communication channel, the number of source signals impinging on an array of

sensors, the order of a polynomial trend, the number of components of a NMR signal, and so

on.

We will use the following main notation and definitions in this lecture note (which we prefer

to collect in one place so that they can be easily accessed by the reader):

y ∈ RN=observed data.

{Mn} =the set of models considered for y (n = 1, . . . , n̄ < ∞). We do not assume that any

of these models is an exact description of the system (or mechanism) that generated y,

but usually one or several of them will be at least a good approximation of that system.
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θn ∈ Rdn= parameter vector of model Mn.

p(·) denotes a probability density function (pdf).

prob(·) denotes the probability of a random variable/event.

θ̂n = argmaxθn
p(y|Mn, θn)= the maximum likelihood estimate (MLE) of θn.

θ∗
n = lim

N→∞
θ̂n (which usually exists under weak conditions). By the consistency property of MLE,

θ∗
n is the true parameter vector when Mn contains the data generating mechanism.

δ(x) = Dirac delta (unit impulse at x = 0).

δi,j=Kronecker delta (=1 if i = j and 0 otherwise).

AIC=Akaike information criterion.

BIC=Bayesian information criterion.

MAP=Maximum a posteriori.

Essentially what we will discuss in this lecture note is how to use the MAP approach along with

y and {θ̂n} to select a model Mn̂ out of the set {Mn}. When the models {Mn} are completely

specified (i.e. θn in each of them is known), the MAP rule consists of choosing the model that

maximizes the following conditional/posterior pdf:

max
n

p(Mn|y) (1)

Because

p(Mn|y) = p(y|Mn)p(Mn)/p(y) (2)

and usually p(Mn) = 1/n̄ (unless we know from apriori information that some models are more

preferable than others) we have:

p(Mn|y) ∼ p(y|Mn) (3)

and hence (1) becomes

max
n

p(y|Mn) (4)

(see, e.g., [1][2]). The above MAP rule maximizes the total (or average) probability of correct
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selection (or detection) (see the cited references) and therefore it is optimal. The problem is

that in most applications it cannot be used as it stands because, while the form/structure of the

models {Mn} is known, the parameter vectors {θn} are unknown. In fact, optimal selection

rules exist only in very special cases (see, for example, the discussion on p356 in [3]). Therefore

in most applications we should be content with using a sub-optimal selection rule that hopefully

has good performance.

There are a large number of methods that are trying to bypass the difficulty caused by the fact

that {Mn} are not completely specified. Using p(y|Mn, θ̂n) instead of p(y|Mn) in (4) is not a

good idea: in particular, for nested models (for which Mn1
⊂ Mn2

if dn1
< dn2

), the sequence

of likelihoods {p(y|Mn, θ̂n)} increases with dn and hence the most complex model (which has

the largest number of parameters) will always be selected. If {θ∗
n} were known, a much better

choice would be to compare

p(y|Mn, θ
∗
n), n = 1, . . . , n̄ (5)

but {θ∗
n} are almost never known in practical applications.

A successful class of rules is based on penalising the model complexity (basically, its number

of parameters {dn}) by adding a penalty term to the negative log-likelihood:

− 2 ln p(y|Mn, θ̂n) + γdn (6)

Different values of γ are obtained from different types of statistical or information theory

considerations: for example, γ = 2 for AIC and γ = lnN for BIC. AIC is minimax optimal and

BIC is consistent, but as alluded in the discussion of [3] mentioned above neither is optimal (in

the sense of maximizing the probability of selection) and therefore they both can in principle

be outperformed by other rules.

Remark: The form of the BIC rule in (6) (with γ = lnN) is the one most commonly used

in applications, but it is (asymptotically) valid only in the cases in which the variances of the

estimation errors of elements of θ̂n all go to zero as 1/N , as N → ∞. If the variances go to

zero at different rates, which is the case for some models, then this fact should be taken into

account as it leads to a different penalty term for BIC than the one in (6) (see e.g. [2] and [4]
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for details on this aspect).

