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Abstract

Sparse modeling for signal processing and machine learning, in general, has been at the focus of

scientific research for over two decades. Among others, supervised sparsity-aware learning comprises two

major paths paved by: a) discriminative methods that establish direct input-output mapping based on a

regularized cost function optimization, and b) generative methods that learn the underlying distributions.

The latter, more widely known as Bayesian methods, enable uncertainty evaluation with respect to

the performed predictions. Furthermore, they can better exploit related prior information and also, in

principle, can naturally introduce robustness into the model, due to their unique capacity to marginalize

out uncertainties related to the parameter estimates. Moreover, hyper-parameters (tuning parameters)

associated with the adopted priors, which correspond to cost function regularizers, can be learnt via

the training data and not via costly cross-validation techniques, which is, in general, the case with the

discriminative methods. To implement sparsity-aware learning, the crucial point lies in the choice of

the function regularizer for discriminative methods and the choice of the prior distribution for Bayesian

learning. Over the last decade or so, due to the intense research on deep learning, emphasis has been put

on discriminative techniques. However, a come back of Bayesian methods is taking place that sheds new

light on the design of deep neural networks, which also establish firm links with Bayesian models, such
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as Gaussian processes, and, also, inspire new paths for unsupervised learning, such as Bayesian tensor

decomposition.

The goal of this article is two-fold. First, to review, in a unified way, some recent advances in

incorporating sparsity-promoting priors into three highly popular data modeling/analysis tools, namely

deep neural networks, Gaussian processes, and tensor decomposition. Second, to review their associated

inference techniques from different aspects, including: evidence maximization via optimization and

variational inference methods. Challenges such as small data dilemma, automatic model structure search,

and natural prediction uncertainty evaluation are also discussed. Typical signal processing and machine

learning tasks are considered, such as time series prediction, adversarial learning, social group clustering,

and image completion. Simulation results corroborate the effectiveness of the Bayesian path in addressing

the aforementioned challenges and its outstanding capability of matching data patterns automatically.

I. INTRODUCTION

Over the past three decades or so, machine learning has been gradually established as the umbrella

name to cover methods whose goal is to extract valuable information and knowledge from data, and

then use it to make predictions [1]. Machine learning has been extensively applied to a wide range of

disciplines, such as signal processing, data mining, communications, finance, bio-medicine, robotics, to

name but a few. The majority of the machine learning methods first rely on adopting a parametric model

to describe the data at hand, and then an inference/estimation technique to derive estimates that describe

the unknown model parameters. In the discriminative methods, point estimates of the involved parameters

are obtained via cost function optimization. In contrast, by practicing the Bayesian philosophy, one can

infer the underlying statistical distributions that describe the unknown parameters given the observed

data, and, thus, provide a generative mechanism that models the random process that generates the data.

For the newcomers to machine learning, the discriminative (also referred to as cost function opti-

mization) perspective might be more straightforward. It first formulates a task that quantifies the overall

deviation between the observed target data and the model predictions, and then solves it for the point

parameter estimates via an optimization algorithm. On the contrary, the generative (Bayesian) perspective,

which aims to reveal the generative process and the statistical properties of the observed data, sounds more

complicated due to some “jargon” terms such as prior, likelihood, posterior, and evidence. Nevertheless,

machine learning under the Bayesian perspective is gaining in popularity recently due to the comparative

advantages that spring from the nature of the statistical modeling and the extra information returned by

the posterior distributions. This article aims at demystifying the philosophy that underlies the Bayesian

techniques, and then review, in a unified way, recent advances of Bayesian sparsity-aware learning for

three analysis tools of high current interest. In the Bayesian framework, model sparsity is implemented
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via sparsity-promoting priors that lead to automatic model determination by optimally sparsifying an,

originally, over-parameterized model. The goal is to optimally predict the order of the system that

corresponds to the best trade-off between accuracy and complexity, with the aim to combat overfitting,

in line with the general concept of regularization. However, in Bayesian learning, all the associated

(hyper-)parameters, which control the degree of regularization, can be optimally obtained via the training

set during the learning phase. It is hoped that this article can help the newcomers grasp the essence of

Bayesian learning, and at the same time, provide the experts with an update of some recent advances

developed for different data modeling and analysis tasks.

In particular, we will focus on Bayesian sparsity-aware learning for three popular data modeling

and analysis tools, namely the deep neural networks (DNNs), Gaussian processes (GPs), and tensor

decomposition, that have promoted intelligent signal processing applications. Some typical examples are

as follows.

In the supervised learning front with over-parameterized DNNs, novel data-driven mechanisms have

been proposed in [2]–[6] to intelligently prune redundant neuron connections without human assistance.

In a similar vein, in [7]–[9], sparsity-promoting priors have been used in the context of the GPs that

give rise to optimal and interpretable kernels that are capable of identifying a sparse subset of effective

frequency components automatically. In the unsupervised learning front, some advanced works on tensor

decomposition, e.g., [10]–[15], have shown that sparsity-promoting priors are able to unravel the few

underlying interpretable components in a completely tuning-free fashion. Such techniques have found

various signal processing applications, including data classification [2], [5], [6], adversarial learning [3],

[4], time-series prediction [7]–[9], [16], blind source separation [10], [13], [17], image completion [12],

[14], [15], and wireless communications [18].

The aforementioned references address two state-of-the-art challenges: 1) The art of prior: how should

the fundamental sparsity-promoting priors be chosen and tailored to fit modern data-driven models

with complex structures? 2) The art of inference: how can recent optimization theory and stochastic

approximation techniques be leveraged to design fast, accurate, and scalable inference algorithms? This

tutorial-style article aims to give a unified treatment on the underlying common ideas and techniques to

offer concrete answers to the above questions. It is yet the goal of this article to provide a comprehensive

review of such sparsity-promoting techniques. On the one hand, we will introduce some newly proposed

sparsity-promoting priors, as well as various salient ones that, although being powerful, had never been

used before in our target models. On the other hand, we will showcase some recent developments of the

associated inference algorithms. For readers with different backgrounds and familiarity with Bayesian

statistics, we provide a roadmap in Fig. 1 to facilitate their reading.
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Fig. 1. The organization of this article and road map for the readers.

The remaining sections of this article are organized as follows. In Section II, we introduce some

Bayesian learning basics, aiming to let the readers easily follow the main concepts, jargon terms, and

math notations. In Section III, we first review two different paths (the regularized optimization and

Bayesian paths), and further introduce some sparsity-promoting priors along the Bayesian path. In Section

IV, we demonstrate how to integrate the introduced sparsity-promoting priors into three prevailing data

analysis tools, i.e., the DNNs, GPs, and tensor decomposition. For the reviewed sparsity-aware learning

models, we further introduce their associated inference methods in Section V. Various signal processing

applications of high current interests enabled by the aforementioned models are exemplified in Section

VI. Finally, we conclude the article and bring up some potential future research directions in Section

VII.

II. BAYESIAN LEARNING BASICS

In this section, we first provide some touches on the philosophy of Bayesian learning in Section II-A,

and use Bayesian linear regression as an example to elucidate different symbol notations, terminology and

unique features of Bayesian learning in Section II-B. Then, we discuss extensions to the non-linear and
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non-parametric cases, shedding light on the connections between simple linear regression and advanced

Gaussian process regression in Section II-C.

A. Bayesian Philosophy Basics

1) Bayes’ Theorem: Let D be the observed (training) dataset and M be the underlying model that is

assumed to generate the data. For simplicity, we start our treatment with models that are parameterized in

terms of a set of unknown parameters θ ∈ RL×1, where R is the set of real numbers. By the definition of

parametric models, the dimension L is pre-selected and fixed [1]. According to the Bayesian philosophy,

these parameters are treated as random variables. Their randomness does not imply a random nature of

these parameters, but essentially encodes our uncertainty with respect to their true (yet unknown) values,

see related discussions in, e.g., [1]. First, in Bayesian modeling, we assume that the set of unknown

random parameters is described by a prior distribution, i.e, θ ∼ pM(θ;ηp), which encodes our prior

belief in θ; that is, it encodes our uncertainty prior to receiving the dataset D. As we are going to

see soon, this corresponds to regularizing the learning task, since it will bias the solution that we seek

towards certain regions in the parameter space. The prior pM(θ;ηp) is specified via a set of deterministic

yet unknown hyper-parameters (tuning parameters) stacked together in a vector and denoted by ηp. The

second quantity that is assumed to be known is the conditional distribution that describes the data given

the values of the parameters, θ, which for the specific observed dataset D is known as the likelihood

pM(D|θ).1

Having selected the likelihood and the prior distribution function, the goal of Bayesian inference is to

infer (estimate) the posterior distribution of the parameters given the observations, i.e., pM(θ|D;η), that

comprises the update of the prior assumption encoded in pM(θ;ηp) after digesting the dataset D. This

process can be elegantly described by the celebrated Bayes’ theorem, e.g., the one given in [1]:

pM(θ|D;η) =
pM(D|θ)pM(θ;ηp)

pM(D;η)
. (1)

Note that η includes both the hyper-parameters associated with the prior, ηp, and some extra hyper-

parameters involved in the likelihood function pM(D|θ), which are omitted for notation brevity.

The Bayes’ theorem solves for the inverse problem that is associated with any machine learning task.

The forward problem is an easy one. Given the model M and the values of the associated parameters

θ, one can easily generate the output observations D from the conditional distribution pM(D|θ). The

1Throughout this paper, we use “;”, i.e., p(x; η) if η is a deterministic parameter to be optimized or pre-selected by the user;

and we use “|”, i.e., p(x|η) if η is a random variable or a hyper-parameter treated as a random variable; that is, if the distribution

is conditional on another random variable.
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task of machine learning is the opposite and a more difficult one. Given the observed data D, the task

is to estimate/infer the model M. This is known as the inverse problem, and Bayes’ theorem applied to

the machine learning task does exactly that. It relates the inverse problem (posterior) to the forward one

(likelihood). All one needs for this “update” is to assume a prior and also to obtain an estimate of the

distribution associated with the data, which comprises the denominator in (1). The latter term and the

related information are neglected in the discriminative models, hence important information is not taken

into account, see the discussion in, e.g., [1], [19].

Occasionally, we may need a point estimate of the model parameters as the intermediate result, and

there are two commonly used estimates that can be computed from the posterior distribution, pM(θ|D;η).

Assuming that θ is known or an estimate is available, the first one is known as the maximum-a-posteriori

(MAP) estimate and the other one as the minimum-mean-squared-error (MMSE) estimate, concretely [1],

θ̂MAP = arg max
θ

pM(θ|D;η), (2)

θ̂MMSE =

∫
θ · pM(θ|D;η) dθ. (3)

2) Evidence Maximization for Hyper-parameter Learning: In the prior distribution, pM(θ;ηp), the

hyper-parameters, ηp, could be either pre-selected according to the side information at hand, or learnt

from the observed dataset D. In Bayesian learning, the latter path is followed favorably. One popular

alternative is to select the full set of hyper-parameters η to be the most compatible with the observed

dataset D, which can be naturally formulated as the following so-called evidence maximization:

max
η

log pM(D;η), (4)

where

pM(D;η) =

∫
pM(D|θ)pM(θ;ηp)dθ (5)

is known as the model evidence, since it measures the plausibility of the dataset D given the hyper-

parameters η. Note that the evidence depends on the model itself and not on any specific value of

the parameters θ, which have been integrated out (marginalized). This is a crucial difference compared

with the discriminative methods. As it can be shown, the evidence maximization problem (4) involves a

trade-off between accuracy (the achieved likelihood value) and model complexity, in line with Occam’s

razor rule [20], [1]. This allows computation of the model hyper-parameters η directly from the observed

dataset D. At this point, recall that one of the major difficulties associated with machine learning, and

the inverse problems in general, is overfitting. That is, if the model is too complex with respect to the

number of training data samples, then the estimated models learn the specificities of the given training

data and cannot generalize well when dealing with new unseen (test) data.
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The use of regularization in the discriminative methods and priors in the Bayesian ones try to achieve

the best trade-off between accuracy (fitting to the observed data) and generalization that heavily depends

on the complexity of the model, see, e.g., [1], [19] for further discussions. Furthermore, note that in the

Bayesian context, model complexity is interpreted from a broader view, since it depends not only on the

number of parameters but also on the shape (e.g., variance and skewness) of the involved distributions

of θ, see e.g., [1], [19] for in-depth discussions. For example, under a broad enough Gaussian prior for

the model parameters, θ, and some limiting properties, it can be shown that the evidence in (5) results in

the well-known Bayesian information criterion (BIC) for model selection [21], [1], which has the form:

log pM(D;η) = log pM(D|θ̂MAP)− L

2
logN, (6)

where the first term on the right-hand side is the accuracy (best likelihood fit) term and the second is the

complexity term that “competes” in a trade-off fashion while maximizing the evidence, see, e.g., [22],

[1] for further discussion. In (6), L denotes the number of unknown parameters in θ and N is the size

of the training data. A more recent interpretation of this trade-off, in the context of over-parameterized

DNNs, is provided in [23], where the prior is viewed as the inductive bias that favors certain datasets.

3) Marginalization for Prediction: The learnt posterior pM(θ|D;η) provides uncertainty information

about θ, i.e., the plausibility of each possible θ to be endorsed by the observed dataset D, and it can be

used to forecast an unseen dataset, Dnew, via marginalization:

pM(Dnew|D;η) =

∫
pM(Dnew|θ)pM(θ|D;η)dθ. (7)

From (7), Bayesian prediction can be interpreted as the weighted average of the predicted probability

pM(Dnew|θ) among all possible model configurations, each of which is specified by different model

parameters, θ, and weighted by the respective posterior pM(θ|D;η).2 In other words, prediction does

not depend on a specific point estimate of the unknown parameters, which equips Bayesian methods with

great potential for more robust predictions against the estimation error of θ, see, e.g., [1], [19].

In summary, in light of the Bayes’ theorem, the four quantities (i.e., prior pM(θ;ηp), likelihood

pM(D|θ), posterior pM(θ|D;η) and evidence pM(D;η)) give a new perspective on the inverse problem.

The resulting method combines the strength of the selected priors and the likelihood of the observed

data to provide a corresponding posterior. The success of such an inference process strongly relies

on the following three steps. First, incorporating a prior for each unknown model parameter/function

enables one to naturally encode a desired structure into Bayesian learning. As it will be demonstrated

2In this paper, the unseen dataset Dnew is assumed to be statistically independent of the training dataset D. Therefore,

pM(Dnew|θ) = pM(Dnew|D,θ).
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in the rest of this article, a prior can be imposed to both parametric models with a fixed number of

unknown parameters and non-parametric models that comprise unknown functions and/or an unknown

set of parameters whose number is not fixed but it varies with the size of the dataset. Second, through

evidence maximization, one can optimize the set of hyper-parameters that is associated with the selected

Bayesian learning model to obtain enhanced generalization performance. Finally, marginalization ensures

robust prediction and generalization performance by averaging over an ensemble of predictions using all

possible parameter/function estimates weighted by the corresponding posterior probability. These three

aspects will be discussed in detail in the following sections.

B. Bayesian Linear Parametric Regression: A Pedagogic Example

Before moving to our next topics on more advanced Bayesian data analysis, we introduce the Bayesian

linear regression model as an example to further elaborate the terminology and concepts discussed

previously. It also serves as the cornerstone for the two recent supervised learning tools, namely the

Bayesian neural networks and GP models to be elaborated in the following subsections.

1) Linear Regression: In statistics, the term “regression” refers to seeking the relationship between a

dependent random variable, y, which is usually considered as the response of a system, and the associated

input/independent variables, x = [x1, x2, · · · , xL]T . When the system is modeled as a linear combiner

with an additive disturbance or noise term vn, the relationship between yn and xn of the n-th data sample

can be expressed as:

yn = θTxn + vn, ∀n ∈ {1, 2, · · · , N}, (8)

which specifies the linear regression task. For simplicity, we assume that the additive noise terms {vn}
are independently and identically distributed (i.i.d.) Gaussian with zero mean and variance β−1, i.e.,

{vn} i.i.d.∼ N (vn; 0, β−1), where β (i.e., inverse of the variance) is called “precision” in statistics and

machine learning. The task of linear regression is to learn the weight parameters θ = [θ1, θ2, · · · , θL]T

from the training/observed dataset D , {X,y}, where the input matrix X , [x1,x2, · · · ,xN ]T ∈
RN×L, and the output vector y , [y1, y2, · · · , yN ]T .

2) Bayesian Learning: For the linear regression task, we take a Bayesian perspective by treating the

unknown parameters θ as a random vector. As introduced in Section II-A, the inverse problem can be

solved via the Bayes’ theorem after specifying the following four quantities.

� Likelihood. The easiest one to derive is the likelihood function, which describes the forward problem

of linear regression. Owing to the Gaussian and independence properties of the noise terms {vn}, the
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following Gaussian likelihood function can be easily obtained:

pM(D|θ) =

N∏

n=1

N (yn;θTxn, β
−1). (9)

� Prior. Then, we specify a prior on the unknown parameters θ. For mathematical tractability, we adopt

an i.i.d. Gaussian distribution as the prior:

pM(θ;ηp) =

L∏

l=1

N (θl; 0, α−1
l ), (10)

where αl is the precision associated with each θl, and ηp = α , [α1, α2, · · · , αL]T represents the

hyper-parameters associated with the prior.

� Evidence. After substituting the prior (10) and the likelihood (9) into (5), and performing the integration,

we can derive the following Gaussian evidence:

pM(D;η) = N (y; 0, β−1I +XA−1XT ), (11)

where the diagonal matrix A , diag{α} and I denotes the identity matrix. Here, we have η = [ηTp , β]T .

� Posterior. Inserting the prior (10), the likelihood (9) and the evidence (5) into the Bayes’ theorem (1),

the posterior can be shown to be the Gaussian distribution:

pM(θ|D;η) = N (θ;µ,Σ), (12)

where

µ = βΣXTy, (13a)

Σ = (A+ βXTX)−1. (13b)

Once again, taking the above linear regression as a concrete example, we further demonstrate the merits

of Bayesian learning in general.

� Merit 1: Parameter Learning with Uncertainty Quantification. Using the Bayes’ theorem, the posterior

in (12) not only provides a point estimate µ in (13a) for the unknown parameters θ, but also provides

a covariance matrix Σ in (13b) that describes to which extent the posterior distribution is centered

around the point estimate µ. In other words, it quantifies our uncertainty about the parameter estimate,

which cannot be naturally obtained in any discriminative method. For the above example, we have

θ̂MAP = θ̂MMSE because the posterior distribution pM(θ|D;η) follows a unimodal Gaussian distribution.

Of course, Frequentist methods can also construct uncertainty region/confidence intervals by taking a few

extra steps once the parameter estimates have been obtained. However, the Bayesian method provides,

in one go, the posterior distribution of the model parameters, from which both a point estimate as well

as the uncertainty region can be optimally derived via the learning optimization step.
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� Merit 2: Robust Prediction via Marginalization. After substituting (12) and (9) tailored to new obser-

vations into (7), the posterior/predictive distribution for a novel input x∗ is:

pM(y∗|{X,y}) =

∫
N (y∗;θ

Tx∗, β
−1)N (θ;µ,Σ)dθ

= N (y∗;µ
Tx∗, β

−1 + xT∗Σx∗). (14)

The predicted value of y∗ can be acquired via µTx∗, and the posterior variance, β−1 + xT∗Σx∗,

quantifies the uncertainty about this point prediction. Rather than providing a point prediction like

in the discriminative methods, Bayesian methods advocate averaging all possible predicted values via

marginalization, and are thus more robust against erroneous parameter estimates.