In an attempt to find better rules researchers have tried to approximate p(y|Mn), when {θn}
are unknown, using a prior pdf p(θn|Mn) for the parameter vector:

p(y|Mn) =

∫

Dn

p(y|Mn, θn)p(θn|Mn)dθn (7)

where Dn ⊂ Rdn denotes the support domain. To make use of (7) we need to solve two main

problems:

A) Select p(θn|Mn) and implicitly Dn

B) Evaluate the integral in (7)

Concerning A, in some applications, there is information about θn that allows the formulation

of a prior pdf. When such information does exist, it must be used: for example this information

could emphasize a subset of Dn on which p(y|Mn, θn) takes on comparatively small values -

the corresponding choice of p(θn|Mn) would in such a case avoid the data overfitting associated

with too complex models (see, e.g., [5]). However this type of prior information is rarely available

in signal processing applications in which most often the only information that we have about the

model parameters is obtained aposteriori after processing the data to get {θ̂n}. This is the case

we will consider here: we will choose both Dn and p(θn|Mn) based on θ̂n and its properties,

see the next section. Because p(θn|Mn) then will depend on the data, the corresponding MAP

approach will be an empirical Bayesian methodology.

Regarding B, there is a huge number of methods that can be employed to evaluate integrals

of the above type (see (7)) using direct basic sampling, nested sampling, bridge sampling, path

sampling, layered importance sampling, and so forth (see, e.g., [5]). We will consider direct

sampling, either from the prior pdf or from an importance (also called proposal) pdf, with the

goal of assessing what such simple sampling methods have to offer. Our main focus will be on

A rather than on B. By keeping the discussion on B as simple as possible our hope is that more

readers will understand the basics of Monte-Carlo sampling and will feel motivated to deepen

their knowledge beyond the direct sampling methods discussed in this lecture note.
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PREREQUISITES

While we will do our best to make this lecture note as self-contained as possible, basic

knowledge of statistical signal processing as well as estimation and detection theory will be

beneficial for fully understanding it.

MODEL SELECTION RULES

The main idea of all the rules presented in what follows is simple: in a nutshell we will try to

get an estimate p̂(y|Mn) of the posterior pdf in (7) and then choose the model that maximizes

it:

n̂ = argmax
n

p̂(y|Mn) (8)

Let

θ̃n = argmin
θn

p(y|Mn, θn)

Then we clearly have (see (7)):

p(y|Mn, θ̃n) ≤ p(y|Mn) ≤ p(y|Mn, θ̂n) (9)

The lower and upper bounds in (9) correspond to the following priors: δ(θn− θ̃n) and δ(θ− θ̂n),

respectively, with the latter inducing no penalization at all on the likelihood p(y|Mn, θ̂n) and

the former causing the maximum possible penalization. Any other choice of p(θn|Mn) will

penalize the model’s complexity in between these extremes. The choice of the prior thus is quite

important as it can significantly affect the final result of the model choice based on (7) (see,

e.g., [5] for more details on this aspect).

Consider the following “concentration ellipsoid”:

Cn = {θn | (θn − θ̂n)
TJn(θn − θ̂n) ≤ µn} (10)

where Jn is the sample Fisher information matrix (FIM) associated with Mn:

Jn = −∂2 ln p(y|Mn, θn)

∂θn∂θ
T
n

|θn=θ̂n
(11)
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(assumed to be nonsingular) and

µn = 6 + 2dn (12)

(other choices of µn are also possible, but the above one worked well in our numerical experi-

ments). When Mn is a good approximation of the data generating mechanism, θ∗
n will belong

to Cn with a probability of about 0.99. This follows from the fact that in such a case

(θ̂n − θ∗
n) ∼ N (0,J−1

n ) (13)

(see, e.g., [6][7]) and hence

(θ̂n − θ∗
n)

TJn(θ̂n − θ∗
n) ∼ χ2(dn) (14)

The probability of θ∗
n ∈ Cn can then be obtained from tables of the χ2 distribution (viewing

θ∗
n as a “random variable” conditioned on θ̂n, which is given): for the choice of µn in (12) this

probability varies from 0.995 for dn = 1 to 0.996 for dn = 10.