C. Bayesian Nonlinear Nonparametric Model: GP Regression Example

In order to improve the data representation power of Bayesian linear parametric models, a lot of efforts

have been invested on designing non-linear and non-parametric models. A direct non-linear generalization

of (8) is given by

y = f(x) + v, (15)

where instead of the linearity of (8), we employ a non-linear functional dependence f(x) and let v be

the noise term like before. Moreover, the randomness associated with the weight parameters θ in (8)

is now embedded into the function f(x) itself, which is assumed to be a random process. That is, the

outcome/realization of each random experiment is a function instead of a single value/vector. Thus, in

this case, we have to deal with priors related to non-linear functions directly, rather than indirectly, i.e.,

by specifying a family of non-linear parametric functions and placing priors over the associated weight

parameters.

1) GP Model: In the sequel, we introduce one representative model that adopts this rationale, namely

the GP model for non-linear regression. The GP models constitute a special family of random processes

where the outcome of each experiment is a function or a sequence. For instance, in signal processing,

this can be a continuous-time signal f(t) as a function of time t or a discrete-time signal f(n) in terms

of the sequence index n. In this article, we treat the GP model as a data analysis tool whose input that

acts as the argument in f(·) is a vector, i.e., vector, x = [x1, x2, · · · , xL]T [1], [24].

For clarity, we give the definition of GP as follows:

Definition of GP [1], [24]: A random process, f(x), is called a GP if and only if for any

finite number of points, x1,x2, · · · ,xN , the associated joint probability density function (pdf),

p(f(x1), f(x2), · · · , f(xN )) is Gaussian.
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A GP can be considered as an infinitely long vector of jointly Gaussian distributed random variables,

so that it can be fully described by its mean function and covariance function, defined as follows:

m(x) , E[f(x)], (16)

cov(x,x′) , E[(f(x)−m(x))(f(x′)−m(x′))]. (17)

A GP is said to be stationary if the mean function, m(x), is a constant mean, and moreover its covariance

function has the following simplified form: cov(x,x′) = cov(τ ) with τ , x− x′.
When a GP is adopted for data modeling and analysis, we need to specify the mean function and the

covariance function in order to make the model match the underlying data patterns. The mean function

is often set to zero especially when there is no prior knowledge available. The data representation power

of the non-parametric GP models is determined overwhelmingly by the covariance function, which is

also known as the kernel function due to the positive semi-definite nature of a covariance function. In the

following, we use k(x,x′;ηp) , cov(x,x′) to represent a pre-selected kernel function with an explicit

set of tuning kernel hyper-parameters, ηp, for the observed data. Finally, we say that a function realization

is drawn from the GP prior, and we write

f(x) ∼ GP
(
m(x), k(x,x′;ηp)

)
. (18)

The consequent GP regression model follows (15), where f(x) is represented by a GP model defined in

(18) and the noise term v is assumed to be Gaussian distributed with zero mean and variance β−1, like

in the previous simple Bayesian linear regression example.

2) GP Kernel Functions: As mentioned before, the kernel function plays a crucial role in determining

a GP model’s representation power. To shed more light on the kernel function, especially on how it

represents random functions as well as its good physical interpretations, we demonstrate the most widely

used (but not necessarily optimal) squared-exponential (SE) kernel.

� SE Kernel: The form of this widely used kernel function is given below:

k(x,x′;ηp) = σ2
s exp

(
−||x− x

′||22
2`2

)
, (19)

where the hyper-parameter σ2
s determines the magnitude of fluctuation of f(x) and the other hyper-

parameter `, called length-scale, determines the statistical correlation between two points, f(x) and

f(x′), separated by a (Euclidean) distance d , ||x− x′||2. Thus, we have the kernel hyper-parameters,

ηp = [σ2
s , `]

T , specifically for this kernel.

In Fig. 2, we show some sample functions generated from a GP (for one-dimensional input, x) involving

the SE kernel with different hyper-parameter configurations. From these illustrations, we can clearly spot
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Fig. 2. Sample functions generated from a GP model using the SE kernel with two different hyper-parameter

configurations. (a) GP with hyper-parameters, σ2
s = 1, ` = 5, generates low-peaked and smooth sample functions;

(b) GP with hyper-parameters, σ2
s = 5, ` = 0.5, generate high-peaked and fast varying sample functions.

the physical meaning of the SE kernel hyper-parameters. There are many other classic kernel functions,

such as the Ornstein-Uhlenbeck kernel, rational quadratic kernel, periodic kernel, locally periodic kernel

as introduced in, e.g., [24]. They can even be combined, for instance in the form of a linearly-weighted

sum, to enrich the overall modeling capacity [24], [25].

Designing a competent stationary kernel function for the GP model can also be considered in the

frequency domain owing to the famous Wiener-Khintchine Theorem [1], [24]. The theorem states that

the Fourier transform of a stationary kernel function, k(τ ), and the associated spectral density of the

process, S(s), are Fourier duals:

k(τ ) =

∫
S(s)e2πisT τds, S(s) =

∫
k(τ )e−2πisT τdτ . (20)

Here, it is noteworthy to mention that i is the imaginary unit and the operation sTτ refers to the inner

product of the generalized frequency parameters, s, and the time difference parameters, τ . In Section IV,

we will introduce some optimal kernel design methods that were first built based on the spectral density

in the frequency domain and then transformed back to the original input domain.

3) GP for Regression: In contrast to the Bayesian linear regression model, we set a GP prior directly

on the underlying function in the GP regression model, namely, f(x) ∼ GP(m(x), k(x,x′;ηp)). Given

the observed dataset, D = {X,y} as defined before, the main goal of GP-based Bayesian non-linear

regression is to compute the evidence, p(y;η), for optimizing the model hyper-parameters, η, and to

compute the posterior distribution, p(y∗|y), of y∗ = [y∗,1, y∗,2, · · · , y∗,N∗ ]T evaluated at n∗ novel test

inputs X∗ = [x∗,1,x∗,2, · · · ,x∗,N∗ ]T .
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� Evidence: This can be obtained in a straightforward way due to the regression model y = f(X) + v,

where v is independent of the GP model, f(x) ∼ GP(m(x), k(x,x′;ηp)), and we let v ∼ N (0, β−1I).

As a consequence, it is easy to derive, see e.g., [1], [24], that

p(y;η) = N (y; 0,K(X,X;ηp) + β−1I), (21)

where η = [ηTp , β]T andK(X,X;ηp) is the N×N kernel matrix of f(X) , [f(x1), f(x2), · · · , f(xn)]T

evaluated for the training samples. Note that the kernel matrix is a square matrix whose (ij)-th entry

is the pairwise covariance between f(xi) and f(xj), computed according to (17), for any xi and xj

in the training dataset. The covariance matrix, XA−1X , of the Bayesian linear regression function,

f(x) = θTx, given in (11) can be regarded as one instance of the kernel matrix, K(X,X;ηp). The

latter can provide increased representation power through choosing more appropriate kernel forms and

tuning the associated kernel hyper-parameters. As it will be shown in Section V, we will maximize this

evidence function to get an optimal set of the model hyper-parameters.

� Posterior Distribution: It turns out, see e.g. [1], [19], that the joint distribution of the training output

y and the test output y∗ is a Gaussian, of the following form:

 y
y∗


 ∼ N




 y
y∗


 ; 0,


K(X,X) + β−1I, K(X,X∗)

K(X∗,X), K(X∗,X∗) + β−1I




 , (22)

where K(X,X∗) stands for the N ×N∗ kernel matrix between the training inputs and test inputs and

K(X∗,X∗) for the N∗ × N∗ kernel matrix among the test inputs. Here, we let K(X,X) be a short

form of K(X,X;η).

By applying some classic conditional Gaussian results, see e.g., [1], we can derive the posterior

distribution from the joint distribution in (22) as:

p(y∗|y) ∼ N
(
y∗; m̄, V̄

)
, (23)

where the posterior mean (vector) and the posterior covariance (matrix) are respectively,

m̄ = K(X∗,X)
[
K(X,X) + β−1I

]−1
y, (24)

V̄ = K(X∗,X∗) + β−1I −K(X∗,X)
[
K(X,X) + β−1I

]−1
K(X,X∗). (25)

The above posterior mean gives a point prediction, while the posterior covariance defines the uncertainty

region of such prediction. A leading benefit of using the GP models over discriminative methods, such

as the kernel ridge regression, lies in the natural uncertainty quantification given by (25).

A graphical illustration of GP working on a toy regression example is shown in Fig. 3. As we can

see from the figures, the uncertainty in the GP prior is constantly large, reflecting our crude prior belief
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Fig. 3. Subfigure (a) shows three sample functions drawn randomly from a GP prior (refer to (18)) with an SE

kernel (refer to (19)). Subfigure (b) shows three sample functions drawn from the GP posterior (refer to (23), (24),

(25)) computed based on the prior shown in (a) as well as four noisy observations indicated by the black circles.

The corresponding posterior mean function is depicted by the dark black curve. The grey shaded area represents

the uncertainty region, taken as the 95% confidence region (CR) for both the prior and the posterior herein.

in the underlying function. While it has been significantly reduced in the neighborhood of the observed

data points in the GP posterior, but still remains comparably large in regions where the observed data

points are scarce.

Apart from the representation power of the GP model, it also connects to various other salient machine

learning models, including for instance the relevance vector machine, support vector machine [24]. Also,

it has been shown that a neural network, with one or multiple hidden layers, asymptotically approaches

a GP, see e.g. [26], [27].

III. SPARSITY-AWARE LEARNING: REGULARIZATION FUNCTIONS AND PRIOR DISTRIBUTIONS

In modern big data analysis, there is a trend to employ sophisticated models that involve an excessive

number of parameters (sometimes even more than the number of data samples, e.g., in over-parameterized

models). This makes the learning systems vulnerable to overfitting to the observed data. Thus, the

obvious question concerns the right model size given the data sample. Sparsity-aware learning (SAL)

that promotes sparsity on the structure of the learnt model comprises a major path in dealing with such

models in a data-adaptive fashion. The term sparsity implies that most of the unknown parameters are

pushed to (almost) zero values. This can be achieved either via the combination of a discriminative

method and appropriate regularizers, or via the Bayesian path by adopting sparsity-promoting priors. The

major difference between the two paths lies in the way “sparsity” is interpreted and embedded into the

models, as it is explained in the following subsections.
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In the sequel, we will first introduce the first path that leads to SAL via regularized optimization methods

in Section III-A, followed by the SAL via Bayesian methods for parametric models in Section III-B and

non-parametric models in Section III-C. Note that the aim of this article is not on comparing the two

paths, but rather to rethink the Bayesian philosophy.

A. SAL via Regularized Optimization Methods

Following the regularized optimization way, “sparsity” information is embedded through regularization

functions. Using the linear regression task as an example, the regularized parameter optimization problem

is formulated as:

min
θ

1

2

N∑

n=1

(
yn − θTxn

)2

︸ ︷︷ ︸
data fitting cost

+ λ︸︷︷︸
regularization parameter

× r(θ)︸︷︷︸
regularization function

, (26)

where the regularization function r(θ) steers the solution towards a preferred sparse structure, and the

regularization parameter λ is to balance the trade-off between the data fitting cost and the regularization

function for sparse structure embedding. In SAL, it is assumed that the unknown parameters θ have a

majority of zero entries, and thus the adopted regularization function r(θ) should help the optimization

process unveil such zeros. Such regularization functions include the family of lp norm functions with

0 ≤ p ≤ 1, among which the `1 norm is most popular, since it retains the computationally attractive

property of convexity. Furthermore, strong theoretical results have been derived, see e.g., [1], [28]. In

recent years, SAL advances via regularized cost optimization prevail in the context of machine learning

using data analysis tools. The literature is very rich and fairly well documented with many sparsity-

promoting regularization functions. Although the resulting regularized cost function might be non-convex

and/or non-smooth, efficient learning algorithms exist and have been built on solid theoretical foundations

in optimization theory, see e.g., [29].

B. SAL via Bayesian Methods For Parametric Models

Before we entail into a more formal presentation of a family of probability density functions (pdfs)

that promote sparsity, let us first view sparsity from a slightly different angle. It is well known that there

is a bridge between the estimate obtained from problem (26) and the MAP estimate (see Section II-A).

For example, it is not difficult to see that if r(θ) is the squared Euclidean norm (i.e., the `2 norm that

gives rise to the so-called ridge regression), the resulting estimate corresponds to the MAP one when

assuming the noise to be i.i.d. Gaussian and the prior on θ to be also of a Gaussian form. If, on the

other hand, r(θ) takes the `1 norm, this corresponds to imposing a Laplacian prior, instead of a Gaussian
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(a) (b)

Fig. 4. Joint probability distribution of the model parameters in two-dimensional space. Subfigure (a) shows the

Laplacian distribution and subfigure (b) shows the Gaussian distribution. The heavy-tail Laplacian distribution peaks

sharply around zero and falls slowly along the axes, thus promoting sparse solutions in a probabilistic manner. On

the contrary, the Gaussian distribution decays more rapidly along both dimensions compared to the Laplacian

distribution.

one, on θ. For comparison, Fig. 4 presents the Laplacian and Gaussian priors for θ ∈ R2. It is readily

seen that the Laplacian distribution is heavy-tailed compared to the Gaussian one. In other words, the

probability that the parameters will take non-zero values, for the zero-mean Gaussian, goes to zero very

fast. Most of the probability mass concentrates around zero. This is bad news for sparsity, since we want

most of the values to be (close to) zero, but still some of the parameters to have large values. In contrast,

observe that in the Laplacian, although most of the probability mass is close to zero, yet there is still high

enough probability for non-zero values. More importantly, this probability mass is concentrated along

the axes, where one of the parameters is zero. This is how Laplacian prior promotes sparsity. Thus, to

practice “Bayesianism”, one explicit path is to construct priors with heavy tails to promote sparsity. In

the sequel, we introduce an important family of such sparsity-promoting priors.

1) The Gaussian Scale Mixture (GSM) Prior: The kick-off point of the GSM prior, see e.g., [30], is

to assume that: a) the parameters, θl, l = 1, 2, · · · , L, are mutually statistically independent; b) each one

of them follows a Gaussian prior with zero mean and c) the respective variances, ζl, l = 1, 2, · · · , L, are

also random variables, each one following a prior p(ζl;ηp), where ηp is a set of tuning hyper-parameters
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Table I: Examples of GSM prior. Abbreviations: Ga = Gamma, IG = inverse Gamma, GIG = generalized inverse

Gaussian, C+ = Half Cauchy.

GSM prior p(θl) Mixing distribution p(ζl)

Student’s t Inverse Gamma: p(ζl;ηp = [a, b]) = IG(ζl; a, b)

Normal-Jefferys Log-uniform: p(ζl;ηp = [ ]) ∝ 1
|ζl|

Laplacian Gamma: p(ζl;ηp = [a, b]) = Ga(ζl; a, b)

Generalized hyperbolic
Generalized inverse Gaussian:

p(ζl;ηp = [a, b, λ]) = GIG(ζl; a, b, λ)

Horseshoe

ζl = τlυl,ηp = [a, b]

Half Cauchy: p(τl) = C+(0, a)

p(υl) = C+(0, b)

associated with the prior. Thus, the GSM prior for each θl is expressed as

p(θl;ηp) =

∫
N (θl; 0, ζl)p(ζl;ηp)dζl. (27)

By varying the functional forms of p(ζl;ηp), the marginalization (i.e., integrating out the dependence

on ζl) performed in light of (27) induces different prior distributions of θ. For example, if p(ζl;ηp)

is an inverse Gamma distribution, (27) induces a Student’s t distribution [30]; if p(ζl;ηp) is a Gamma

distribution, (27) induces a Laplacian distribution [30]. For clarity, Table I summarizes different heavy-

tail distributions, including Normal-Jefferys, generalized hyperbolic, and horseshoe distributions, among

others. To illustrate graphically the sparsity-promoting property endowed by their heavy-tail nature, in

addition to the Laplacian distribution plotted in Fig. 4, we further depict two representative GSM prior

distributions, namely the Student’s t distribution and the horseshoe distribution, in Fig. 5. In Section

IV-A and IV-C, we will show the use of GSM prior in modeling Bayesian neural networks and low-rank

tensor decomposition models, respectively.

Besides the aforementioned families of sparsity-promoting priors, another path that has been followed

to impose sparsity exploits the underlying property of the evidence function to provide a trade-off between

the fitting accuracy and the model complexity, at its maximum value, as it has already been discussed in

Section II-A. To this end, one imposes an individual Gaussian prior N (0, ζl) on each one of the unknown

parameters, which are assumed to be mutually independent, and then treats the respective variances,

ζl, l = 1, 2, · · · , L, as hyper-parameters that are obtained via the evidence function optimization. Due to

the accuracy-complexity trade-off, the variances of the parameters that need to be pushed to zero (i.e.,

do not contribute much to the accuracy-likelihood term) get very large values and their corresponding

means get values close to zero, see e.g., [19], [31], where a theoretical justification is provided. The key
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(a) (b)

Fig. 5. Representative GSM prior distributions in two-dimensional space. Subfigure (a) and Subfigure (b) show the

Student’s t distribution and the horseshoe distribution, respectively. It can be seen that these two distributions show

different heavy-tail profiles and are both sparsity-promoting.

point here is that allowing the parameters to vary independently, with different variances, unveils specific

relevance of every individual parameter to the observed data, and the “irrelevant” ones are pushed to zero

with high probability. Such methods are also known as Automatic Relevance Determination (ARD). In

Section IV-B, we demonstrate the use of ARD philosophy for designing recent sparse kernels.

Remark 1: In practice, the choice of a specific prior depends on the trade-off between the expressive

power of the prior and the difficulty of inference. As shown in Table I, advanced sparsity-promoting priors,

e.g., the generalized hyperbolic prior and the horseshoe prior, come with more complicated mathematical

expressions. These endue the priors flexibility to adapt to different levels of sparsity, while also pose

difficulty in deriving efficient inference algorithm. Typically, when the noise power is known to be small,

and/or the side information about the sparsity level is available, sparsity-promoting priors with simple

mathematical forms, e.g., the Student’s t-prior, are recommended. Otherwise, one might consider the

adoption of more complex members in the family of GSM priors, see e.g., [6], [10].

C. SAL via Bayesian Methods for Non-Parametric Models
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Beta-Bernoulli model 

↵
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{0, 1}
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⇡j
<latexit sha1_base64="89eYOIuWIVPS69wfG97HCwp48sI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48VTFtoQ9lsN+3azSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94DTlQUxHSkSCUbSS30/F4HFQrbl1dwGyTryC1KBAa1D96g8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZubDKkESJtqWQLNTfEzmNjZnGoe2MKY7NqjcX//N6GUaNIBcqzZArtlwUZZJgQuafk6HQnKGcWkKZFvZWwsZUU4Y2n4oNwVt9eZ20r+qeW/fur2vNRhFHGc7gHC7Bgxtowh20wAcGAp7hFd4c5bw4787HsrXkFDOn8AfO5w/KCY6g</latexit><latexit sha1_base64="Su8yTTTc/0yOtKgvjYJt1Zcslnw=">AAACEXicjVA9SwNBFHznZ4xfUUubxSBYhTsRTBmwsVTwkkByhL3NXrJmb+/YfSeEI7/Bwsa/YiNia2fnv3GTXKGJhQMLw8w83r4JUykMuu6Xs7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0NfVbD1wbkag7HKc8iOlAiUgwilbyu6no3fcqVbfmzkCWiVeQKhT4X7xX+ez2E5bFXCGT1JiO56YY5FSjYJJPyt3M8JSyER3wjqWKxtwE+eyiCTm1Sp9EibZPIZmpPydyGhszjkObjCkOzaI3Ff/yOhlG9SAXKs2QKzZfFGWSYEKm9ZC+0JyhHFtCmRb2r4QNqaYMbYlle7q3eOgyaZ7XPLfm3V5UG/WisxIcwwmcgQeX0IBruAEfGAh4hGd4dZ6cF+fNeZ9HV5xi5gh+wfn4BmnHlhk=</latexit><latexit sha1_base64="Su8yTTTc/0yOtKgvjYJt1Zcslnw=">AAACEXicjVA9SwNBFHznZ4xfUUubxSBYhTsRTBmwsVTwkkByhL3NXrJmb+/YfSeEI7/Bwsa/YiNia2fnv3GTXKGJhQMLw8w83r4JUykMuu6Xs7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0NfVbD1wbkag7HKc8iOlAiUgwilbyu6no3fcqVbfmzkCWiVeQKhT4X7xX+ez2E5bFXCGT1JiO56YY5FSjYJJPyt3M8JSyER3wjqWKxtwE+eyiCTm1Sp9EibZPIZmpPydyGhszjkObjCkOzaI3Ff/yOhlG9SAXKs2QKzZfFGWSYEKm9ZC+0JyhHFtCmRb2r4QNqaYMbYlle7q3eOgyaZ7XPLfm3V5UG/WisxIcwwmcgQeX0IBruAEfGAh4hGd4dZ6cF+fNeZ9HV5xi5gh+wfn4BmnHlhk=</latexit><latexit sha1_base64="Su8yTTTc/0yOtKgvjYJt1Zcslnw=">AAACEXicjVA9SwNBFHznZ4xfUUubxSBYhTsRTBmwsVTwkkByhL3NXrJmb+/YfSeEI7/Bwsa/YiNia2fnv3GTXKGJhQMLw8w83r4JUykMuu6Xs7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0NfVbD1wbkag7HKc8iOlAiUgwilbyu6no3fcqVbfmzkCWiVeQKhT4X7xX+ez2E5bFXCGT1JiO56YY5FSjYJJPyt3M8JSyER3wjqWKxtwE+eyiCTm1Sp9EibZPIZmpPydyGhszjkObjCkOzaI3Ff/yOhlG9SAXKs2QKzZfFGWSYEKm9ZC+0JyhHFtCmRb2r4QNqaYMbYlle7q3eOgyaZ7XPLfm3V5UG/WisxIcwwmcgQeX0IBruAEfGAh4hGd4dZ6cF+fNeZ9HV5xi5gh+wfn4BmnHlhk=</latexit>

zij
<latexit sha1_base64="hwvxXKqomeg8yiDnhKHLDtNQj0o=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKYI8FLx4r2A9ol5JNs23abLIkWaEu/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8LG5tb2TnG3tLd/cHhUPj5pGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4eT27nffmTacCUf7DRhQUyGkkecEuuk1lM/4+NZv1zxqt4CeJ34OalAjka//NUbKJrGTFoqiDFd30tskBFtORVsVuqlhiWETsiQdR2VJGYmyBbXzvCFUwY4UtqVtHih/p7ISGzMNA5dZ0zsyKx6c/E/r5vaqBZkXCapZZIuF0WpwFbh+et4wDWjVkwdIVRzdyumI6IJtS6gkgvBX315nbSuqr5X9e+vK/VaHkcRzuAcLsGHG6jDHTSgCRTG8Ayv8IYUekHv6GPZWkD5zCn8Afr8Ae02j1A=</latexit><latexit sha1_base64="rV2oVf0yNqGRgyK4wTJhc85/KHM=">AAACEnicjVC7SgNBFL0bXzG+opY2g0GwCrsimDJgY6lgHhCXMDu5m0wyO7vMzApxyT9Y2PgrNiK2Vnb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFldW19o7hZ2tre2d0r7x80dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nPqte1Sax/LWjBP0I9qXPOSMGis1H7oZH0665YpbdWcgy8TLSQVy/C/eLX/e9WKWRigNE1Trjucmxs+oMpwJnJTuUo0JZSPax46lkkao/Wx20oScWKVHwljZJw2ZqT8nMhppPY4Cm4yoGehFbyr+5XVSE9b8jMskNSjZfFGYCmJiMu2H9LhCZsTYEsoUt38lbEAVZca2WLKne4uHLpPmWdVzq97NeaVeyzsrwhEcwyl4cAF1uIJraACDITzCM7w6T86L8+a8z6MFJ585hF9wPr4BpReWyQ==</latexit><latexit sha1_base64="rV2oVf0yNqGRgyK4wTJhc85/KHM=">AAACEnicjVC7SgNBFL0bXzG+opY2g0GwCrsimDJgY6lgHhCXMDu5m0wyO7vMzApxyT9Y2PgrNiK2Vnb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFldW19o7hZ2tre2d0r7x80dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nPqte1Sax/LWjBP0I9qXPOSMGis1H7oZH0665YpbdWcgy8TLSQVy/C/eLX/e9WKWRigNE1Trjucmxs+oMpwJnJTuUo0JZSPax46lkkao/Wx20oScWKVHwljZJw2ZqT8nMhppPY4Cm4yoGehFbyr+5XVSE9b8jMskNSjZfFGYCmJiMu2H9LhCZsTYEsoUt38lbEAVZca2WLKne4uHLpPmWdVzq97NeaVeyzsrwhEcwyl4cAF1uIJraACDITzCM7w6T86L8+a8z6MFJ585hF9wPr4BpReWyQ==</latexit><latexit sha1_base64="rV2oVf0yNqGRgyK4wTJhc85/KHM=">AAACEnicjVC7SgNBFL0bXzG+opY2g0GwCrsimDJgY6lgHhCXMDu5m0wyO7vMzApxyT9Y2PgrNiK2Vnb+jZNkC00sPDBwOOdc7twTJIJr47pfTmFldW19o7hZ2tre2d0r7x80dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nPqte1Sax/LWjBP0I9qXPOSMGis1H7oZH0665YpbdWcgy8TLSQVy/C/eLX/e9WKWRigNE1Trjucmxs+oMpwJnJTuUo0JZSPax46lkkao/Wx20oScWKVHwljZJw2ZqT8nMhppPY4Cm4yoGehFbyr+5XVSE9b8jMskNSjZfFGYCmJiMu2H9LhCZsTYEsoUt38lbEAVZca2WLKne4uHLpPmWdVzq97NeaVeyzsrwhEcwyl4cAF1uIJraACDITzCM7w6T86L8+a8z6MFJ585hF9wPr4BpReWyQ==</latexit>

· · ·<latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit>

· · ·<latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit>

· · ·<latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit>

· · ·<latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit>

· · ·<latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit><latexit sha1_base64="2KzYjvZ2DR9DdRWiTRlhmt5e48c=">AAACEnicjVC7SgNBFL3rM8ZX1NJmMQhWYVcEUwZsLBXMA5IlzM7OJmNmZ5aZu0JY8g8WNv6KjYitlZ1/4yTZQhMLDwwczjmXO/eEqeAGPe/LWVldW9/YLG2Vt3d29/YrB4ctozJNWZMqoXQnJIYJLlkTOQrWSTUjSShYOxxdTf32A9OGK3mH45QFCRlIHnNK0EqtHo0Umn6l6tW8Gdxl4hekCgX+F+9XPnuRolnCJFJBjOn6XopBTjRyKtik3MsMSwkdkQHrWipJwkyQz06auKdWidxYafskujP150ROEmPGSWiTCcGhWfSm4l9eN8O4HuRcphkySeeL4ky4qNxpP27ENaMoxpYQqrn9q0uHRBOKtsWyPd1fPHSZtM5rvlfzby+qjXrRWQmO4QTOwIdLaMA13EATKNzDIzzDq/PkvDhvzvs8uuIUM0fwC87HN1z/lp4=</latexit>

1
<latexit sha1_base64="QHzsrV+yTF5n8m/WTSsCnVjJDBA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyxuWK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr1SqNWh5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz92Z4yn</latexit><latexit sha1_base64="qdNm5FvSS/MfSxSWp4edmnmWHNA=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrsSiGXAxtKAeUCyhNnJ3WTI7OwyMyuEJV9gYeOv2IjY2tv5N06SLTSx8MDA4ZxzuXNPkAiujet+OYWNza3tneJuaW//4PCofHzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkZu53HlBpHst7M03Qj+hI8pAzaqzU9Ablilt1FyDrxMtJBXL8Lz4of/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1wzIxdWGZIwVvZJQxbqz4mMRlpPo8AmI2rGetWbi395vdSE137GZZIalGy5KEwFMTGZV0OGXCEzYmoJZYrbvxI2pooyYwss2dO91UPXSfuq6rlVr1mrNGp5Z0U4g3O4BA/q0IBbuIMWMEB4hGd4dZ6cF+fNeV9GC04+cwq/4Hx8A9LhlCA=</latexit><latexit sha1_base64="qdNm5FvSS/MfSxSWp4edmnmWHNA=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrsSiGXAxtKAeUCyhNnJ3WTI7OwyMyuEJV9gYeOv2IjY2tv5N06SLTSx8MDA4ZxzuXNPkAiujet+OYWNza3tneJuaW//4PCofHzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkZu53HlBpHst7M03Qj+hI8pAzaqzU9Ablilt1FyDrxMtJBXL8Lz4of/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1wzIxdWGZIwVvZJQxbqz4mMRlpPo8AmI2rGetWbi395vdSE137GZZIalGy5KEwFMTGZV0OGXCEzYmoJZYrbvxI2pooyYwss2dO91UPXSfuq6rlVr1mrNGp5Z0U4g3O4BA/q0IBbuIMWMEB4hGd4dZ6cF+fNeV9GC04+cwq/4Hx8A9LhlCA=</latexit><latexit sha1_base64="qdNm5FvSS/MfSxSWp4edmnmWHNA=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrsSiGXAxtKAeUCyhNnJ3WTI7OwyMyuEJV9gYeOv2IjY2tv5N06SLTSx8MDA4ZxzuXNPkAiujet+OYWNza3tneJuaW//4PCofHzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkZu53HlBpHst7M03Qj+hI8pAzaqzU9Ablilt1FyDrxMtJBXL8Lz4of/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1wzIxdWGZIwVvZJQxbqz4mMRlpPo8AmI2rGetWbi395vdSE137GZZIalGy5KEwFMTGZV0OGXCEzYmoJZYrbvxI2pooyYwss2dO91UPXSfuq6rlVr1mrNGp5Z0U4g3O4BA/q0IBbuIMWMEB4hGd4dZ6cF+fNeV9GC04+cwq/4Hx8A9LhlCA=</latexit> 0

<latexit sha1_base64="uKd9vUCVc0ptyBs+gl9KEJrJAC8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyx2WK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr1SqNWh5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz9044ym</latexit><latexit sha1_base64="XKbFUVRmYQyV9N3YuRJMo6TVO8E=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrsSiGXAxtKAeUCyhNnJ3WTI7OwyMyuEJV9gYeOv2IjY2tv5N06SLTSx8MDA4ZxzuXNPkAiujet+OYWNza3tneJuaW//4PCofHzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkZu53HlBpHst7M03Qj+hI8pAzaqzUdAflilt1FyDrxMtJBXL8Lz4of/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1wzIxdWGZIwVvZJQxbqz4mMRlpPo8AmI2rGetWbi395vdSE137GZZIalGy5KEwFMTGZV0OGXCEzYmoJZYrbvxI2pooyYwss2dO91UPXSfuq6rlVr1mrNGp5Z0U4g3O4BA/q0IBbuIMWMEB4hGd4dZ6cF+fNeV9GC04+cwq/4Hx8A9E4lB8=</latexit><latexit sha1_base64="XKbFUVRmYQyV9N3YuRJMo6TVO8E=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrsSiGXAxtKAeUCyhNnJ3WTI7OwyMyuEJV9gYeOv2IjY2tv5N06SLTSx8MDA4ZxzuXNPkAiujet+OYWNza3tneJuaW//4PCofHzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkZu53HlBpHst7M03Qj+hI8pAzaqzUdAflilt1FyDrxMtJBXL8Lz4of/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1wzIxdWGZIwVvZJQxbqz4mMRlpPo8AmI2rGetWbi395vdSE137GZZIalGy5KEwFMTGZV0OGXCEzYmoJZYrbvxI2pooyYwss2dO91UPXSfuq6rlVr1mrNGp5Z0U4g3O4BA/q0IBbuIMWMEB4hGd4dZ6cF+fNeV9GC04+cwq/4Hx8A9E4lB8=</latexit><latexit sha1_base64="XKbFUVRmYQyV9N3YuRJMo6TVO8E=">AAACDXicjVC7SgNBFL0bXzG+opY2g0GwCrsSiGXAxtKAeUCyhNnJ3WTI7OwyMyuEJV9gYeOv2IjY2tv5N06SLTSx8MDA4ZxzuXNPkAiujet+OYWNza3tneJuaW//4PCofHzS1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8HkZu53HlBpHst7M03Qj+hI8pAzaqzUdAflilt1FyDrxMtJBXL8Lz4of/aHMUsjlIYJqnXPcxPjZ1QZzgTOSv1UY0LZhI6wZ6mkEWo/W1wzIxdWGZIwVvZJQxbqz4mMRlpPo8AmI2rGetWbi395vdSE137GZZIalGy5KEwFMTGZV0OGXCEzYmoJZYrbvxI2pooyYwss2dO91UPXSfuq6rlVr1mrNGp5Z0U4g3O4BA/q0IBbuIMWMEB4hGd4dZ6cF+fNeV9GC04+cwq/4Hx8A9E4lB8=</latexit>

Stick Breaking Construction

· · ·<latexit sha1_base64="ggNYy28tHbW2zILQMm4kk1oYvY8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKMbPxdJmiFP2HJRlEmCisxfJ6HQnKGcWkKZFvZWwsZUU4Y2oIoNwVt9eZ10ruqeW/fuG7Vmo4ijDGdwDpfgwTU04Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8AqiGPIQ==</latexit><latexit sha1_base64="6YRBoV1l5LCMGigTXmiQrksI9mk=">AAACEnicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBmwsVQwD0iWMDs7m4yZ3Vlm7gphyT9Y2PgrNiK2Vnb+jZNkC00sPDBwOOdc7twTpFIYdN0vp7Syura+Ud6sbG3v7O5V9w9aRmWa8SZTUulOQA2XIuFNFCh5J9WcxoHk7WB0NfXbD1wboZI7HKfcj+kgEZFgFK3U6rFQoelXa27dnYEsE68gNSjwv3i/+tkLFctiniCT1Jiu56bo51SjYJJPKr3M8JSyER3wrqUJjbnx89lJE3JilZBEStuXIJmpPydyGhszjgObjCkOzaI3Ff/yuhlGl34ukjRDnrD5oiiTBBWZ9kNCoTlDObaEMi3sXwkbUk0Z2hYr9nRv8dBl0jqre27duz2vNc6LzspwBMdwCh5cQAOu4QaawOAeHuEZXp0n58V5c97n0ZJTzBzCLzgf31vLlpo=</latexit><latexit sha1_base64="6YRBoV1l5LCMGigTXmiQrksI9mk=">AAACEnicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBmwsVQwD0iWMDs7m4yZ3Vlm7gphyT9Y2PgrNiK2Vnb+jZNkC00sPDBwOOdc7twTpFIYdN0vp7Syura+Ud6sbG3v7O5V9w9aRmWa8SZTUulOQA2XIuFNFCh5J9WcxoHk7WB0NfXbD1wboZI7HKfcj+kgEZFgFK3U6rFQoelXa27dnYEsE68gNSjwv3i/+tkLFctiniCT1Jiu56bo51SjYJJPKr3M8JSyER3wrqUJjbnx89lJE3JilZBEStuXIJmpPydyGhszjgObjCkOzaI3Ff/yuhlGl34ukjRDnrD5oiiTBBWZ9kNCoTlDObaEMi3sXwkbUk0Z2hYr9nRv8dBl0jqre27duz2vNc6LzspwBMdwCh5cQAOu4QaawOAeHuEZXp0n58V5c97n0ZJTzBzCLzgf31vLlpo=</latexit><latexit sha1_base64="6YRBoV1l5LCMGigTXmiQrksI9mk=">AAACEnicjVC7SgNBFL0bXzG+opY2g0GwCrsiaBmwsVQwD0iWMDs7m4yZ3Vlm7gphyT9Y2PgrNiK2Vnb+jZNkC00sPDBwOOdc7twTpFIYdN0vp7Syura+Ud6sbG3v7O5V9w9aRmWa8SZTUulOQA2XIuFNFCh5J9WcxoHk7WB0NfXbD1wboZI7HKfcj+kgEZFgFK3U6rFQoelXa27dnYEsE68gNSjwv3i/+tkLFctiniCT1Jiu56bo51SjYJJPKr3M8JSyER3wrqUJjbnx89lJE3JilZBEStuXIJmpPydyGhszjgObjCkOzaI3Ff/yuhlGl34ukjRDnrD5oiiTBBWZ9kNCoTlDObaEMi3sXwkbUk0Z2hYr9nRv8dBl0jqre27duz2vNc6LzspwBMdwCh5cQAOu4QaawOAeHuEZXp0n58V5c97n0ZJTzBzCLzgf31vLlpo=</latexit>

<latexit sha1_base64="5wrev/aDQLSyftOc7rWBHyHOwCk=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqWxE1ItQ8OKxgv2AdlmyabYNzSZLMiuUpT/DiwdFvPprvPlvTNs9aOuDgcd7M8zMi1IpLPj+t1daW9/Y3CpvV3Z29/YPqodHbaszw3iLaalNN6KWS6F4CwRI3k0Np0kkeSca3838zhM3Vmj1CJOUBwkdKhELRsFJvX4qQoJvcRaSsFrz6/4ceJWQgtRQgWZY/eoPNMsSroBJam2P+CkEOTUgmOTTSj+zPKVsTIe856iiCbdBPj95is+cMsCxNq4U4Ln6eyKnibWTJHKdCYWRXfZm4n9eL4P4JsiFSjPgii0WxZnEoPHsfzwQhjOQE0coM8LditmIGsrApVRxIZDll1dJ+6JOrurk4bLWuCziKKMTdIrOEUHXqIHuURO1EEMaPaNX9OaB9+K9ex+L1pJXzByjP/A+fwCpH5An</latexit>⇡1 = u1
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K ! 1

Fig. 6. Illustrative implementation of IBP via stick breaking construction.

In this subsection, we turn our focus on non-parametric models, where the number of the involved

parameters in an adopted model is not considered to be known and fixed by the user but, in contrast,

it has to be learnt from the data during training. A common path to this direction is to assume that

the involved number of parameters is infinite (practically a very large number) and then leave it to the

algorithm to recover a finite set of parameters out of the, initially, infinite ones. To this end, one has to

involve priors that deal with infinite many parameters. The “true” number of parameters is recovered via

the associated posteriors.

1) Indian Buffet Process (IBP) Prior: We will introduce the IBP in a general formulation, and then

we will see how to adapt it to fit our needs in the context of designing DNNs. Let us first assume that

an Indian restaurant offers a very large number, K, of dishes and let K → ∞. There are L customers.

The first one selects a number of dishes, with some probability. The second customer, selects some of

the previously selected dishes with some probability and some new ones with another probability, and so

on till all, L, customers have been considered. In the context of designing NNs, customers are replaced

by the dimensions of the input (to each one of the layers) vector, and the infinite many dishes by the

number of nodes in a layer. Since we have assumed that the architecture is unknown, that is, the number

of nodes (neurons) in a layer, we consider infinite many of those. Then, following the rationale of IBP,

the first dimension, say, x1 is linked to some of the infinite nodes, with certain probabilities, respectively.

Then, the second dimension, say, x2 is linked to some of the previously linked nodes and to some new

ones, according to certain probabilities. This reasoning carries on, till the last dimension of the input

May 31, 2022 DRAFT



20

vector, xL, has been considered. As we will see soon, the IBP is a sparsity promoting prior, because out

of the infinite many nodes, only a small number of those is probabilistically selected.

In a more formal way, we adopt a binary random variable, zij ∈ {0, 1}, i = 1, 2, . . . , L and j = 1, 2, . . ..