Remark: When Mn is a poor approximation of the system that generated y, in principle Jn

in (10) should be replaced with the matrix given by the so-called “sandwich formula” ([6][8]).

However, to keep the discussion here as simple as possible we will use Jn in what follows.

The prior pdf’s we will consider are presented in the following subsections.

UE (Uniform prior, Ellipsoid set)

We let θn be uniformly distributed on Cn:

p(θn|Mn) =







1/V (Cn) if θ ∈ Cn

0 else

(15)

For later use we note that the volume of Cn is given by

V (Cn) = (µn)
dn/2Vdn/|Jn|1/2 (16)

where Vdn is the volume of the unit ball in dn dimensions (which can be easily computed

recursively in dn).
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Let {θm
n } (for m = 1, . . . ,Mn) denote Mn samples drawn from the uniform pdf in (15). We

can generate {θm
n } in the box Bn defined in Lemma 1 in the Appendix (see equation (33) there)

and retain the vectors that lie in Cn: according to Lemma 2 in the Appendix the so-obtained

{θm
n } have a uniform distribution on Cn. Using {θm

n } we can obtain an unbiased estimate of

the posterior pdf in (7) as follows:

p̂UE(y|Mn) =
1

Mn

Mn∑

m=1

p(y|Mn, θ
m
n ) (17)

It is our experience that a reasonably small value of Mn, such as Mn = 1000, yields accurate

results in many cases, and therefore choosing a much larger value for Mn is often unnecessary

(however see the discussion in the next paragraph).

While (17) is appealing because it is one of the most direct sampling-based unbiased estimates

of p(y|Mn), its variance may be large especially if the variation of p(y|Mn, θn) over Cn is

significant (see the section titled “Variance analysis of Monte-Carlo sampling” in the Appendix;

in such a case choosing a larger value for M than M = 1000 may be justified). A potentially

more accurate unbiased estimate of p(y|Mn) can be obtained using importance sampling as

described next.

UEG (Uniform prior, Ellipsoid set, Gaussian proposal)

As implied by the discussion above, the variance of (17) would be comparatively small if the

pdf from which {θm
n } are drawn was proportional to p(y|Mn, θn) over Cn (see, e.g. [9][10]).

Here we derive a proposal pdf (a term used in importance sampling, see the cited work) whose

variation, at least locally around θ̂n, mimics the variation of p(y|Mn, θn).

First note that (for N ≫ 1),

ln p(y|Mn, θn) ≈ ln p(y|Mn, θ̂n)−
1

2
(θn − θ̂n)

TJn(θ − θ̂n) (18)

and therefore

p(y|Mn, θn) ≈ p(y|Mn, θ̂n)e
− 1

2
(θn−θ̂n)TJn(θ−θ̂n) (19)
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The following Gaussian pdf,

g(θn) =
|Jn|1/2
(2π)dn/2

e−
1

2
(θn−θ̂n)TJn(θ−θ̂n) (20)

is proportional to the (local) approximation of p(y|Mn, θn) in (19). We will use the above

g(θn) to estimate (17), with the uniform prior pdf in (15), employing the importance sampling

approach. This approach is based on the simple observation that, for p(θn|Mn) in (15),

∫

Dn

p(y|Mn, θn)p(θn|Mn)dθn =
1

V (Cn)

∫

Cn

p(y|Mn, θn)

g(θn)
g(θn)dθn (21)

It follows from the above equation that an unbiased estimate of p(y|Mn) is given by:

p̂UEG(y|Mn) =
ρn

MnV (Cn)