If zij = 1, the i-th customer (i-th dimension) selects the j-th dish (is linked to the j-th node). On the

contrary, if zij = 0, the dish is not selected, (the i-th dimension is not linked to the j-th node). The

binary matrix Z that is defined from the elements zij is an infinite dimensional one and the IBP is a

prior that promotes zeros in such binary matrices.

One way to implement the IBP is via the so-called stick breaking construction. The goal is to populate

an infinite binary matrix, Z, with each element being zero or one. To this end, we first generate

hierarchically a sequence of, theoretically, infinite probability values, πj , j = 1, 2, · · · . To achieve this,

the Beta distribution is mobilized. The Beta distribution, e.g., [1], is defined in terms of two parameters.

For the IBP, we fix one of them to be equal to 1 and the other one, α, is left as a (hyper-)parameter,

which can either be pre-selected or learnt during training. Then, the following steps are in order:

uj ∼ Beta(uj |α, 1), πj =

j∏

l=1

ul, j = 1, 2, · · · , (28)

where, the notation ∼ indicates the sample drawn from a distribution. Then, the generated probabilities,

πj , are used to populate the matrix Z, by drawing samples from a Bernoulli distribution, see e.g., [1],

that generates an one, with probability πj and a zero with probability 1− πj , as

zij ∼ Bernoulli(zij |πj), (29)

for each i = 1, 2, · · · , L, as illustrated in Fig. 6. The Beta distribution generates numbers between [0, 1],

and from the above construction it is obvious that the sequence of probabilities {πj} goes rapidly to

zero, due to the product of quantities {ul} being less than one in magnitude. How fast this takes place

is controlled by α, which is known as the innovation or strength parameter of the IBP, see e.g., [1].

IV. THE ART OF PRIOR: SPARSITY-AWARE MODELING FOR THREE CASE STUDIES

In the previous section, we have introduced the indispensable ingredients for obtaining sparsity-aware

modeling under the Bayesian learning framework, namely the priors. In this section, we will demonstrate

how these priors can be incorporated into some popular data modeling and analysis tools to achieve

sparsity-promoting properties. Concretely, we will introduce sparsity-aware modeling for Bayesian deep

neural networks in Section IV-A, for Gaussian processes in Section IV-B, and for tensor decompositions

in Section IV-C.
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Fig. 7. Illustration of a deep fully connected network.

A. Sparsity-Aware Modeling for Bayesian Deep Neural Networks

Our focus in this section is to deal with sparsity-promoting techniques in order to prune DNNs. That

is, starting from a network with a large number of nodes, to optimally remove nodes and/or links. We

are going to follow both paths, namely the parametric one via the GSM priors and the non-parametric

one via the IBP prior.

1) Fundamentals of DNNs: Neural networks are learning machines that comprise a large number of

neurons, which are connected in a layer-wise fashion. After 2010 or so, neural networks with many

(more than three) hidden layers, known as deep neural networks, have dominated the field of machine

learning due to their remarkable representation power and the outstanding prediction performance for

various learning tasks. Since their introduction, one of the major tasks associated with their design has

been the so-called pruning. That is, to remove redundant nodes and links so that their size and, hence,

the number of the involved parameters is reduced. Of course, this is another name of what we have called

“sparsification” of the network. Over the years, a number of rather ad-hoc techniques have been proposed,

see e.g., [1], [19] for a review. In the most recent years, Bayesian techniques have been employed in a

more formal and theoretically pleasing way. These techniques comprise our interest in this article. We

will focus on the vanilla deep fully connected networks, yet, such techniques have been extended and

can be used for the case of, e.g., convolutional networks [2], [3].

The name “deep fully connected networks” stresses out that each node in any of the layers is directly

connected to every node of the previous layer. To state it in a more formal way, without loss of generality,

we consider a deep fully connected network consisting of F layers. The number of nodes in the f -th
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(1 ≤ f ≤ F − 1) layer is af . 3 For the i-th node in the f -th layer and the j-th node in the (f + 1)-th

layer, the link between them has a weight wfij , as illustrated in Fig. 7. The input vector to the (f + 1)-th

layer consists of the outputs from the previous layer, denoted as yf = [yf1 , y
f
2 , · · · , yfaf ]T , where yfi is the

output at the i-th node. Denote wf
j = [wf1j , w

f
2j , · · · , w

f
af j ]

T the vector that collects all the link weights

associated with the j-th node. Then the output of the j-th node is:

yf+1
j = g




af∑

i=1

wfijy
f
i


 = g

([
wf
j

]T
yf
)
, (30)

where g(·) is a non-linear transformation function (also called activation function), and the most widely

used ones include the rectified linear unit (ReLU) function, the sigmoid function, and the hyperbolic tanh

function, see e.g., [1].

2) Sparsity-Aware Modeling Using GSM Priors: The basic idea of this approach can be traced back

to the pioneering work [32] of D. J. MacKay in 1995. He pointed out that for a neural network with a

single hidden layer, the weights, each associated with a link between two nodes, can be treated as random

variables. The connection weights are associated with zero-mean Gaussian priors, typically with a shared

variance hyper-parameter. Then, appropriate (e.g., Gaussian) posteriors are learnt over the connection

weights, which can be used for inference at test time. The variance hyper-parameters of the imposed

Gaussian priors can be selected to be low enough, so that the corresponding connection weights exhibit

a priori the tendency of being concentrated around the postulated zero mean. This induces a sparsity

“bias” to the network. The major differences between the recent works [5], [6] and the early work [32]

lies in their adopted priors.

Let us consider a network with multiple hidden layers [5], [6], as illustrated in Fig. 8. For the i-th

node in the f -th layer and the j-th node in the (f + 1)-th layer, their link has a weight wfij . For each of

the random weights, we can adopt a sparsity-promoting GSM prior so that

p(wfij) =

∫
N (wfij ; 0, ζfij)p(ζ

f
ij ;η)dζfij , (31)

in which each functional form of p(ζfij ;η) in Table I corresponds to a GSM prior. Particularly, the Normal-

Jeffreys prior and the horseshoe prior were used in [5], [6]. Next, we show how to conduct node-wise

sparsity-aware modeling (for all the weights connected to that node). Inspired by the idea reported in

[32], we group the weights {wfij}a
f+1

j=1 connected to the i-th node, and assign a common scale parameter

3Note that f in af stands for the f -the layer and acts as a superscript. It does not denote a to the power of f .
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i2<latexit sha1_base64="s+KO/QBAKvslxUezWkeNyUJXRD4=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY8FLx4r2A9oY9lsN+3SzSbuTpQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsYXU/91iPXRsTqDscJ9yM6UCIUjKKV2k+9TFQn92GvVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2b0TcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/EyoJEWu2HxRmEqCMZk+T/pCc4ZybAllWthbCRtSTRnaiIo2BG/x5WXSrFY8t+LdXpRr53kcBTiGEzgDDy6hBjdQhwYwkPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MHCCOP4Q==</latexit><latexit sha1_base64="s+KO/QBAKvslxUezWkeNyUJXRD4=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY8FLx4r2A9oY9lsN+3SzSbuTpQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsYXU/91iPXRsTqDscJ9yM6UCIUjKKV2k+9TFQn92GvVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2b0TcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/EyoJEWu2HxRmEqCMZk+T/pCc4ZybAllWthbCRtSTRnaiIo2BG/x5WXSrFY8t+LdXpRr53kcBTiGEzgDDy6hBjdQhwYwkPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MHCCOP4Q==</latexit><latexit sha1_base64="s+KO/QBAKvslxUezWkeNyUJXRD4=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY8FLx4r2A9oY9lsN+3SzSbuTpQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsYXU/91iPXRsTqDscJ9yM6UCIUjKKV2k+9TFQn92GvVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2b0TcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/EyoJEWu2HxRmEqCMZk+T/pCc4ZybAllWthbCRtSTRnaiIo2BG/x5WXSrFY8t+LdXpRr53kcBTiGEzgDDy6hBjdQhwYwkPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MHCCOP4Q==</latexit><latexit sha1_base64="s+KO/QBAKvslxUezWkeNyUJXRD4=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJIUQY8FLx4r2A9oY9lsN+3SzSbuTpQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsYXU/91iPXRsTqDscJ9yM6UCIUjKKV2k+9TFQn92GvVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2b0TcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/EyoJEWu2HxRmEqCMZk+T/pCc4ZybAllWthbCRtSTRnaiIo2BG/x5WXSrFY8t+LdXpRr53kcBTiGEzgDDy6hBjdQhwYwkPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MHCCOP4Q==</latexit>
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<latexit sha1_base64="OeSaNOu+OnQVFV71UmTSTmNtuE0=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRZBUMquCHosePFYwX5Auy3ZNNuGJtklyVrKsv/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+PmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0F47uZ33qiSrNIPpppTH2Bh5KFjGBjpd6knzLcS8MLL8t6Yb9ccavuHGiVeDmpQI56v/zVHUQkEVQawrHWHc+NjZ9iZRjhNCt1E01jTMZ4SDuWSiyo9tP51Rk6s8oAhZGyJQ2aq78nUiy0norAdgpsRnrZm4n/eZ3EhLd+ymScGCrJYlGYcGQiNIsADZiixPCpJZgoZm9FZIQVJsYGVbIheMsvr5LmVdVzq97DdaV2mcdRhBM4hXPw4AZqcA91aAABBc/wCm/OxHlx3p2PRWvByWeO4Q+czx9yt5Jk</latexit><latexit sha1_base64="OeSaNOu+OnQVFV71UmTSTmNtuE0=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRZBUMquCHosePFYwX5Auy3ZNNuGJtklyVrKsv/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+PmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0F47uZ33qiSrNIPpppTH2Bh5KFjGBjpd6knzLcS8MLL8t6Yb9ccavuHGiVeDmpQI56v/zVHUQkEVQawrHWHc+NjZ9iZRjhNCt1E01jTMZ4SDuWSiyo9tP51Rk6s8oAhZGyJQ2aq78nUiy0norAdgpsRnrZm4n/eZ3EhLd+ymScGCrJYlGYcGQiNIsADZiixPCpJZgoZm9FZIQVJsYGVbIheMsvr5LmVdVzq97DdaV2mcdRhBM4hXPw4AZqcA91aAABBc/wCm/OxHlx3p2PRWvByWeO4Q+czx9yt5Jk</latexit><latexit sha1_base64="OeSaNOu+OnQVFV71UmTSTmNtuE0=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRZBUMquCHosePFYwX5Auy3ZNNuGJtklyVrKsv/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+PmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0F47uZ33qiSrNIPpppTH2Bh5KFjGBjpd6knzLcS8MLL8t6Yb9ccavuHGiVeDmpQI56v/zVHUQkEVQawrHWHc+NjZ9iZRjhNCt1E01jTMZ4SDuWSiyo9tP51Rk6s8oAhZGyJQ2aq78nUiy0norAdgpsRnrZm4n/eZ3EhLd+ymScGCrJYlGYcGQiNIsADZiixPCpJZgoZm9FZIQVJsYGVbIheMsvr5LmVdVzq97DdaV2mcdRhBM4hXPw4AZqcA91aAABBc/wCm/OxHlx3p2PRWvByWeO4Q+czx9yt5Jk</latexit><latexit sha1_base64="OeSaNOu+OnQVFV71UmTSTmNtuE0=">AAAB9XicbVBNSwMxEJ2tX7V+VT16CRZBUMquCHosePFYwX5Auy3ZNNuGJtklyVrKsv/DiwdFvPpfvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+PmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0F47uZ33qiSrNIPpppTH2Bh5KFjGBjpd6knzLcS8MLL8t6Yb9ccavuHGiVeDmpQI56v/zVHUQkEVQawrHWHc+NjZ9iZRjhNCt1E01jTMZ4SDuWSiyo9tP51Rk6s8oAhZGyJQ2aq78nUiy0norAdgpsRnrZm4n/eZ3EhLd+ymScGCrJYlGYcGQiNIsADZiixPCpJZgoZm9FZIQVJsYGVbIheMsvr5LmVdVzq97DdaV2mcdRhBM4hXPw4AZqcA91aAABBc/wCm/OxHlx3p2PRWvByWeO4Q+czx9yt5Jk</latexit>
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<latexit sha1_base64="rH3j8+s2asCoSMG/7OaNj3XzrAk=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQUUtGBF0W3LisYB/QpmEynbRDJ5MwM1FLyK+4caGIW3/EnX/jtM1CWw9cOJxzL/fe48ecKe0431ZhZXVtfaO4Wdra3tnds/fLLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3745up336gUrFI3OtJTN0QDwULGMHaSJ5dfvRSVsX9NDhF2Tk6yfqBZ1ecmjMDXCYoJxWQo+HZX71BRJKQCk04VqqLnFi7KZaaEU6zUi9RNMZkjIe0a6jAIVVuOrs9g8dGGcAgkqaEhjP190SKQ6UmoW86Q6xHatGbiv953UQH127KRJxoKsh8UZBwqCM4DQIOmKRE84khmEhmboVkhCUm2sRVMiGgxZeXSeuihpwaurus1M/yOIrgEByBKkDgCtTBLWiAJiDgCTyDV/BmZdaL9W59zFsLVj5zAP7A+vwBmqKTbA==</latexit><latexit sha1_base64="rH3j8+s2asCoSMG/7OaNj3XzrAk=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQUUtGBF0W3LisYB/QpmEynbRDJ5MwM1FLyK+4caGIW3/EnX/jtM1CWw9cOJxzL/fe48ecKe0431ZhZXVtfaO4Wdra3tnds/fLLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3745up336gUrFI3OtJTN0QDwULGMHaSJ5dfvRSVsX9NDhF2Tk6yfqBZ1ecmjMDXCYoJxWQo+HZX71BRJKQCk04VqqLnFi7KZaaEU6zUi9RNMZkjIe0a6jAIVVuOrs9g8dGGcAgkqaEhjP190SKQ6UmoW86Q6xHatGbiv953UQH127KRJxoKsh8UZBwqCM4DQIOmKRE84khmEhmboVkhCUm2sRVMiGgxZeXSeuihpwaurus1M/yOIrgEByBKkDgCtTBLWiAJiDgCTyDV/BmZdaL9W59zFsLVj5zAP7A+vwBmqKTbA==</latexit><latexit sha1_base64="rH3j8+s2asCoSMG/7OaNj3XzrAk=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQUUtGBF0W3LisYB/QpmEynbRDJ5MwM1FLyK+4caGIW3/EnX/jtM1CWw9cOJxzL/fe48ecKe0431ZhZXVtfaO4Wdra3tnds/fLLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3745up336gUrFI3OtJTN0QDwULGMHaSJ5dfvRSVsX9NDhF2Tk6yfqBZ1ecmjMDXCYoJxWQo+HZX71BRJKQCk04VqqLnFi7KZaaEU6zUi9RNMZkjIe0a6jAIVVuOrs9g8dGGcAgkqaEhjP190SKQ6UmoW86Q6xHatGbiv953UQH127KRJxoKsh8UZBwqCM4DQIOmKRE84khmEhmboVkhCUm2sRVMiGgxZeXSeuihpwaurus1M/yOIrgEByBKkDgCtTBLWiAJiDgCTyDV/BmZdaL9W59zFsLVj5zAP7A+vwBmqKTbA==</latexit><latexit sha1_base64="rH3j8+s2asCoSMG/7OaNj3XzrAk=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQUUtGBF0W3LisYB/QpmEynbRDJ5MwM1FLyK+4caGIW3/EnX/jtM1CWw9cOJxzL/fe48ecKe0431ZhZXVtfaO4Wdra3tnds/fLLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3745up336gUrFI3OtJTN0QDwULGMHaSJ5dfvRSVsX9NDhF2Tk6yfqBZ1ecmjMDXCYoJxWQo+HZX71BRJKQCk04VqqLnFi7KZaaEU6zUi9RNMZkjIe0a6jAIVVuOrs9g8dGGcAgkqaEhjP190SKQ6UmoW86Q6xHatGbiv953UQH127KRJxoKsh8UZBwqCM4DQIOmKRE84khmEhmboVkhCUm2sRVMiGgxZeXSeuihpwaurus1M/yOIrgEByBKkDgCtTBLWiAJiDgCTyDV/BmZdaL9W59zFsLVj5zAP7A+vwBmqKTbA==</latexit>
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<latexit sha1_base64="PcrNhHeNMj0h99tREoY0RFUFMgY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ie0sWy2m3bpbhJ2J0IN/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7G1zO//ci1EXF0h5OE+4oOIxEKRtFK970njrQvHsJ+ueJW3TnIKvFyUoEcjX75qzeIWap4hExSY7qem6CfUY2CST4t9VLDE8rGdMi7lkZUceNn84On5MwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYZXfiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GZVsCN7yy6ukdVH13Kp3W6vUa3kcRTiBUzgHDy6hDjfQgCYwUPAMr/DmaOfFeXc+Fq0FJ585hj9wPn8A2u6QYg==</latexit><latexit sha1_base64="PcrNhHeNMj0h99tREoY0RFUFMgY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ie0sWy2m3bpbhJ2J0IN/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7G1zO//ci1EXF0h5OE+4oOIxEKRtFK970njrQvHsJ+ueJW3TnIKvFyUoEcjX75qzeIWap4hExSY7qem6CfUY2CST4t9VLDE8rGdMi7lkZUceNn84On5MwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYZXfiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GZVsCN7yy6ukdVH13Kp3W6vUa3kcRTiBUzgHDy6hDjfQgCYwUPAMr/DmaOfFeXc+Fq0FJ585hj9wPn8A2u6QYg==</latexit><latexit sha1_base64="PcrNhHeNMj0h99tREoY0RFUFMgY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ie0sWy2m3bpbhJ2J0IN/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7G1zO//ci1EXF0h5OE+4oOIxEKRtFK970njrQvHsJ+ueJW3TnIKvFyUoEcjX75qzeIWap4hExSY7qem6CfUY2CST4t9VLDE8rGdMi7lkZUceNn84On5MwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYZXfiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GZVsCN7yy6ukdVH13Kp3W6vUa3kcRTiBUzgHDy6hDjfQgCYwUPAMr/DmaOfFeXc+Fq0FJ585hj9wPn8A2u6QYg==</latexit><latexit sha1_base64="PcrNhHeNMj0h99tREoY0RFUFMgY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Ie0sWy2m3bpbhJ2J0IN/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7G1zO//ci1EXF0h5OE+4oOIxEKRtFK970njrQvHsJ+ueJW3TnIKvFyUoEcjX75qzeIWap4hExSY7qem6CfUY2CST4t9VLDE8rGdMi7lkZUceNn84On5MwqAxLG2laEZK7+nsioMmaiAtupKI7MsjcT//O6KYZXfiaiJEUescWiMJUEYzL7ngyE5gzlxBLKtLC3EjaimjK0GZVsCN7yy6ukdVH13Kp3W6vUa3kcRTiBUzgHDy6hDjfQgCYwUPAMr/DmaOfFeXc+Fq0FJ585hj9wPn8A2u6QYg==</latexit>
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<latexit sha1_base64="2DsHKERi7HBropg8DjaxZ0g4UrU=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSFEGPBS8eK9gPaGLYbDft0s0m7E6UGnrxr3jxoIhXf4Y3/43bNgdtfTDweG+GmXlhKrgGx/m2Siura+sb5c3K1vbO7p69f9DWSaYoa9FEJKobEs0El6wFHATrpoqROBSsE46upn7nninNE3kL45T5MRlIHnFKwEiBfeQ9MiABv4uwp/hgCESp5AE7gV11as4MeJm4BamiAs3A/vL6Cc1iJoEKonXPdVLwc6KAU8EmFS/TLCV0RAasZ6gkMdN+Pntggk+N0sdRokxJwDP190ROYq3HcWg6YwJDvehNxf+8XgbRpZ9zmWbAJJ0vijKBIcHTNHCfK0ZBjA0hVHFzK6ZDoggFk1nFhOAuvrxM2vWa69Tcm/Nqo17EUUbH6ASdIRddoAa6Rk3UQhRN0DN6RW/Wk/VivVsf89aSVcwcoj+wPn8AYa6WMg==</latexit><latexit sha1_base64="2DsHKERi7HBropg8DjaxZ0g4UrU=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSFEGPBS8eK9gPaGLYbDft0s0m7E6UGnrxr3jxoIhXf4Y3/43bNgdtfTDweG+GmXlhKrgGx/m2Siura+sb5c3K1vbO7p69f9DWSaYoa9FEJKobEs0El6wFHATrpoqROBSsE46upn7nninNE3kL45T5MRlIHnFKwEiBfeQ9MiABv4uwp/hgCESp5AE7gV11as4MeJm4BamiAs3A/vL6Cc1iJoEKonXPdVLwc6KAU8EmFS/TLCV0RAasZ6gkMdN+Pntggk+N0sdRokxJwDP190ROYq3HcWg6YwJDvehNxf+8XgbRpZ9zmWbAJJ0vijKBIcHTNHCfK0ZBjA0hVHFzK6ZDoggFk1nFhOAuvrxM2vWa69Tcm/Nqo17EUUbH6ASdIRddoAa6Rk3UQhRN0DN6RW/Wk/VivVsf89aSVcwcoj+wPn8AYa6WMg==</latexit><latexit sha1_base64="2DsHKERi7HBropg8DjaxZ0g4UrU=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSFEGPBS8eK9gPaGLYbDft0s0m7E6UGnrxr3jxoIhXf4Y3/43bNgdtfTDweG+GmXlhKrgGx/m2Siura+sb5c3K1vbO7p69f9DWSaYoa9FEJKobEs0El6wFHATrpoqROBSsE46upn7nninNE3kL45T5MRlIHnFKwEiBfeQ9MiABv4uwp/hgCESp5AE7gV11as4MeJm4BamiAs3A/vL6Cc1iJoEKonXPdVLwc6KAU8EmFS/TLCV0RAasZ6gkMdN+Pntggk+N0sdRokxJwDP190ROYq3HcWg6YwJDvehNxf+8XgbRpZ9zmWbAJJ0vijKBIcHTNHCfK0ZBjA0hVHFzK6ZDoggFk1nFhOAuvrxM2vWa69Tcm/Nqo17EUUbH6ASdIRddoAa6Rk3UQhRN0DN6RW/Wk/VivVsf89aSVcwcoj+wPn8AYa6WMg==</latexit><latexit sha1_base64="2DsHKERi7HBropg8DjaxZ0g4UrU=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksgqeSFEGPBS8eK9gPaGLYbDft0s0m7E6UGnrxr3jxoIhXf4Y3/43bNgdtfTDweG+GmXlhKrgGx/m2Siura+sb5c3K1vbO7p69f9DWSaYoa9FEJKobEs0El6wFHATrpoqROBSsE46upn7nninNE3kL45T5MRlIHnFKwEiBfeQ9MiABv4uwp/hgCESp5AE7gV11as4MeJm4BamiAs3A/vL6Cc1iJoEKonXPdVLwc6KAU8EmFS/TLCV0RAasZ6gkMdN+Pntggk+N0sdRokxJwDP190ROYq3HcWg6YwJDvehNxf+8XgbRpZ9zmWbAJJ0vijKBIcHTNHCfK0ZBjA0hVHFzK6ZDoggFk1nFhOAuvrxM2vWa69Tcm/Nqo17EUUbH6ASdIRddoAa6Rk3UQhRN0DN6RW/Wk/VivVsf89aSVcwcoj+wPn8AYa6WMg==</latexit>

Fig. 8. Illustration of node-wise sparsity-aware modeling for DNNs using GSM priors.

ζfi to their GSM priors, i.e., ζfij = ζfi ,∀j. Then we have the prior modeling for the i-th node related
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Furthermore, assuming that the nodes in the f -th layer are mutually independent, we obtain the prior

modeling for all the weights {{wfij}a
f

i=1}a
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j=1 forwarded from the f -th layer:
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f+1

j=1 ) =

af∏

i=1

∫ af+1∏

j=1

N (wfij ; 0, ζfi )p(ζfi ;η)dζfi . (33)

By this modeling strategy, the weights {wfij}a
f+1

j=1 related to the i-th node are tied together in the sense

that when ζfi (a single scalar value) goes to zero, the associated weights {wfij}a
f+1

j=1 all become negligible.

This makes the i-th node in the f -th layer disconnected to the (f + 1)-th layer, and thus blocks the

information flow. Together with the sparsity-promoting nature of GSM priors, the prior derived in (33)

inclines a lot of nodes to be removed from the DNN without degrading the data fitting performance. This

leads to the node-wise sparsity-aware modeling for deep fully connected neural networks. Of course, as
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Fig. 9. Illustration of link-wise sparsity-aware modeling for deep neural networks using IBP prior.

it is always the case with Bayesian learning, the goal is to learn the corresponding posterior distributions,

and node removal is based on the learnt values for the respective means and variances.

3) Sparsity-Aware Modeling Using IBP Prior: The previous approach on imposing sparsity inherits

a major drawback that is shared by all techniques for designing DNNs. That is, the number of nodes

per layer has to be specified and pre-selected. Of course, one may say that we can choose a very large

number of nodes and then harness “sparsity” to prune the network. However, if one overdoes it, he/she

soon runs into problems due to over-parameterization. In contrast, we are now going to turn our attention

to non-parametric techniques. We are going to assume that the nodes per layer are theoretically infinite

(in practice a large enough number) and then use the IBP prior to enforce sparsity.

In line with what has been said while introducing the IBP (SectionIII-C1), we multiply each weight,

i.e., wfij , with a corresponding auxiliary (hidden) binary random variable, zfij . The required priors for

these variables, {{zfij}a
f

i=1}a
f+1

j=1 are generated via the IBP prior. In particular, we define a binary matrix

Zf ∈ Raf×af+1

, with its (ij)-th element being zfij for the f -th layer. Due to the sparsity-promoting nature

of IBP prior, most elements in Zf tend to be zero, nulling the corresponding weights in {{wfij}a
f

i=1}a
f+1

j=1 ,

due to the involved multiplication. This leads to an alternative sparsity-promoting modeling for DNNs

[2], [3].

The stick breaking construction for the IBP prior was utilized since it turns out to be readily amenable to
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variational inference. This is a desirable property that facilitates both training and inference through recent

advances in black box variational inference, namely stochastic gradient variational Bayes, as explained

in Section V-D. For each i, the considered hierarchical construction reads as follows:

ufj ∼ Beta(ufj |α, 1), πfj =

j∏

l=1

ufl , zfij ∼ Bernoulli(zfij |π
f
j ). (34)

During training, posterior estimates of the respective probabilities are obtained, which then allow for a

naturally-arising component omission (link pruning) mechanism by introducing a cut-off threshold τ ; any

link/weight with inferred posterior below this threshold value is deemed unnecessary and can be safely

omitted from computations. This inherent capability renders the considered approach a fully automatic,

data-driven, principled paradigm for sparsity-aware learning based on explicit inference of component

utility based on dedicated latent variables.

By utilizing the aforementioned construction, we can easily incorporate the IBP mechanism in conven-

tional ReLU-based networks and perform inference. However, the flexibility of the link-wise formulation

allows us to go one step further.

In recent works, the stick-breaking IBP prior has been employed in conjunction with a radically

different, biologically-inspired and competition-based activation, namely the stochastic local winner-takes-

all (LWTA) [2], [3]. In the general LWTA context, neurons in a conventional hidden layer are replaced

by LWTA blocks comprising competing linear units. In other words, each node comprises a set of linear

(inner product) units. When presented with an input, each unit in each block computes its activation;

the unit with the strongest activation is deemed to be the winner and passes its output to the next layer,

while the rest are inhibited to silence, i.e., the zero value. This is how non-linearity is achieved.

This deterministic winner selection, known as hard LTWA, is the standard form of an LTWA. However

in [2], a new variant was proposed to replace the hard LTWA by a novel stochastic adaptation of the

competition mechanism implemented via a competitive random sampling procedure founded on Bayesian

arguments. To be more specific, let a layer in the NN that comprises af = L inputs, i.e., xi, i = 1, 2, . . . L,

where we use x to denote the input to any layer in order to simplify the discussion. Also, assume that the

number of LWTA blocks in the layer is af+1 = K. We also relax the notation on the number of layer f ,

and our analysis refers to any node of any layer. Each LTWA block comprises J linear units, each one

associated with a corresponding weight, wikj , i = 1, 2, . . . L, k = 1, 2, . . . ,K, j = 1, 2 . . . , J . Consider

the k-th LTWA block. We introduce an auxiliary latent variable, ξkj , and the output of the corresponding

j-th linear unit in the k-th block is given by,

ykj = ξkjw
T
kjx = ξkj

L∑

i=1

wikjxi, ξkj ∈ {0, 1},
J∑

j=1

ξkj = 1. (35)
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Fig. 10. A graphical illustration of the LWTA and IBP-based architecture. Bold edges denote active (effective)

connections (with zfik = 1); nodes with bold contours denote winner units, i.e., that correspond to ξ = 1 (we do

not use ξfkj to unclutter notation); rectangles denote LWTA blocks. For simplicity in the figure, each LWTA block

comprises two (J = 2) competing linear units, k = 1, 2, . . . ,K.

In other words, the outputs of the linear units are either the respective inner product between the input

vector and the associated weight vector or zero, depending on the value of ξkj , which can be either zero

or one. Furthermore, only one of the ξ’s in a block can be one, and the rest are zero. Thus, we can

associate with each LWTA block, a vector ξk ∈ RJ , with only one of its elements being one and the

rest being zero, see Fig. 10. In the ML jargon, this is known as one-hot vector and can be denoted as

ξk ∈ one hot(J). If we stack together all the ξk, k = 1, 2, . . . ,K, for the specific layer together, we

can write, ξ ∈ one hot(J)K (strictly speaking ξa
f+1 ∈ one hot(J)K).

In the stochastic LTWA, all ξ’s are treated as binary random variables. The respective probabilities,

which control the firing (corresponding ξ = 1) of each linear unit within a single LTWA, are computed

via a softmax type of operation, see e.g., [33], [1], that is,

Pnkj =
exp(hnkj)∑J
j=1 exp(hnkj)

, hnkj =

L∑

i=1

(zikwikj)xni. (36)

Note that in the above equation, the firing probability of a linear unit depends on both the input, xn,
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and on whether the link to the corresponding LWTA block is active or not (determined by the value of

the corresponding utility variable zik). Basically, the stochastic LWTA introduces a lateral competition

among units in the same layer. How the w’s as well as the corresponding utility binary variables are

learnt is provided in Section V-D. A graphical illustration of the considered approach is depicted in Fig.

10. Note that as the input changes, a different subnetwork, via different connected links, may be followed,

to pass the input information to the output, with high probability. This is how nonlinearity is achieved

in the context of the stochastic LWTA blocks.

B. Sparsity-Aware Modeling for GPs

We already discussed in Section II-C that the kernel function determines, to a large extent, the expressive

power of the GP model. More specifically, the kernel function profoundly controls the characteristics (e.g.,

smoothness and periodicity) of a GP. In order to provide a kernel function with more expressive power

and adaptive to any given dataset, one way is to expand the kernel function as a linear combination of

Q subkernels/basis kernels, i.e.,

k(x,x′) =

Q∑

i=1

αiki(x,x
′), (37)

where the weights, αi, i = 1, 2, · · · , Q, can either be set manually or be optimized. Each one of these

subkernels can be any one of the known kernels or any function that admits the properties that define a

kernel, see e.g., [19]. One may consider to construct such a kernel either in the original input domain

or in the frequency domain. The most straightforward way is to linearly combine a set of elementary

kernels, such as the SE kernel, rational quadratic kernel, periodic kernel, etc., with varying kernel hyper-

parameters in the original input domain, see e.g., [24], [25], [34]. For high-dimensional inputs, one can

first detect pairwise interactions between the inputs and for each interaction pair adopt an elementary

kernel or an advanced deep kernel [16]. Such resulting kernel belongs essentially to the Analysis-of-

Variance (ANOVA) family as surveyed in [1], which has a hierarchical structure and good interpretability.

Alternatively, one may perform optimal kernel design in the frequency domain by using the idea of sparse

spectrum kernel representation. Due to its solid theoretical foundation, in this paper, we will focus on

the sparse spectrum kernel representation and review some representative works, such as [7], [35], [36],

at the end of this subsection.

1) Rationale behind Sparsity-Awareness: The corresponding GP model with the kernel form in (37)

can be regarded as a linearly-weighted sum of Q independent GPs. In other words, we can assume

that the underlying function takes the form f(x) =
∑Q

i=1 fi(x), where fi(x) ∼ GP(0, αiki(x,x
′)), for

i = 1, 2, · · · , Q. In practice, Q is selected to be a large value compared to the “true” number of the
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underlying effective components that generated the data, whose exact value is not known in practice.

In the sequel, one can mobilize the ARD philosophy (see Section III-B), during the evidence function

optimization, to drive all unnecessary sub-kernels to zero, namely promoting sparsity on α. To this end,

let us first establish a bridge between the non-parametric GP model and the Bayesian linear regression

model that was considered in Section II-B.

From the theory of kernels, see e.g., [1], [19], [37], each one of the subkernel functions can be written

as the inner product of the corresponding feature mapping function, namely, ki(x,x′) = φTi (x)φi(x
′),

where φi(x) : RL 7→ RL′ and it is often assumed L′ � L. As a matter of fact, the feature mapping

function results by fixing one of the arguments of the kernel function and making it a function of a single

argument, i.e., φi(x) = ki(x, ·), where “·” denotes the free variable(s) of the function and is filled by

x′ before. In general, φi(x) is a function. However, in practice, if needed, this can be approximated by

a very high dimensional vector constructed via the famous random Fourier feature approximation [38],

[1]. Then, each independent GP process, fi(x) ∼ GP(0, αiki(x,x
′)), by mobilizing the definition of the

covariance matrix, can be equivalently interpreted as fi(x) , θTi φi(x), where the weights, θi, of size

L′ × 1, are assumed to follow a zero-mean Gaussian distribution, i.e., θi ∼ N (0, αiI). Therefore, one

can alternatively write f(x) =
∑Q

i=1 θ
T
i φi(x), where θi and θj are assumed to be mutually independent

for i 6= j. Essentially, a Gaussian process with such kernel configuration is a special case of the more

general sparse linear model family, which can also incorporate, apart from a Gaussian prior, heavy-tailed

priors to promote sparsity such as those surveyed in Section III-B . A more detailed presentation of

sparse linear models can be found in some early references, such as [31], [39].

As we mentioned before, the GP model hyper-parameters can be optimized through maximizing the

logarithm of the evidence function, L(η) , log p(y;η), and using (21), we obtain:

η̂ = arg max
η

logN (y; 0, β−1I +

Q∑

i=1

αiKi(X,X))

≡ arg min
η



log det

(
β−1I +

Q∑

i=1

αiKi(X,X)

)
+ yT

(
β−1I +

Q∑

i=1

αiKi(X,X)

)−1

y



 (38)

≡ arg min
η



log det

(
β−1I +

Q∑

i=1

αiΦi(X)ΦT
i (X)

)
+ yT

(
β−1I +

Q∑

i=1

αiΦi(X)ΦT
i (X)

)−1

y



 ,

(39)

where η = [αT , β]T , and (38) in the second line corresponds to the original GP model, and (39) in the

third line corresponds to the equivalent Bayesian linear model mentioned above. Note that Ki(X,X)

represents the N×N kernel matrix of ki(x,x′) evaluated for all the training input pairs, while Φi(X) ,
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[φi(x1), φi(x2), · · · , φi(xN )]T , of size N × L′, contains the explicit mapping vectors evaluated at the

training data. In the sequel, they are denoted as Ki and Φi for brevity.

Mathematical proof of the sparsity property follows that of the relevance vector machine (RVM) [40]

for the classic sparse linear model. Let us focus on the last expression in (39), which involves both the

log-determinant and the inverse of the overall covariance matrix, C, and mathematically,

C = β−1I +

Q∑

m=1,m 6=i
αmΦmΦT

m + αiΦiΦ
T
i = C−i + αiΦiΦ

T
i , (40)

where we have separated the i-th subkernel from the rest. For clarity, let us focus on the kernel hyper-

parameters, α = [α1, α2, · · · , αQ]T , namely we regard β as known and remove it from η. Applying the

classic matrix identities [24], and inserting the results back to (39), we get L(α) = L(α−i) + γ(αi),

where L(α−i) is simply the evidence function with the i-th subkernel removed, and the newly introduced

quantity γ(αi) is

γ (αi) , −
1

2
ln(αi)−

1

2
log
∣∣∣I + αiΦ

>
i C
−1
−i Φi

∣∣∣+ 1

2
y>C−1

−i Φi

(
α−1
i I + Φ>i C

−1
−i Φi

)−1
Φ>i C

−1
−i y. (41)

It is not difficult to verify that the evidence maximization problem in (39) boils down to maximizing the

γ (αi) when fixing the rest of the parameters to their previous estimates. This means that we can solve

for the hyper-parameters in a sequential manner. Taking the gradient of γ (αi) with respect to the scalar

parameter αi and setting it to zero gives the global maximum as can be verified by its second order

derivative. Interestingly, the solution to αi is either zero or a positive value, mainly depending on the

relevance between the i-th subkernel function and the observed data [19]. Only if their relevance is high

enough, αi will take a non-zero, positive value. This explains the sparsity-promoting rationale behind the

method. In Section V, we will provide an advanced numerical method for solving the hyper-parameters

that maximize the evidence function.

2) Sparse Spectrum Kernel Representation: At the beginning of this subsection, we expressed kernel

expansion in terms of a number of subkernels and introduced two major paths (either in the original

input domain or in the frequency domain). In the sequel, we turn our focus to the frequency domain

representation of a kernel function and on techniques that promote sparsity in the frequency domain,

leading to the sparse spectrum kernel representation.

To start with, it is assumed that the underlying function only has a few effective frequency bands/points

in the real physical world. Second, the kernel function takes a linearly-weighted sum of basis functions,

similar to the ARD method for linear parametric models, thus only a small number of which are supposed

to be relevant to the given data from the algorithmic point of view. Sparse solutions can be obtained

from maximizing the associated evidence function as will be introduced in Section V.
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For ease of narration, we constrain ourselves to one-dimensional input space, namely, x ∈ R1, but

the idea can be easily extended to the multi-dimensional input space. Often, we have x = t for one-

dimensional time series modeling.

The earliest sparse spectrum kernel representation was proposed in [35] and developed upon a Bayesian

linear regression model with trigonometric basis functions, namely,

f(x) =

Q∑

i=1

ai cos(2πωix) + bi sin(2πωix), (42)

where {cos(2πωix), sin(2πωix)} constitute one pair of basis functions parameterized in terms of the

center frequencies ωi, i ∈ {1, 2, · · · , Q}, and the random weights, ai and bi are independent and follow

the same Gaussian distribution, N (0, σ2
0/Q).4 Under such assumptions, f(x) can be regarded as a GP

according to Section II-C, and the corresponding covariance/kernel function can be easily derived as

k(x, x′) =
σ2

0

Q
φT (x)φ(x′) =

σ2
0

Q

Q∑

i=1

cos(2πωi(x− x′)), (43)

where the feature mapping vector φ(x) contains all Q pairs of trigonometric basis functions. Usually, we

favor a large value of Q, well exceeding the expected number of effective components. If the frequency

points are randomly sampled from the underlying spectral density, denoted by S̃(ω), then (43) is equivalent

to the random Fourier feature approximation of a stationary kernel function [38]. However in [35], the

center frequencies are optimized through maximizing the evidence function. As it is claimed in the paper,

such additional flexibility of the kernel obtained through optimization can significantly improve the fitting

performance as it enables automatic learning of the best kernel function for any specific problem. The

resulting spectral density of (43) is a set of sparse Dirac deltas for approximating the underlying spectral

density.