Mn∑

m=1

p(y|Mn, θ
m
n )

g(θm
n )

(22)

where {θm
n } are drawn from (20) and used in (22) only if they belong to Cn: θm

n ∈ Cn. The

factor ρn in (22) is such that the truncated Gaussian function







1

ρn
g(θn) if θn ∈ Cn

0 else

(23)

is a valid pdf. In other words, ρn is a normalizing factor given by

ρn =

∫

Cn

g(θn)dθn (24)

Note that ρn is the probability of a Gaussian random variable drawn from (20) to belong to

Cn, or equivalently, the probability of a χ2(dn) random variable to be less than µn. The latter

probability, and hence ρn, can be obtained from tables of the χ2 distribution (as already indicated

above). Also note that the parameter vectors {θm
n }, generated as explained above, are distributed

according to (23) as they should, which follows from the acceptance-rejection theorem (see e.g.

[11] and also the section titled “The acceptance and rejection algorithm” in the Appendix).

We should stress the fact that the UEG approach estimates the same quantity as the UE

approach (i.e. (7) with the same uniform prior pdf). But, as indicated above, UEG can be

expected to be more accurate. In the next subsection we will describe a different choice of the
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prior pdf, inspired by the g(θn) in (20). We note in passing that the said g(θn) is the asymptotic

distribution of the maximum likelihood estimate θ̂n (under the assumption that θn is the true

parameter vector).

GE (Gaussian prior, Ellipsoid set)

Using (23) as the prior pdf leads to the following unbiased estimate of the p(y|Mn) in (7):

p̂GE(y|Mn) =
1

Mn

Mn∑

m=1

p(y|Mn, θ
m
n ) (25)

where {θm
n } are generated exactly as in UEG. As explained above by virtue of the acceptance-

rejection theorem, the distribution of {θm
n } is given by (23) as desired.

Note that GE penalizes the model complexity less than UE and UEG because parameter vectors

in (7), which are far from θ̂n, receive a smaller weight in GE than in the other two methods. Also,

it is interesting to observe that the estimates in (22) and (25) have rather different expressions

in spite of the fact that the parameter samples {θm
n } are drawn from the same distribution in

both equations (the reason for this significantly different expressions is that (22) is based on an

uniform prior whereas (25) uses a truncated Gaussian prior).

UB (Uniform prior, Box set)

In the process of generating the vectors {θm
n } for UE we discarded any sample that did not

belong to Cn. To avoid wasting those samples, we can extend Cn to the box Bn (see (33) in the

Appendix) and consequently consider the following uniform distribution as the prior pdf:

p(θn|Mn) =







1

V (Bn)
if θn ∈ Bn

0 else

(26)

Using (26) in (7) leads to the following unbiased estimate of p(y|Mn):

p̂UB(y|Mn) =
1

Mn

Mn∑

m=1

p(y|Mn, θ
m
n ) (27)
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where {θm
n } are drawn from (26). Because it uses a larger set than Cn, UB penalizes the model

complexity more heavily than both UE and UEG as well as GE.

Finally we remark on the fact that all four methods presented above require the evaluation

of the likelihood function p(y|Mn, θn), which can take on rather small values (especially for

N ≫ 1). To avoid possible numerical problems we can evaluate this function as:

p(y|Mn, θn) = eln p(y|Mn,θ̂n)eln p(y|Mn,θn)−ln p(y|Mn,θ̂n) (28)

or use symbolic computations in MATLAB.

NUMERICAL PERFORMANCE STUDY

As mentioned in the previous section, GE penalizes model complexity the least and UB the

most with UE (and its close relative UEG) in between. We have found out empirically that UE,

UEG and GE have a tendency to select non-parsimonious models in many cases, a fact which

renders them less competitive than UB. Consequently, in this section, we will focus on the UB

rule whose performance for model selection will be compared to that of AIC and BIC.