In [36], the Dirac deltas are replaced with a mixture of Gaussian basis functions in the frequency

domain, leading to the so-called spectral mixture (SM) kernel. The SM kernel can approximate any

stationary kernel arbitrarily well in the `1 norm sense due to the Wiener’s theorem of approximation

[41]. Concretely, the underlying spectral density is approximated by a Gaussian mixture as

S(ω) =
1

2

Q∑

i=1

αi√
2πσ2

i

{
exp

[−(ω − µi)2

2σ2
i

]
+ exp

[−(ω + µi)
2

2σ2
i

]}
, (44)

where Q is a fixed number of mixture components, and αi, µi, σ2
i are the weight, mean and variance

parameters of the i-th mixture component, respectively. It is noteworthy that the sum of the two exponen-

tial functions on the right-hand-side of (44) ensure the symmetry of the spectral density. For illustration

4It is noteworthy that ω ∈ [0, 1/2) represents a normalized frequency, namely the physical frequency over the sampling

frequency.

May 31, 2022 DRAFT



31

0 0.1 0.2 0.3 0.4 0.5

Normalized frequency 

0

20

40

60

80

100

120

140

S
p

e
c
tr

a
l 
d

e
n

s
it
y
 

underlying spectral density

SM kernel

sparse spectrum kernel

 

S(  )

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3

Normalized frequency 

0

50

100

150

200

250

S
p

e
c
tr

a
l 
d

e
n

s
it
y
 

underlying spectral density

SM kernel

sparse spectrum kernel

 

S(  )

(b)

Fig. 11. Comparison between the SM kernel and the original sparse spectrum kernel in (43) for approximating the

underlying spectral density. Herein, the SM kernel employs a mixture of Gaussian basis functions (see the blue

curves), while the sparse spectrum kernel employs a mixture of Dirac deltas (see the red vertical lines).

purpose, we draw the comparison between the original sparse spectrum kernel [35] and the SM kernel

[36] in Fig. 11.

Taking the inverse Fourier transform of S(ω) yields a stationary kernel in the time-domain as follows:

k(t, t′;ηp) = k(τ ;ηp) =

Q∑

i=1

αi exp
[
−2π2τ2σ2

i

]
cos(2πτµi), (45)

where ηp = [α1, α2, · · · , αQ, µ1, µ2, · · · , µQ, σ2
1, σ

2
2, · · · , σ2

Q]T denotes the hyper-parameters of the SM

kernel to be optimized and τ , x− x′ owing to the stationary assumption. For accurate approximation,

however, we need to choose a large Q, which potentially leads to an over-parameterized model with many

redundant localized Gaussian components. Besides, optimizing the frequency and variance parameters is

numerically difficult as a non-convex problem, and often incurs bad local minimal.

To remedy the aforementioned numerical issue, in [7], it was proposed to fix the frequency and variance

parameters, µ1, µ2, · · · , µQ, σ2
1, σ

2
2, · · · , σ2

Q, in the original SM kernel to some known grids and focus

solely on the weight parameters, α1, α2, · · · , αQ. The resulting kernel is called grid spectral mixture

(GridSM) kernel. By fixing the frequency and variance parameters, the above GridSM kernel can be

regarded as a linear multiple kernel with Q basis subkernels, ki(τ) , exp
[
−2π2τ2σ2

i

]
cos(2πτµi), i =

1, 2, · · · , Q. In [7], it was shown that for sufficiently small variance, each subkernel matrix has a low-

rank smaller than N/2, namely half of the data size. Therefore, it falls under the formulation in (38).

The corresponding weight parameters of such over-parameterized kernel can be obtained effectively via
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optimizing the evidence function in (38), and the solution turns out to be sparse, as it is demonstrated

in Section V.

C. Sparsity-Aware Modeling for Tensor Decompositions

In the previous subsections, we elucidate the sparsity-aware modeling for the two recent supervised

data analysis tools, namely the DNNs and GPs. The underlying idea of employing an over-parameterized

model and embedding sparsity via an appropriate prior has inspired recent sparsity-aware modeling for

the unsupervised learning tools in the context of tensor decomposition, see e.g., [10]–[15].

For a pedagogical purpose, we first introduce the basics of tensors and tensor canonical polyadic

decomposition (CPD), the most fundamental tensor decomposition model in unsupervised learning.

1) Tensors and CPD: Tensors are regarded as multi-dimensional generalization of matrices, thus

providing a natural representation for any multi-dimensional dataset. Specifically, a P -dimensional (P -D)

dataset can be represented by a P -D tensor D ∈ RJ1×J2×···JP [42]. Given a tensor-represented dataset

D, the unsupervised learning considered in this article aims to identify the underlying source signals

that generate the observed data. In different fields, this task gets different names, such as “clustering”

in social network analysis [43], “blind source separation” in electroencephalogram (EEG) and functional

magnetic resonance imaging (fMRI) data analysis [44], [45], and “blind signal estimation” in radar/sonar

signal processing [46]. In these applications, tensor CPD has been proven to be a powerful tool with

good interpretability.

Formally, the tensor CPD is defined as follows:

Definition of Tensor CPD [42]: Given a P -D tensor D ∈ RJ1×J2×···JP , CPD seeks to find the

vectors {a(1)
r ,a

(2)
r , · · · ,a(P )

r }Rr=1 such that

D =

R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(P )
r︸ ︷︷ ︸

rank-1 tensor

,

, JA(1),A(2), · · · ,A(P )K, (46)

where ◦ denotes vector outer product; A(p) , [a
(p)
1 ,a

(p)
2 , · · · ,a(p)

R ] ∈ RJp×R, ∀p, is called the

factor matrix. The minimal number R that yields the above expression is termed as the tensor

rank.

From this definition, it is readily seen that the tensor CPD is a multi-dimensional generalization of a

matrix decomposition in terms of rank-1 representation. Particularly, when P = 2, Eq. (46) reduces to

decomposing a matrix D ∈ RJ1×J2 into the summation of R rank-1 matrices, i.e., D =
∑R

r=1 a
(1)
r ◦a(2)

r .
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3D Tensor data
!-st rank-1 tensor !-th rank-1 tensor "-th rank-1 tensorX

<latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit><latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit><latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit><latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit>

X1
<latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit><latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit><latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit><latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit>

Xl
<latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit><latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit><latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit><latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit> XL

<latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit><latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit><latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit><latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit>

+ + + = + · · ·<latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit> · · ·<latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit><latexit sha1_base64="mKAbw2gpne3PxIcqdg49AW/gprc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsMeCF48V7Ae0oWw2m3btJht2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVpxttMSaV7ATVcioS3UaDkvVRzGgeSd4PJ7dzvPnFthEoecJpyP6ajRESCUbRSZ8BChWZYrbl1dwGyTryC1KBAa1j9GoSKZTFPkElqTN9zU/RzqlEwyWeVQWZ4StmEjnjf0oTG3Pj54toZubBKSCKlbSVIFurviZzGxkzjwHbGFMdm1ZuL/3n9DKOGn4skzZAnbLkoyiRBReavk1BozlBOLaFMC3srYWOqKUMbUMWG4K2+vE46V3XPrXv317Vmo4ijDGdwDpfgwQ004Q5a0AYGj/AMr/DmKOfFeXc+lq0lp5g5hT9wPn8Aq1WPJQ==</latexit>

3D Tensor data
!-st rank-1 tensor !-th rank-1 tensor "-th rank-1 tensorX

<latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit><latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit><latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit><latexit sha1_base64="P1k+qOAL8LWsFuwhUeKpeizboGA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjcsK9oFtKJPppB06mYSZG6GE/oUbF4q49W/c+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2mt7nffeLaiFg94CzhfkTHSoSCUbTS4yCiOGFUkt6wWnPr7gJknXgFqUGB1rD6NRjFLI24QiapMX3PTdDPqEbBJJ9XBqnhCWVTOuZ9SxWNuPGzReI5ubDKiISxtk8hWai/NzIaGTOLAjuZJzSrXi7+5/VTDBt+JlSSIlds+VGYSoIxyc8nI6E5QzmzhDItbFbCJlRThrakii3BWz15nXSu6p5b9+6va81GUUcZzuAcLsGDG2jCHbSgDQwUPMMrvDnGeXHenY/laMkpdk7hD5zPHx92kII=</latexit>

X1
<latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit><latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit><latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit><latexit sha1_base64="cUgslLcKmKjFudTHnXIAaKIRtRs=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IfesFZ3G+4CZJ14JalDifaw9uWPEprFTBoqUOuB56YmyFEZTgWbV/1MsxTpFMdsYKnEmOkgX2Sek0urjEiUKPukIQv190aOsdazOLSTRUa96hXif94gM1EzyLlMM8MkXR6KMkFMQooCyIgrRo2YWYJUcZuV0AkqpMbWVLUleKtfXifd64bnNryHm3qrWdZRgXO4gCvw4BZacA9t6ACFFJ7hFd6czHlx3p2P5eiGU+6cwR84nz9LbpEm</latexit>

Xl
<latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit><latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit><latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit><latexit sha1_base64="I1aMvnxkzl6Kat7t6NLCYpZT/wM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUQEuyy4cVnBPqAJ5WY6aYdOJmFmIpTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU8G1cd1vZ2Nza3tnt7JX3T84PDqunZx2dZIpyjo0EYnqh6iZ4JJ1DDeC9VPFMA4F64XTu8LvPTGleSIfzSxlQYxjySNO0VjJ92M0E4qC9IdiWKu7DXcBsk68ktShRHtY+/JHCc1iJg0VqPXAc1MT5KgMp4LNq36mWYp0imM2sFRizHSQLzLPyaVVRiRKlH3SkIX6eyPHWOtZHNrJIqNe9QrxP2+QmagZ5FymmWGSLg9FmSAmIUUBZMQVo0bMLEGquM1K6AQVUmNrqtoSvNUvr5PudcNzG97DTb3VLOuowDlcwBV4cAstuIc2dIBCCs/wCm9O5rw4787HcnTDKXfO4A+czx+k2pFh</latexit> XL

<latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit><latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit><latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit><latexit sha1_base64="pUBMGLZofq+iSt42Ex8wT8eG4co=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi2GXBjQsXFewDmlBuptN26GQSZiZCCf0NNy4UcevPuPNvnLRZaOuBgcM593LPnDARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVFHWprGIVS9EzQSXrG24EayXKIZRKFg3nN7mfveJKc1j+WhmCQsiHEs+4hSNlXw/QjOhKEhvcD+o1ty6uwBZJ15BalCgNah++cOYphGThgrUuu+5iQkyVIZTweYVP9UsQTrFMetbKjFiOsgWmefkwipDMoqVfdKQhfp7I8NI61kU2sk8o171cvE/r5+aUSPIuExSwyRdHhqlgpiY5AWQIVeMGjGzBKniNiuhE1RIja2pYkvwVr+8TjpXdc+tew/XtWajqKMMZ3AOl+DBDTThDlrQBgoJPMMrvDmp8+K8Ox/L0ZJT7JzCHzifP3RakUE=</latexit>

+ + +

denotes zero 

ql
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Fig. 12. Illustration of sparsity-aware modeling for rank-1 tensors using GSM priors.

By defining the term a
(1)
r ◦ a(2)

r ◦ · · · ◦ a(P )
r as a P -D rank-1 tensor, CPD essentially seeks for R rank-

1 tensors/components from the observed dataset, each corresponding to one specific underlying source

signal. Thus, the tensor rank R has a clear physical meaning, namely it corresponds to the number of the

underlying source signals. Different from the matrix decomposition, where the rank-1 components are in

general not unique, CPD for a P -D tensor (P > 2) gives unique rank-1 components under mild conditions

[42]. The uniqueness endows superior interpretability of the CPD model used in various unsupervised

data analysis tasks.

2) Low-Rank CPD and Sparsity-Aware Modeling: In real-world data analysis, the number of under-

lying source signals is usually small. For instance, in brain-source imaging [44], [45], both the EEG and

fMRI data analysis outcomes have shown that only a small fraction of source signals contribute to the

observed brain activities. This suggests that the assumed CPD model should have a small tensor rank R

to avoid data overfitting.

In the sequel, we show how the low-rankness is embedded into the CPD model through practicing

the ideas reported in the previous two sections. First, we employ an over-parameterized model for CPD

by assuming an upper-bound value L of tensor rank R, i.e., L � R. The low-rankness implies that

L−R rank-1 tensors should be zero, each specified by vectors {a(p)
l }Pp=1, ∀l. In other words, let vector

ql , [a
(1)
l ;a

(2)
l ; · · · ;a

(P )
l ] ∈ R

∑P
p=1 Jp ,∀l. The low-rankness indicates that a number of vectors in the set
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{ql}Ll=1 are zero vectors. To model such sparsity, we adopt the following multivariate extension of GSM

prior introduced in Section III-B, that is:

p(ql) =

∫ ∑P
p=1 Jp∏

i=1

N ([ql]i; 0, ζl)p(ζl;ηp)dζl,

=

∫
N (ql; 0, ζlI)p(ζl;ηp)dζl,

=

∫ P∏

p=1

N (a
(p)
l ; 0, ζlI)p(ζl;ηp)dζl, (47)

where [ql]i denotes the i-th element of vector ql. Since the elements in ql are assumed to be statistically

independent, then according to the definition of a multivariate Gaussian distribution, we have the second

and third lines of (47) showing the equivalent prior modeling on the concatenated vector ql and the

associated set of vectors {a(p)
l }Pp=1, respectively. The mixing distribution p(ζl;ηp) can be any one listed

in Table I. Note that in (47), the elements in vector ql are tied together via a common hyper-parameter ζl.

Once the learning phase is over, if ζl approaches zero, the elements in ql will shrink to zero simultaneously,

thus nulling a rank-1 tensor, as illustrated in Fig. 12. Since the prior distribution given in (47) favors

zero-valued rank-1 tensors, it promotes the low-rankness of the CPD model.

Remark 2: If the factor matrices are further constrained to be non-negative for enhanced interpretability

in certain applications, simple modification, that is, multiplying a unit-step function U(a
(p)
l ≥ 0) (which

returns one when a(p)
l ≥ 0 or zero otherwise) to the prior derived in (47), can be made to embed both

the non-negativeness and the low-rankness, see in-depth discussions in [11].

3) Extensions to Other Tensor Decomposition Models: Similar ideas have been applied to other tensor

decomposition models including Tucker decomposition (TuckerD) [47] and tensor train decomposition

(TTD) [48]–[50]. In these works, one first assumes an over-parametrized model by setting the model

configuration parameters (e.g., multi-linear ranks in TuckerD and TT ranks in TTD) to be large numbers,

and then impose GSM prior on the associated model parameters to control the model complexity, see

detailed discussions in [47]–[50].

Remark 3: Some further suggestions are given on choosing appropriate tensor decomposition models

for different data analysis tasks, see e.g., [51]. If the interpretability is crucial, one might try CPD (and

its structured variants) first, due to its appealing uniqueness property. On the other hand, if the task is

related to subspace learning, Tucker decomposition should be considered since its model parameters can

be interpreted as the basis functions and the associated coefficients. For missing data imputation, TTD

is a good choice as it disentangles different tensor dimensions. More concrete examples can be found in

the recent overview paper [51].
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V. THE ART OF INFERENCE: EVIDENCE MAXIMIZATION AND VARIATIONAL APPROXIMATION

Having introduced sparsity-promoting priors, we are now at the stage of deriving the associated

Bayesian inference algorithms that aim to learn both the posterior distributions of the unknown pa-

rameters/functions and the optimal configurations of the model hyper-parameters. In Section V-A, we

will first show that the inference algorithms developed for our considered data analysis tools can be

unified into a common evidence maximization framework. Then, for each data analysis tool, we will

further show how to leverage recent advances in variational approximation and non-convex optimization

to deal with specific problem structures for enhanced learning performance. Concretely, we introduce

inference algorithms for GP in Section V-B, for tensor decompositions in Section V-C, and for Bayesian

deep neural networks in Section V-D.

A. Evidence Maximization Framework

Given a data analysis task and having selected the learning model,M, that is the associated likelihood

function pM(D|θ) and a sparsity-promoting prior pM(θ;ηp), the goal of Bayesian SAL is to infer the

posterior distribution pM(θ|D;η), using the Bayes’ theorem given in (1), and to compute the model

hyper-parameters η by maximizing the evidence pM(D;η).

We differentiate the following two cases of the evidence function. First, if the evidence pM(D;η)

defined in (5) can be derived analytically, such as (11) in the Bayesian linear regression example, the

model hyper-parameters η can be learnt via solving the evidence maximization problem, for which

advanced non-convex optimization tools, e.g., [52]–[56], can be utilized to find high-quality solutions.

In this case, since the prior, likelihood and evidence all have analytical expressions, applying the Bayes’

theorem (1) yields a closed-form posterior distribution of the unknown parameters.

Unfortunately in most cases, the multiple integration required in computing the evidence (5) turns out to

be analytically intractable. Inspired by the ideas of the Minorize-Maximization (also called Majorization-

minimization (MM)) optimization framework [55], we can seek for a tractable lower bound (or a valid

surrogate function in general) that minorizes the evidence function, and maximize the lower bound

iteratively until convergence. It has been shown, see e.g., [57], [1], [19], that such an optimization

process can push the evidence function to a stationary point. More concretely, the logarithm of the

evidence function is lower bounded as follows:

log pM(D;η) ≥ L(q(θ);η), (48)

where the lower bound

L(q(θ);η) ,
∫
q(θ) log

p(D,θ;η)

q(θ)
dθ, (49)
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is called evidence lower bound (ELBO), and q(θ) is known as the variational distribution. The tight-

ness of the ELBO is determined by the closeness between the variational distribution q(θ) and the

posterior pM(θ|D;η), measured by the Kullback-Leibler (KL) divergence, KL (q(θ)||pM(θ|D;η)). In

other words, the ELBO becomes tight, i.e., the lower bound becomes equal to the evidence when

KL (q(θ)||pM(θ|D;η)) = 0, which holds true if and only if q(θ) = pM(θ|D;η). This is easy to

see if we expand (49) and reformulate it as

log pM(D;η) = L(q(θ);η) + KL(q(θ)||pM(θ|D;η)). (50)

Since the KL divergence is nonnegative, the equality in (48) holds if and only if it is equal to zero.

Since the ELBO in (49) involves two arguments, namely, q(θ) and η, solving the maximization problem

max
q(θ),η

L(q(θ);η), (51)

can provide both an estimate of the model hyper-parameters and the posterior distributions. These two

terms can be optimized in an alternating fashion. Different strategies for optimizing q(θ) and η result

in different inference algorithms. For example, the variational distribution q(θ) can be optimized either

via functional optimization [58], or via Monte Carlo method [59], while the hyper-parameters η can be

optimized via various non-convex optimization methods [52]–[54], [60], [61].

In the following subsections, we will introduce some inference algorithms designed specifically for

the three popular data analysis tools introduced in Section IV that have been equipped with certain

sparsity-promoting priors.

B. Inference Algorithms for GP Regression

Let us start with the GP model for regression, because in this case the evidence function pM(D;η)

can be derived analytically owing to the Gaussian prior and likelihood assumed throughout the modeling

process. In this subsection, we introduce an effective inference algorithm for GP regression based on

the linear multiple kernel in (37). In Section IV, we have already derived the logarithm of the evidence

function in analytical form, as shown in (38). Therefore, we can optimize it directly to obtain an estimate

of the model hyper-parameters η.