We will consider polynomial models described by the equation:

Mn : y(t) =

n∑

i=1

aixi(t) + e(t) t = 1, . . . , N (29)

where

xi(t) = [−5 + 10(t− 1)/(N − 1)]i−1
(30)

and e(t) is assumed to be a Gaussian white noise with zero mean and variance denoted σ2. The

data are generated with (29) for n = 4, σ2 = 1 and a1, a2 = 0.1, a3 = −0.3 and a4 = 0.4.

For the linear regression model in (29), the likelihood function has the following simple

expression (here y =
[

y(1), . . . , y(N)
]T

):

p(y|Mn, θn) =
1

(2π)N/2σN
e−

1

2σ2

∑N
t=1[y(t)−ϕT (t)θn]

2
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where

θn =
[

a1, . . . , an

]T

ϕ(t) =
[

x1(t), . . . , xn(t)
]T

Furthermore, the MLE of θn and the corresponding FIM are given by:

θ̂n =

[
N∑

t=1

ϕ(t)ϕT (t)

]−1

·
[

N∑

t=1

ϕ(t)y(t)

]

Jn =
1

σ2

[
N∑

t=1

ϕ(t)ϕT (t)

]

(31)

(we assume for the sake of simplicity that σ2 is known, see e.g. [6][7]). We use 1000 replications

of the noise sequence to estimate the frequencies of the selected orders n̂ ∈ [1, 6] by AIC, BIC

and UB (with M = 1000). Figure 1 shows the histograms of the orders selected by these three
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Fig. 1. Frequencies of selected orders n̂ ∈ [1, 6] for N = 100.

rules. In this case UB is slightly better than BIC, which is better than AIC.

In Fig. 2 we show the empirical probabilities of correct selection (i.e. n̂ = 4) versus the

number of data samples, N . The ranking of the three rules is similar to that in Fig. 1. In the

case of BIC and UB the probability of correct selection approaches 1 as N increases, whereas

for AIC this probability reaches a ceiling of about 0.8 (it is a well-known fact that asymptotically
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Fig. 2. Estimated probability of correct selection versus N .

AIC has a probability of correct selection only slightly larger than 0.8).

For obvious reasons using sequences given by a single data generating mechanism for com-

paring model selection rules can lead to biased conclusions. A way of preventing this from

happening in the current case is to average the results over many polynomials. This is exactly

what we will do in the remaining part of this section. We now use (29) to generate data sequences

y of length N , for orders n = 1, . . . , 6, m = 100 polynomial coefficient vectors θn uniformly

drawn from the cube [−0.5, 0.5]n and r = 1000 noise realizations. In this way, we will obtain

6 · 105 data sets from which we can calculate the average probability of selection as follows:

1

6 · 105
6∑

n=1

100∑

m=1

1000∑

r=1

δn,n̂n,m,r
(32)

where n̂ denotes the selected order (which is a function of n, m and r). In Fig. 3 we plot

(32) versus N . The advantage of UB over BIC (for N up to about 150) and especially AIC

(for all values of N) is similar to what we observed in Fig. 2. However, the convergence to

asymptotics (as N increases) is slower than in Fig. 2. This is likely due to a higher probability

of underestimating the true order than in Fig. 2: indeed in the present case some of the generated

coefficients an can be rather close to zero and therefore the n-th order polynomial that was used

to generate the data can be well approximated by an (n− 1)-th order polynomial. We also note

that in the case of Fig. 3 we had to use a larger M than in Fig. 2, as M = 1000 (used to obtain
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Fig. 3. Estimated average probability of correct selection versus N .

Figs. 1 and 2) turned out to be too small for the runs in Fig. 3 with polynomials of order 5 and

6.