Traditionally, one could estimate the weights of the subkernels, αi, i = 1, 2, · · · , Q, as well as the

precision parameter, β, using an iterative algorithm similar to the one derived in [40]. In particular, one

sequentially solves for αi, i = 1, 2, · · · , Q, from the equation γ(αi) = 0 derived in (41) by fixing the rest

of the weights to their latest estimate and then check its relevance with the data in each iteration. This

iterative method works quite well for various different datasets. In the sequel, however, we introduce a
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potentially more effective numerical method in terms of the sensitivity to an initial guess and the data

fitting performance than the original one [31].

Next, we take the GridSM kernel in (45) as an example of the linear multiple kernel, and rewrite the

evidence maximization problem as

η∗ = arg min
η

l(η) , g(η)− h(η), (52)

where η = [αT ;β]T with α ≥ 0 and β > 0, g(η) , yTC−1(η)y, and h(η) , − log det(C(η)). Let us

introduce a short notation C(η) ,
∑Q

i=1 αiKi + β−1I , where Ki represents the i-th sub-kernel matrix

evaluated with the training inputs. It can be shown that g(η) and h(η) : Θ → R are both convex and

differentiable functions with Θ being a convex set. Therefore, the cost function in (52) is a difference

of two convex functions with respect to η, and the optimization problem belongs to the well known

difference-of-convex program (DCP) [62]. Instead of adopting the classic iterative procedure proposed for

the RVM [40], we take advantages of the DCP optimization structure. Such a favorable structure may

help the speed-up of the convergence process, and avoiding to be trapped in a bad local minimum of the

optimization problem, and, thus, to further improve the level of sparsity [7].

1) Sequential Majorization-Minimization (MM) Algorithm: The main idea is to solve minη∈Θ l(η)

with Θ ⊆ RQ+1 through an iterative scheme, where in each iteration a so-called majorization function

l̄(η,ηk) of l(η) at ηk ∈ Θ is minimized, i.e.,

ηk+1 = arg min
η∈Θ

l̄(η,ηk), (53)

where the majorization function l̄(·, ·) : Θ×Θ→ R satisfies l̄(η,η) = l(η) for η ∈ Θ and l(η) ≤ l̄(η,η′)
for η,η′ ∈ Θ. We adopt the so-called linear majorization. Concretely, we make the convex function h(η)

affine by performing the first-order Taylor expansion and obtain:

l̄(η,ηk) , g(η)− h(ηk)−∇Tηh(ηk)(η − ηk). (54)

In this way, minimizing the cost function in (53) becomes a convex optimization problem in each iteration.

By fulfilling the regularity conditions, the MM method is guaranteed to converge to a stationary point

[55]. Next, we show how (53) with the linear majorization in (54) can be solved.

Since g(η) is a matrix fractional function, in each iteration (53) actually solves a convex matrix

fractional minimization problem [62], which is equivalent to a semi-definite programming (SDP) problem

via the Schur complement. This problem can be further cast into a second-order cone program (SOCP)

problem and can efficiently and reliably be solved using the off-the-shelf convex solvers, e.g., MOSEK

[7].
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Although the previous MM algorithm can often lead to rather good solution, it cannot ensure local

minimal in all cases. Occasionally, we found that it provides less satisfactory results, and they can

be significantly improved by using a novel non-linearly constrained alternating direction method of

multipliers (ADMM) algorithm as proposed in [7]. In general, the ADMM algorithm takes the form of

a decomposition coordination procedure, where the original large problem is decomposed into a number

of small local subproblems that can be solved in a coordinated way [63].

For our problem, the idea is to reformulate the original problem by introducing an N ×N matrix S

and solve instead

arg min
S,α

yTSy − log det(S),

s.t. S

(
Q∑

i

αiKi + β−1I

)
= I, α ≥ 0. (55)

Then, an augmented Lagrangian function can be formulated and solved by the ADMM algorithm through

iteratively updating the auxiliary matrix variable S, the kernel hyper-parameters, α, and some associated

dual variables. By introducing an auxiliary matrix variable S, all ADMM subproblems become convex;

in particular, the weight parameters, α, are derived in closed form. From the experimental evaluation

results given in [7], this ADMM algorithm can potentially find a better local minimum with improved

prediction accuracy compared with the MM algorithm, however, at the cost of increased computational

time in practice.

In addition to the above mentioned MM- and ADMM algorithms, one could also resort to some other

advanced optimization algorithms to solve the problem; for instance, the successive convex approximation

(SCA) algorithms reviewed in [55] are of great potential.

The computational complexity for one iteration of the MM algorithm is O(n2 · max(n,
∑Q

i=1 ri)),

where ri stands for the rank of Ki. The MM algorithm benefits from the low-rank property of the GSM

subkernels. Let the average rank of the GSM subkernels be, i.e., r̄ = 1
Q

∑Q
i=1 ri � n; if Qr̄ > n, then

the overall complexity of the MM algorithm scales as O(Q · r̄ ·n2); otherwise, it scales as O(n3). Similar

conclusions hold for the ADMM algorithm too. These results show that the complexity also relies on the

preselected number of subkernels, Q, which is often set to a larger value than the one that it is actually

required; however, how to set this parameter adaptively and economically for different datasets remains

an open challenge.

C. Inference Algorithms for Bayesian Tensor Decompositions

In this subsection, we introduce the inference algorithm design for Bayesian tensor decompositions.

Our focus will be on presenting the key ideas for deriving inference algorithms for the Bayesian tensor
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CPD model [10]–[15] via the Gaussian likelihood and the GSM prior (introduced in Section IV-C). For

other tensor decomposition formats, e.g., the Bayesian tensor TuckerD [47] and TTD [50], since they

share the same prior design principle as that of CPD, the associated inference algorithm follows a similar

rationale.

In the Bayesian tensor CPD, the goal of inference is to estimate the posterior distributions of factor

matrices {A(p) ∈ RJp×L}Pp=1 from possibly incomplete P -D tensor data observations YΩ ∈ RJ1×···×JP ,

where Yj1,··· ,jP is observed if the P -tuple indices (j1, · · · , jP ) belongs to the set Ω. The forward problem

is commonly modeled as a Gaussian likelihood:

p(YΩ|{A(p)}Pp=1;β) =
∏

(j1,··· ,jP )∈Ω

N (Yj1,··· ,jP ; JA(1), · · · ,A(P )Kj1,··· ,jP , β
−1), (56)

where β is the precision (the inverse of variance) of the Gaussian noise. Since it is unknown, a non-

informative prior (e.g., Jeffery prior, p(β) ∝ 1/β) can be employed. To promote the low-rankness, for the

l-th columns of all the factor matrices, a GSM sparsity-promoting prior with latent variance variable ζl has

been adopted, see detailed discussions in Section IV-C. Usually, the hyper-parameters η in the adopted

GSM priors are pre-selected to make the prior non-informative, and thus need no further optimization.

The unknown parameters θ include the factor matrices {A(p)}Pp=1, the latent variance variables {ζl}Ll=1

of the GSM priors, and the noise precision β. Under the evidence maximization framework, the inference

problem can be formulated as (51) with unknown parameters5

θ , {{A(p)}Pp=1, {ζl}Ll=1, β}, (57)

and the joint pdf

p(D,θ) , p(YΩ, {{A(p)}Pp=1, {ζl}Ll=1, β}), (58)

which can be computed by the product of the likelihood and the priors.

Without imposing any constraint on the pdf q(θ), the optimal solution is just the posterior, i.e.,

q∗(θ) = pM(θ|YΩ), whose computation using the Bayes’ theorem will, however, encounter the in-

tractable multiple integration challenge. To get over this difficulty, modern approximate inference tech-

niques propose to solve problem (51) by further constraining q(θ) into a functional family F , i.e.,

q(θ) ∈ F . It is hoped that the family F is as flexible as possible to allow accurate posterior estimates

and at the same time simple enough to enable tractable optimization algorithm designs.

Among all the functional families, the mean-field family is undoubtedly the most favorable one in

recent Bayesian tensor research [10]–[15]. It assumes that the variational pdf q(θ) =
∏K
k=1 q(θk), where

5The expression of the objective function in (51) is quite lengthy, see e.g., [14], and thus is not included here.
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θ is partitioned into mutually disjoint non-empty subsets θk (i.e., ∪Kk=1θk = θ and ∩Kk=1θk = Ø). In the

context of the Bayesian tensor CPD, the mean-field assumption states that

q(θ) =

P∏

p=1

q(A(p))q({ζl}Ll=1)q(β). (59)

The factorized structure in (59) inspires the idea of block minimization in the optimization theory. In

particular, for the ELBO maximization problem (51), specified after fixing the variational pdfs {q(θj)}j 6=k,

the resulting subproblem that optimizes q(θk) has been shown to have the following optimal solution,

see e.g., [1]:

q∗ (θk) =
exp

(
E∏

j 6=k q(θj) [ln p (D,θ)]
)

∫
exp

(
E∏

j 6=k q(θj) [ln p (D,θ)]
)
dθk

, (60)

where Eq(·) [·] denotes the expectation with respect to the variational pdf q(·). The inference framework

under the mean-field assumption is termed as mean-field variational inference (MF-VI).

Whether the integration in the denominator (60) has a closed-form is determined by the functional

forms of the likelihood and the priors. In particular, if they are conjugate pairs within the exponential

family of probability distributions, see, discussions in, e.g., [1], [19], the optimal variational pdf in (60)

will accept a closed-form expression. Fortunately, for the Bayesian tensor CPD adopting the Gaussian

likelihood and the GSM prior for the columns of the factor matrices, this condition is usually satisfied,

which enables the derivation of closed-form updates in recent advances [10]–[15].

Remark 4: To facilitate the algorithm derivation, MF-VI imposes a factorization structure on q(θ), which

implies the statistical independence of the variables θk given the observed dataset D. If this is not the

case, the mean-field approximation will lead to mismatch when approaching the ground-truth posteriors.

In general, the MF-VI tends to provide posterior approximations that are more compact compared to the

true ones, which means that the posterior estimates are usually “over-confident” [19]. To achieve more

accurate posterior estimation, there is a research trend to employ more advanced variational approximation

techniques than the mean-field approximation. For example, recent tensor-aided Bayesian deep neural

network research [48] utilizes the kernelized Stein discrepancy to derive the inference algorithm that can

approximate the posterior better. The interested reader may refer to [58] for some recent advances in

variational approximation methods.

Some computational and theoretical difficulties that are commonly encountered in Bayesian tensor

decompositions are summarized as follows. First, due to the block coordinate descent nature of the MF-

VI [58], it is crucial to choose informative initial values to avoid poor local minima. On the other hand,

the associated computational complexity is cubic with respect to the tensor rank, see, e.g., [10], [11],
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[14], [50], which is high if the initial tensor rank is set to a large value. Finally, it was found that the

algorithm performance significantly degrades in some challenging regimes, e.g., low signal-to-noise-ratio

(SNR) and/or high rank, see, e.g., [10], [11], [14], [50]. To overcome these difficulties, suggestions on

the real algorithm implementations are provided in Section VI-C.

D. Inference Algorithms for Bayesian Deep Neural Networks

The step of inference (training) for Bayesian deep neural networks follows the same backpropagation-

type of philosophy as that of training their deterministic counterparts. There are, however, two notable

differences. First, the unknown (synaptic) parameters/weights are now described via parameterized dis-

tributions. Thus, the cost function to be optimized has to be expressed in terms of the hyper-parameters

that define the respective distributions, instead of the weights/synapses. This involves the so-called

reparameterization step and we will describe it in Section V-D. Second, the evidence function to be

maximized is not of a tractable form and it has to be approximated by its ELBO (see the definition in

(49)).

In this subsection, we will outline the basic steps that are followed for variational inference in the

case of a Bayesian deep network that comprises layers with: (a) stochastic LWTA blocks; (b) stochastic

synaptic weights of Gaussian form; and (c) a sparsity-inducing mechanism imposed over the network

synapses that is driven via an IBP prior. We have already discussed this type of network in Section IV-

A.3; see, also, Fig. 10. To facilitate understanding, we provide a graphical illustration of the considered

stochastic LWTA block in Fig. 13.

Without harming generality, let us focus on a specific layer, say, the f + 1 one. In order to slightly

unclutter notation, assume that for this layer, the input dimension af = L and the number of nodes

(LWTA units) af+1 = K. Thus the corresponding input matrix to the layer becomes X ∈ RN×L with

N samples, each comprising L features. Under the stochastic LWTA-based modeling rationale, nodes

(neurons) are replaced by LWTA blocks, each containing a set of J competing linear units. Thus, the

layer input is now presented to each different block and each unit therein, via different weights. Thus,

the weights for this layer are now represented via a three-dimensional matrix W ∈ RL×K×J (we again

refrain our notation on the dependence on f , i.e. the layer index). Recall from Section IV-A3 that each

layer is associated with a latent discrete random vector, ξn ∈ one hot(J)K , that encodes the outcome

of the local competition among the units in all K LWTA blocks of a network layer, when the n-th input

sample is presented.

Furthermore, recall that each link connecting an input dimension, of the n-th sample, e.g., xni, to an

LWTA block, e.g., the k-th one, is weighted by a utility binary random variable, zik. This is set equal
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Fig. 13. A zoomed-in graphical illustration of the k-th block of a stochastic LWTA layer. Input x = [x1, x2, . . . , xL]

is presented to each unit, j = 1, 2, . . . , J , in the block. Assume that the index of the winner unit is j = j0. Then,

the output of the block is a vector with a single non-zero value at index j0.

to one, if the i-th dimension of the input is presented to the k-th LWTA block, otherwise zik = 0. We

impose the sparsity-inducing IBP prior over these utility hidden variables.

We are now ready to write the output of a specific layer of the considered model, i.e., yn ∈ RK·J , as

follows:

ynkj = ξnkj

L∑

i=1

(wikjzik)xni ∈ R, (61)

where xn is the L-th dimensional input that coincides with the output of the previous layer. The involved

random variables, whose posterior distributions are to be learnt during training, are: a) the synaptic

weights, wikj , i = 1, 2 . . . , L, k = 1, 2, . . . ,K, j = 1, 2, . . . , J , for all layers, b) the utility variables,

zik, for all layers and c) the indicator vectors, ξnk, for the n-th sample and the k-th LWTA, for all layers.

The functional form of the respective distributions are:

� Synaptic weights:

Prior : p(wikj) ∼ N (wikj |0, 1), Posterior : q(wikj) ∼ N (wikj |µikj , ζikj),

where the mean and variance, µikj , ζikj , respectively, are learnt during training.

� Utility binary random variables:

Prior : Bernoulli(zik|πik), Posterior : q(zik) = Bernoulli(zik|π̃ik),
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where πik come form the IBP prior (Section III-C1) and π̃ik are learnt during training. The use of the

Bernoulli distribution is imposed by the binary nature of the variable.

� Indicator random vectors, ξnk:

Prior : p(ξk) = Categorical(ξk|
1

J
, . . . ,

1

J
), i.e., all linear units equiprobable.

Posterior : q(ξnk) = Categorical
(
ξnk
∣∣Pnk1, . . . , PnkJ

)
,

where Pnkj is defined via the softmax operation, e.g., Eq. (36). The Categorical distribution is imposed

because only one out of the J elements of ξnk is equal to 1 and the rest are zeros. The j-th element

becomes 1 with probability Pnkj .

Note that besides the previous random variables, which are directly related to the DNN architecture,

there is another set of hidden random variables, i.e., the uj’s, which are used for generating the IBP prior.

These have also to be considered as part of the palette of the involved random variables. As already said in

Section III-C1, these follow the Beta distribution, with prior Beta(uj |α, 1) and posteriors Beta(uj |aj , bj),
where aj , bj are learnt during training.

To train the proposed model, we resort to the maximization of the ELBO. The trainable model

parameters, in our case, are the set of all the weights’ posterior means and variances, i.e., µikj and

ζikj , the synaptic utility indicator posterior probabilities, π̃ik, and the stick-variable posterior parameters

aj and bj , across all network blocks and layers. Let us refer to this set as Θ. We shall assume that our

task comprises C classes and the softmax nonlinearity is used in the output layer.

In the following, we denote D as the input-output training dataset. In addition, let Z be the set of the

synaptic utility indicators across the network layers; Ξ be the set of winner unit indicators across all

blocks of all layers; W be the set of synapse weights across all layers; and U be the set of the stick-

variables of the sparsity-inducing priors imposed across the network layers. Employing the mean-field

approximation on the joint posterior pdf, i.e., factorizing q(W,Z,Ξ,U), it is readily shown, e.g., [2],

that

ELBO(Θ) = −Eq
[ N∑

n=1

C∑

c=1

ync ln ỹnc(xn; W,Z,Ξ,U)
]

+ Eq ln
p(Z|U)

q(Z)
+ Eq ln

p(U)

q(U)︸ ︷︷ ︸
regularizing terms

+ Eq ln
p(Ξ)

q(Ξ|Z,W)
+ Eq ln

p(W)

q(W)︸ ︷︷ ︸
regularizing terms

,

(62)

where ync are the outputs in the training set and ỹnc, c = 1, 2, . . . , C, are the class probability outputs

as estimated via the softmax nonlinearities that implement the output layer. Observe that the first term
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on the right hand side is the expectation of the cross-entropy of the network. The only difference with

the deterministic DNNs that use this function to optimize the network is that now the expectation over

the posterior is involved. In practice, it turns out that drawing one sample from the involved distributions

suffices to lead to good approximation, provided that this sample is written as a differentiable function of

Θ and some low-variance random variable, e.g., [64], [65]. The rest of the terms in Eq. (62) are Kullback-

Leibler (KL) divergences that bias the posteriors to be as close as possible to the corresponding priors. In

other words, they act as regularizers that bias the solution towards certain regions in the parameter space

as dictated by the adopted priors. For example, in the last term, the posterior of the synaptic weights

is biased towards the normal Gaussian and bears close similarities with the `2 regularization, when it is

enforced on the synaptic weights.

Drawing samples to approximate the expectations in Eq. (62) is closely related to what we called

before as reparameterization. Recall that in the framework of the backpropagation algorithm, during the

forward pass, one needs specific values/samples of the involved random parameters in order to compute

the outputs, given the input to the network. This is performed via sampling the respective distributions,

based on the current estimates of the involved posteriors. However, in order to be able to optimize

with respect to their defining hyper-parameters, the corresponding current estimates should be explicitly

considered. Let us take the Gaussian synaptic weights as an example. Let N (wikj |µikj , ζikj) be the

current estimate of some weight in some layer. Instead of sampling from this Gaussian, it is easy to see

that it is equivalent to obtaining a corresponding sample of the weight, as

w̃ikj = µikj + ζ
1/2
ikj · ε, ε ∼ N (0, 1). (63)

In this way, every link in the network is determined explicitly by the pair (µijk, ζijk), and the back-

propagation optimizes with respect to the means and variances. Reparameterization of the rest of the

involved random variables follows a similar rationale, yet the involved formulae are slightly more complex;

however, they are still given in terms of analytic expressions. For example, for the utility variables, zik,

reparameterization is achieved via the posteriors π̃ik and the so-called Gumbel-Softmax relaxation, e.g.,

[66]. For the stick breaking variables, reparameterization is achieved via the so-called Kumaraswamy

approximation [67]. Details and the exact formulea can be found in [2].

Once samples have been drawn for all the involved variables, the ELBO in (62) is expressed directly

in terms of the drawn sample, i.e, W̃, Z̃, Ξ̃, Ũ, without any expectation being involved. The trainable

parameters’ set, Ψ, can be obtained by means of any off-the-shelf gradient-based optimizer, such as the

Adam [52]. Note that, by adopting the reported reparameterizations, one yields low-variance stochastic

gradients that ensure convergence.
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Training a fully-Bayesian model slightly increases the required complexity, since more parameters are

involved, e.g., instead of a single weight one has to train with respect to the respective mean value and

variance, as well as the hidden utility variables. However, the training timing remains of the same order

as that required by the deterministic versions.