WHAT WE HAVE LEARNED

AIC and BIC are the rules most commonly used in the data modeling applications in which

the parameters are estimated via the maximum likelihood method. These workhorses of model

selection have several distinct advantages: they are easy to understand, easy to code and require a

negligible amount of additional computing time. On the other hand, their theoretical foundations

and derivations from statistical or information theory principles are somewhat complicated, but

that aspect is not of paramount importance to the practitioners who have used these rules in a

myriad of applications and have noticed their satisfactory performance. There have been many

attempts to propose alternative rules, some of them quite ingenious, but none has received the

kind of significant attention that AIC and BIC have.

The Monte-Carlo sampling approach to model selection discussed in this lecture note is also

easy to understand and easy to code, but it requires longer computation times than AIC and BIC

do. However, nowadays the mentioned difference in computation times is no longer a decisive

factor. Using the UB rule as an example, while its running time can be one or even two orders

of magnitude longer than that of BIC or AIC, its use on a standard laptop required less than
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1 sec in our numerical experiments with M = 1000 and N = 1000, which makes it perfectly

usable in many applications. From a theoretical standpoint, the derivation of UB (or the other

MAP-type rules discussed in this lecture note) is quite simple, which is a potential advantage

over AIC and BIC. However, the most important advantage of UB lies in the fact that it can

perform better than AIC and BIC, or at least not significantly worse than the best of the latter

two rules.

A goal of this lecture note was to demystify the Monte-Carlo sampling approach to model

selection, for those readers less familiar with it, which in its basic form is quite simple as it

was shown in the previous sections. Another goal was to discuss the main choices a user of

this approach has to make. These choices concern the prior distribution and its support domain,

and they are important as they can make or break a model selection rule. Our hope is that the

readers of this lecture note will feel motivated to deepen their knowledge on the subject matter

and also get new ideas for model selection rules with enhanced performance.

APPENDIX

Lemma 1. The smallest box that encompasses C in (10) is given by

B =

d∏

k=1

[

θ̂k −
√

µ(J−1)kk, θ̂k +

√

µ(J−1)kk

]

(33)

where θ̂k is the k-th component of θ̂, and (J−1)kk is the k-th entry on the diagonal of J−1 (note

that here we omit the sub-index n of the different variables to simplify the notation).

Proof. Let

ek =

[

0, . . . , 0, 1
︸ ︷︷ ︸

k

, 0, . . . , 0

]T

(34)

We want to determine the points on the surface of C that are at maximum distance from θ̂ along

the axes:

max
θ

|eT
k (θ − θ̂)| s.t. (θ − θ̂)TJ(θ − θ̂) = µ, (k = 1, . . . , d) (35)
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A simple use of the Cauchy–Schwarz inequality yields:

|eT
k (θ − θ̂)|2 = |eT

kJ
−1/2J1/2(θ − θ̂)|2 ≤ (eT

kJ
−1ek)(θ − θ̂)TJ(θ − θ̂) = µ(J−1)kk (36)

where the equality holds if

θk − θ̂k = ±
√

µ(J−1)kk (37)

This observation concludes the proof.

Lemma 2. Let θ have a uniform distribution on B, and let C ⊂ B (here B and C can be

arbitrary sets). Then θ|θ ∈ C (i.e. the points of the distribution of θ that fall in C) has a uniform

distribution on C.

Proof. θ has a uniform distribution on B if and only if, for any subset C of B,

prob(θ ∈ C) =
V (C)

V (B)
(38)

To show that θ|θ ∈ C has a uniform distribution on C, we need to prove that for any subset S

of C we have:

prob(θ ∈ S|θ ∈ C) =
V (S)

V (C)
(39)

However:

prob(θ ∈ S|θ ∈ C) =
prob(θ ∈ S ∩ θ ∈ C)

prob(θ ∈ C)

=
prob(θ ∈ S)

prob(θ ∈ C)
=

V (S)

V (B)
/
V (C)

V (B)
=

V (S)

V (C)
(40)

and the proof is finished.

Remark: the above results are known but we have included proofs of them to make this paper

as self-contained as possible.

The acceptance and rejection algorithm: Let f(θ), θ ∈ Rd, be a pdf from which we want

to sample, and let g(θ) be another pdf from which samples can be generated more easily than

from f(θ), and which satisfies

f(θ)

cg(θ)
≤ 1 for a constant c ≥ 1 and ∀θ (g(θ) 6= 0) (41)
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Then the samples θ generated by the following two-step algorithm have the desired pdf f(θ)

(see, e.g., [11]):

• Generate θ from g(θ) and u from a uniform distribution on (0, 1).

• If u ≤ f(θ)/(cg(θ)) then accept θ, else reject θ and repeat the two steps.

The manners in which {θm} were generated in both UE and UEG (as well as GE) are special

cases of the above algorithm. In the case of UE,

f(θ) =







1/V (C) if θ ∈ C

0 else

(42)

g(θ) =







1/V (B) if θ ∈ B

0 else

(43)

and f(θ)/(cg(θ)) = 1 for c = V (B)/V (C), ∀θ ∈ C (and =0 for θ ∈ B \ C). In the case of

UEG (and GE),

f(θ) = (23)

g(θ) = (20)

and we also have f(θ)/(cg(θ)) = 1 for c = 1/ρ and ∀θ ∈ C (and =0 for θ /∈ C). In both cases

all θ vectors that fall in C are accepted, and the other θ vectors that are not in C are rejected.

(we have omitted the sub-index n throughout this discussion to simplify the notation.)

Variance analysis of Monte-Carlo sampling: To simplify the notation we omit the index n of

different variables and write p(y|M, θ) and p(θ|M) as p(y|θ) and p(θ). We also define (see

(7) and (17)):

p =

∫

D

p(y|θ)p(θ)dθ D ⊂ Rd (44)

p̂ =
1

M

M∑

m=1

p(y|θm) {θm} = independently drawn from p(θ).
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First we show that p̂ is an unbiased estimate of p:

E [p̂] =
1

M

M∑

m=1

E [p(y|θm)] =
1

M

M∑

m=1

∫

D

p(y|θ)p(θ)dθ = p. (45)

Next we derive a formula for the variance of p̂:

var(p̂) =E [p̂− p]2 = E

{

1

M

M∑

m=1

[p(y|θm)− p]

}2

=
1

M2

M∑

m=1

M∑

m̄=1

E [p(y|θm)− p]
[
p(y|θm̄)− p

]

=
1

M2

M∑

m=1

E [p(y|θm)− p]2 =
1

M2

M∑

m=1

[
E [p(y|θm)]2 − p2

]

=
1

M

[∫

D

p2(y|θ)p(θ)dθ − p2
]

(46)

where we used the fact that the random variables {p(y|θm)− p} are independent and have zero

mean. Note from (46) that

Mvar(p̂) =

∫

D

[

p
√

p(θ)− p(y|θ)
√

p(θ)
]2

dθ. (47)

The above equation shows that the ideal case of var(p̂) = 0 is achieved if and only if

p(y|θ) = const. (48)

This observation lies at the basis of the importance sampling method described in the Section

titled “UEG”.

From (46) we also see that:

var(p̂) ≤ 1

M

∫

D

p2(y|θ)p(θ)dθ ≤ p2(y|θ̂)
M

(49)

where θ̂ is the MLE of θ. The numerator in (49) is typically much smaller than one (especially

for large values of N) and consequently var(p̂) may take on quite acceptable values in many

cases even for reasonably small values of M such as M = 1000. However when we compare

model structures with one another, the differences between the corresponding values of p in (44)

can sometimes be rather small (especially for large values of d) and in such cases much larger

values of M than M = 1000 may be needed to reduce the estimation errors in p̂ under the level
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of the aforementioned differences.

It follows from (49) that a direct way of reducing the var is by increasing M (as expected).

A theoretically more interesting way called ”stratified sampling”, which in particular applies to

UB, is described in the next subsection.

Stratified sampling: Split D in K non-overlapping sub-sets {Dk}:

∪K
k=1 Dk = D (50)

Let V and Vk denote the volumes of D and Dk, respectively, and let ρk = Vk/V . Note that:

K∑

k=1

ρk = 1 (51)

Finally, let pk(θ) denote the uniform distribution on Dk:

pk(θ) =







1/Vk for θ ∈ Dk

0 else

(52)

We will use the same notation as in the previous subsection of the Appendix, and make use of

the variance result proved there.

The quantity we want to estimate is p, which can be rewritten as:

p =

∫

D

p(y|θ)p(θ)dθ =

K∑

k=1

∫

Dk

p(y|θ)p(θ)dθ =

K∑

k=1

ρkpk (53)

where p(θ) denotes the uniform pdf on D, and

pk =

∫

Dk

p(y|θ)pk(θ)dθ (54)

The stratified sampling method estimates pk (for k = 1, . . . , K) using ρkM samples (assuming,

for simplicity, that ρkM is an integer) independently drawn from pk(θ), and then combines the

so-obtained estimates {p̂k} into an estimate of p:

p̂S =
K∑

k=1

ρkp̂k (55)

Interestingly, the variance of p̂S is always smaller than the variance of the non-stratified estimate
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that was analysed in the previous subsection (see (46) there):

var(p̂S) ≤
1

M

[∫

D

p2(y|θ)p(θ)dθ − p2
]

(56)

To prove the above inequality, first note that the bias of p̂k is zero and its variance is given by

the following formula (similar to (46)):

var(p̂k) =
1

ρkM

[∫

Dk

p2(y|θ)pk(θ)dθ − p2k

]

(57)

Because

p̂S − p =
K∑

k=1

ρk(p̂k − pk) (58)

where the terms are independent of each other, one can readily check that p̂S is an unbiased

estimate of p with the following variance:

var(p̂S) =
K∑

k=1

ρ2kvar(p̂k) =
1

M

K∑

k=1

ρk

[∫

Dk

p2(y|θ)pk(θ)dθ − p2k

]

(59)

The first term in (59), namely

1

M

K∑

k=1

ρk

∫

Dk

p2(y|θ)pk(θ)dθ =
1

M

∫

D

p(y|θ)p(θ)dθ (60)

is the same as the corresponding term in (46). However, the second term in (59) is smaller than

its counterpart in (46), which is a consequence of the Cauchy-Schwarz inequality:

p2 =

(
K∑

k=1

ρkpk

)2

=

(
K∑

k=1

√
ρk ·

√
ρkpk

)2

≤
(

K∑

k=1

ρk

)

︸ ︷︷ ︸
=1

(
K∑

k=1

ρkp
2
k

)

=

K∑

k=1

ρkp
2
k (61)

This observation concludes the proof of (56).

Note that the equality in (61), and hence in (56), holds if
√
ρk = const ·√ρkpk, i.e. pk = const

(for k = 1, . . . , K). However, in applications p(y|θ) often has dominant peaks and therefore

{pk} is far from being a constant sequences. In such cases the stratified approach can improve

the accuracy of the Monte-Carlo sampling in a meaningful way.

We have compared the results obtained with UB and those provided by stratified sampling



20

in a number of cases. The latter method was always better but the gain (i.e. the increase in the

probability of correct selection) was relatively modest. More concretely, we divided each axis of

the box B in L segments which yielded a number of sub-boxes that increased exponentially in

d, namely Ld sub-boxes. In our experiments the accuracy of stratified sampling increased with

L so we chose L so that Ld, for the maximum value of d, was smaller than but as close to M

as possible. The accuracy gain achieved by stratified sampling was comparable to but slightly

smaller than that we obtained using UB with 10M . However in the cases in which increasing M

several times is not possible due to the incurred increase of computation time, stratified sampling

is a possible approach to improving the UB accuracy at basically no increase in computing time.
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