Once training has been completed, during testing, given an input: a) One can use the mean values of the

obtained posterior Gaussians, µijk, in place of the synaptic weights, wijk. Sampling from the distribution

could also be another possibility. Usually, the mean values are used. b) One can employ a threshold value,

e.g., τ , and remove all links where the corresponding posterior π̃ is below this threshold. Sampling is

also another alternative. c) One samples from the respective categorical distributions to determine which

linear unit “fires” in each block. Selecting the one with the largest probability is another alternative.

Remark 5: At this point, we must stress that the learnt posterior variances over the network weights can

be also used for reducing the floating-point bit precision required for storing them; this effectively results

in memory footprint reduction. The main rationale behind this process consists of the fact that, the higher

the posterior weight variance, the more their fluctuation under sampling at inference time. This implies

that, eventually, some bits fluctuate too much under sampling, and therefore, storing and retaining their

values does not contribute to inference accuracy. Thus, Bayesian methods offer this added luxury, to

optimally control the required bit precision for individual nodes. For example, in [2], it is reported that

for the case of LENET-300-100 trained on MNIST, the bit precision can be reduced from 23 bit mantissa

to just 2 bits. For more details, see, e.g., [2].

Remark 6: In [2], it was shown that the resulting architectures are able to yield a significant reduction

in their computational footprint, retaining, nevertheless, state-of-the-art performance; positively, the flex-

ibility of the link-wise IBP allowed for a more potent sparsity-activation-aware blend based on stochastic

LWTA, offering significant benefits compared to conventional non-linearities introduced by the activation

functions such as sigmoid and ReLU. For example, in the case of CIFAR-10 VGG-like network, it turns

out that only around 5% of the original nodes are only retained, without affecting the performance of

the network, even though quantized arithmetic was also employed to reduce the required number of bits,

as explained in the previous remark, see, e.g., [2].

VI. APPLICATIONS IN SIGNAL PROCESSING AND MACHINE LEARNING

In this section, we showcase typical applications of the sparsity-promoting data analysis tools introduced

in Section IV. More specifically, advanced time series prediction using Gaussian process models is

considered in Section VI-A; adversarial learning using Bayesian deep neural networks is presented
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in Section VI-B; and lastly social group clustering and image completion using unsupervised tensor

decompositions are demonstrated in Section VI-C.

A. Time Series Prediction via GPs

In the following, we present an important signal processing and machine learning application, namely

the time series prediction, using non-parametric GPs. We will focus on the GP regression models with

the family of sparse spectrum kernels introduced in Section IV-B. To demonstrate the advantages of the

sparsity-promoting GP models over other competing counterparts, we selected a number of classic time

series datasets such as CO2, Electricity, Unemployment6 as well as a “fresh” real-world 5G wireless traffic

dataset in our tests. Data descriptions are given in Table II.

Table II: Descriptions of the selected datasets. The training data, D, is used for optimizing the hyper-parameters of

the learning model, while the test data, D∗, is used for evaluating the prediction accuracy. The numbers given in

the last two columns are the training sample size and test sample size, respectively.

Name Data Description Training D Test D∗
ECG Electrocardiography of an ordinary person measured over a period of time 680 20

CO2 Carbon dioxide concentration observed from 1958 to 2003 481 20

Electricity Monthly average residential electricity usage in Iowa City from 1971 to 1979 86 20

Employment Wisconsin employment status observed from January 1961 to October 1975 158 20

Hotel Monthly hotel occupied rooms collected from 1963 to 1976 148 20

Passenger Passenger miles flown domestic U.K. form July 1962 to May 1972 98 20

Clay Monthly production of clay bricks from January 1956 to August 1995 450 20

Unemployment Monthly U.S. female (16-19 years) unemployment figures from 1948 to 1981 380 20

5G wireless traffic Downlink data usage in a small cell observed in four weeks of 2021 607 67

1) Classic Datasets: In the sequel, we compare the performance of the sparsity-promoting GP models

using the original SM kernels [35], [36] and the modified GridSM kernel [7] with that of a classic deep

learning based time series prediction model, namely the long-short-term-memory (LSTM) [68], as well as

a canonical statistical model, namely the autoregressive integrated moving average (ARIMA) model7 [69],

from various different aspects. Furthermore, we compare GP models with recently proposed Transformer-

based time series prediction model, called Informer, which successfully addressed the computation issues

and some inherent limitations of the encoder-decoder architecture in the original Transformer model. For

6These datasets are available from the UCL repository
7ARMA model can be regarded as a special case of a GP model adopting a specific sparse kernel matrix.
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Table III: Comparisons of various time series prediction models in terms of the prediction MSE. Herein, we let

both the GSMGP and the SMGP employ Q = 500 Gaussian mixture modes in their kernels, and the SSGP employs

the same amount of trigonometric basis functions. The GSMGP samples Q normalized frequency parameters, µi,

i = 1, 2, · · · , Q, uniformly from [0, 1/2), while set the variance parameter to σ = 0.001. The LSTM model

follows a standard setup with one hidden layer and the dimension of the hidden state is set to 30. The Informer

model follows the default setup given in the original paper [70]. The ARIMA(p, d, q) model is a standard one with

(p = 5, d = 1, q = 2).

Name GSMGP SSGP SMGP LSTM Informer ARIMA

MSE MSE MSE MSE MSE MSE

ECG 1.3E-02 1.6E-01 1.9E-02 2.1E-02 5.4E-02 1.8E-01

CO2 1.5E+00 2.0E+02 1.1E+00 2.1E+00 8.4E+01 4.9E+00

Electricity 4.7E+03 8.2E+03 7.5E+03 4.7E+03 8.3E+03 1.2E+04

Employment 1.1E+02 7.7E+01 0.7E+02 4.3E+02 2.0E+03 3.9E+02

Hotel 8.9E+02 1.9E+04 2.8E+03 7.8E+03 2.3E+04 1.7E+04

Passenger 1.9E+02 6.9E+02 1.6E+02 1.6E+02 1.2E+02 4.5E+03

Clay 1.9E+02 5.3E+02 3.3E+02 2.7E+02 1.4E+02 3.3E+02

Unemployment 3.6E+03 2.1E+04 1.4E+04 3.5E+03 3.8E+03 1.5E+04

brevity, we name the first sparse spectrum GP model (equivalent to using trigonometric basis functions)

proposed in [35] as SSGP, the GP model using the original SM kernel [36] as SMGP, and the most

recent one with the rectified GridSM kernel [7] as GSMGP. Their configurations can be found in detail

in [7].

Table III shows the obtained prediction accuracy of the various methods quantified in terms of the

prediction mean-squared-error (MSE). It is readily observed that the sparsity-promoting GP models, and

in particular SMGP and GSMGP, outperform all other competitors by far. The following facts need to

be mentioned. For both the classic LSTM and Informer models to achieve good performance, the time

series should, in general, be long so that the underlying pattern can be learnt during the training phase.

The ARIMA model strongly relies on the optimal configuration of the parameters (p, d, q), and it is

incapable for long term prediction. In contrast, the sparsity-promoting GP models can automatically fit

the underlying data pattern through solving the hyper-parameters from maximizing the evidence function.

We have also shown in the supplement of [7] that the GSMGP is also superior to the GP models with

elementary kernel (such as the SE kernel, rational quadratic kernel, etc.) as well as a hybrid of those.

Besides the improved prediction performance, the training time of the GSMGP outperforms the original
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SMGP by far.8 For the selected datasets, SMGP requires training time in the magnitude of 103 seconds,

while the GSMGP only requires 102 seconds. By reducing the number of Gaussian modes, Q, the SMGP

is able to reduce its training time albeit at the cost of sacrificing the fitting performance. On the other hand,

the GSMGP improves its training time by fixing the frequency and variance parameters of the original SM

kernel to known grids, so that the evidence maximization task enjoys the favorable difference-of-convex

structure that can be efficiently handled by the MM algorithm introduced in Section V-B. In addition to the

reduced training time, the overall optimization performance (including the convergence speed, chance of

being trapped in a bad local minimum, etc.) and the sparsity level of the solution have been significantly

improved. Detailed comparisons and pictorial illustrations can be found in [7]. In comparison, the LSTM

and ARIMA models require the least training time in the magnitude of 101 seconds on average. However,

due to the huge architecture adopted in the Informer model, the computational time is in the magnitude

of 102 seconds on average. As it is readily observed from the results, the sparsity-promoting property

helps reducing the computational time significantly; more importantly, the sparse solution identifies the

most effective frequency components of the data and, thus, leads to good model interpretability.

2) Real 5G Dataset: Next, we focus on another favorable advantage of the GP models over their deep

learning counterparts, namely the natural uncertainty region of a point prediction. We specifically select

the real 5G wireless traffic dataset for visualization purposes due to the high demand of such a wireless

application on a reasonable prediction uncertainty [25], [71]. The dataset was collected in a small cell of

a southern city in China, and it contains the downlink data volume consumed by the mobile users located

in the cell within each hour during a period of four weeks. Accurate prediction of the future downlink

data consumption is vital to the operators for tuning the transmit power of the base station and switching

on/off it automatically. In this application, uncertainty information is even more crucial because wrongly

reducing the transmit power may largely influence the mobile users’ surfing experience.

For this 5G wireless traffic prediction example, we constrained ourselves to a GSMGP with Q = 500,

an SMGP with Q = 500, a standard GP with a hybrid of 3 elementary kernels (two periodic kernels plus

an SE kernel) as was used in [25], and a classic LSTM deep learning model as described above. We

used the data collected in the first 607 samples for training the models and used the last 67 samples to

test their prediction performance. For comparing their prediction accuracy, we chose the mean-absolute-

percentage-error (MAPE) measure, which is commonly used for evaluating the wireless traffic prediction

8Here, training time refers to the computational time required for training the learning models introduced in Section V.
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error. The MAPE averaged over multiple test points is given by

eMAPE =
1

n∗

n∗∑

i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣× 100%. (64)

The prediction performance of the above learning models is shown in Fig. 14. It is readily seen that

the GSMGP gives the best point prediction in terms of the MAPE. Moreover, as we mentioned before,

the focus of this example is primarily on the uncertainty quantification. For GPs, the desired uncer-

tainty region can be obtained naturally by computing the posterior variances associated with the test

samples. In contrast, the classic LSTM model can only provide point predictions without any uncertainty

quantification. A recent technique using the so-called deep ensembles [72] can be applied to quantify the

predictive uncertainty of the LSTM model. The common characteristic of these techniques lies in that one

has to train the models for multiple times, using different configurations (such as different initial guesses,

step sizes, etc). However, such an approach increases substantially the computational load compared to

the Bayesian approach, especially when complex (deterministic) learning models are involved. When

comparing the uncertainty regions of the GP models, we can observe that the one using a mixture of

elementary kernels tend to be conservative and show the largest uncertainty region. In contrast, both

SMGP and GSMGP provide rather accurate point predictions as well as smaller uncertainty levels. It

is noteworthy that SMGP presents less accurate point prediction (using its posterior mean) compared to

that of GSMGP, but its uncertainty level is modestly larger that its counterpart. This suggests that, in this

case, SMGP is less favorable because wrong decisions of switching on/off the BS are more likely made.

The above fitting results clearly demonstrate the advantages of the sparse spectrum kernel-based GP

models; however, the obtained performance depends on the quality of the initialization. In particular, the

method is sensitive to the initial guess of the SM kernel. According to our experience, a reliable initial

guess can be obtained by fitting a periodogram (namely a nonparametric approximation of the true spectral

density) in the frequency domain. We could also combine this strategy with the bootstrap technique to

generate a number of candidate initial guesses for avoiding bad local minima. Codes for implementing

the GSM kernel-based GP model are online available from https://github.com/Paalis/MATLAB GSM.

B. Adversarial Learning via Bayesian Deep Neural Networks

Despite the widespread success of DNNs, recent investigations have revealed their high susceptibility to

adversarial examples; that is, cleverly crafted examples whose sole purpose is that of fooling a considered

model into misclassification. Adversarial examples can be constructed using various approaches, e.g.

FSGM [73] and CW [74]. A popular and powerful attack is the projected gradient descent (PGD) [75]

attack. Under this scheme, the adversary is assumed to have access to the objective function of the
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Fig. 14. Comparison of 5G wireless traffic prediction performance obtained from different models. Top left: GSMGP

model with Q = 500 fixed grids whose eMAPE = 0.28; Top right: SMGP model with Q = 500 modes whose

eMAPE = 0.42; Bottom left: a standard GP with a hybrid of 3 elementary kernels whose eMAPE = 0.30; Bottom

right: LSTM model whose eMAPE = 1.12. The gray shaded areas represent the uncertainty region (computed as

the posterior variances) of the GP models.

target model, L(w,x,y), where w are the model trainable parameters, x the input, and y the predicted

output variables. On this basis, the adversary performs an iterative computation; at each iteration, t, the

adversary computes an (e.g., `∞-bounded) adversarial perturbation of the training set examples x, based

on a multi-step PGD procedure that reads:

xt+1 =
∏

x+S
(xt + a sgn(∇xL(w,x, y))) (65)

where S is the set of allowed perturbations, that is the manipulative power of the adversary, e.g. `∞-ball

around x; sgn(·) denotes the sign function that extracts the sign of a real number. In this context, even

some minor, and many times imperceptible modifications, can successfully “attack” the model, resulting

in severe performance degradation. This frailness of DNNs casts serious doubt about their deployment

in safety-critical applications, e.g., autonomous driving [76].

Drawing upon this vulnerability, significant research effort has been recently devoted towards more

reliable and robust DNNs. On this basis, several adversarial attacks and defenses have been proposed

in the literature, e.g. adversarial training [75], [77], [78]. Among these, lies the stochastic modeling

rationale; its main operating principle is founded upon the introduction of stochasticity in the considered
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architecture, e.g., by randomizing the input data and/or the learning model itself [79]–[81]. Clearly, the

Bayesian reasoning, which treats parameters as random entities instead of deterministic values, seeking

to infer an appropriate generative process, seems to offer a natural stochastic defense framework towards

more adversarially robust networks. It must be emphasized that the Bayesian techniques differ from the

more standard randomized ones, which simply rely on the randomization of deterministic variables, in

the context of the standard deterministic neural networks. Such techniques can be fairly easily handled

and attacked. In contrast, in the Bayesian framework, the whole modeling and learning is built upon

statistical arguments and the training involves learning of distributions.

Therefore, in the following, we focus on a recent application of the Bayesian rationale towards adver-

sarial robustness. Specifically, we present the novel Bayesian deep network design paradigm proposed

in [3] that yields state-of-the-art performance against powerful gradient-based adversarial attacks, e.g.

PGD [75]. The key aspect of this method is its doubly stochastic nature stemming from two separate

sampling processes relying on Bayesian arguments: a) the sparsity inducing non-parametric link-wise

IBP prior introduced in Section IV-A3, and b) a stochastic adaptation of the biologically inspired and

competition-based LWTA activation, as discussed in Sections IV-A3 and V-D.

We investigate the potency of LWTA-based networks against adversarial attacks under an Adversarial

Training regime; we employ a PGD adversary [75]. To this end, we use the well-known WideResNet-34

[82] architecture, considering three different widen factors: 1, 5, and 10; note from the definition of the

WideResNet-34, the larger the widen factor the larger the network. We focus on the CIFAR-10 dataset

and adopt experimental settings similar to [83]. We use a batch size of 128 and an initial learning rate

of 0.1; we halve the learning rate at every epoch after the 75-th epoch. We use a single sample for

prediction. All experiments were performed using a single NVIDIA Quadro P6000.

For evaluating the robustness of this structure, we initially consider the conventional PGD attack with

20 steps, step size 0.007 and ε = 8/255, which are the two parameters required by the PGD. In Table IV,

we compare the robustness of LWTA-based WideResNet networks against the baseline results of [83]. As

we observe, the Stochastic LWTA-based networks yield significant improvements in robustness under a

traditional PGD attack; they retain extremely high natural accuracy (up to ≈ 13% better), while exhibiting

a staggering, up to ≈ 32.6%, difference in robust accuracy compared to the exact same architectures

employing the conventional ReLU-based nonlinearities and trained in the same fashion. Natural accuracy

refers to the performance based on non-adversarial examples, while robust accuracy refers to the case

where the network is tested against adversarial examples.

Further, to ensure that this approach does not cause the well-known obfuscated gradient problem [87],

stronger parameter-free attacks were adopted using the newly introduced AutoAttack (AA) framework
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Table IV: Natural and Robust accuracy under a conventional PGD attack with 20 steps and 0.007 step-size using

WideResNet-34 models with different widen factors. We use the same PGD-based Adversarial Training scheme for

all models [75].

Adversarial Training-PGD

Natural Accuracy (%) Robust Accuracy (%)

Widen Factor Baseline Stochastic LWTA Baseline Stochastic LWTA

1 74.04 87.0 49.24 81.87

5 83.95 91.88 54.36 83.4

10 85.41 92.26 55.78 84.3

Table V: Robust Accuracy (%) comparison under the AutoAttack framework. † denotes models that are trained with

additional unlabeled data. The AutoAttack performance corresponds to the final robust accuracy after employing

all the attacks in AA. Results directly from the AA leaderboard.

Method AutoAttack

HE [84] 53.74

WAR [83] 54.73

Pre-training [85]† 54.92

[86]† 65.88

WAR [83]† 61.84

Ours (Stochastic-LWTA/PGD/WideResNet-34-1) 74.71

Ours (Stochastic-LWTA/PGD/WideResNet-34-5) 81.22

Ours (Stochastic-LWTA/PGD/WideResNet-34-10) 82.60

[88]. AA comprises an ensemble of four powerful white-box and black-box attacks, e.g., the commonly

employed APGD attack; this is a step-free variant of the standard PGD attack [75], which avoids the

complexity and ambiguity of step-size selection. In addition, for the entailed L∞ attack, the common

ε = 8/255 value was used. Thus, in Table V, we compare the LWTA-based networks to several recent

state-of-the-art approaches evaluated on AA9. The reported accuracies correspond to the final reported

robust accuracy of the methods after sequentially performing all the considered AA attacks. Once again,

we observe that these stochastic and sparse networks yield state-of-the-art (SOTA) robustness against

9https://github.com/fra31/auto-attack
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all SOTA methods, with an improvement of ≈ 16.72%, even when compared with methods that employ

substantial data augmentation to increase robustness, e.g. [86]. More results are reported in [3]. All results

vouch for the potency of Stochastic LWTA networks in adversarial settings.

Finally, since the newly proposed networks consist of stochastic components, i.e., the competitive

random sampling procedure to determine the winner in each LWTA block, the output of the classifier

might change at each iteration; this obstructs the attacker from altering the final decision. To counter

such randomness in the involved computations, in [88] the APGD attack is combined with an averaging

procedure of 20 computations of the gradient at the same point. This technique is known as Expectation

over Transformation (EoT) [87]. Thus, AA was used jointly with EoT for further performance evaluation

of the LWTA-based networks. The corresponding results are presented in Table VI. As we observe, all of

the considered networks retain state-of-the-art robustness against the powerful AA & EoT attacks. This

conspicuously supports the usefulness of the stochastic LWTA activations towards adversarial robustness.

Further explanations on why this performance is obtained are provided in, e.g., [2].

Table VI: Robustness against AA combined with 20 iterations of EoT. APGD-DLR corresponds to the APGD

attack, using a different loss, i.e., the Difference of Logits Ratio [88].

Widen Factor Natural Accuracy APGD APGD-DLR

1 87.00 79.67 76.15

5 91.88 81.67 77.65

10 92.26 82.55 79.00

C. Unsupervised Learning via Bayesian Tensor Decompositions

In this subsection, we present some recent advances of Bayesian tensor decompositions in two un-

supervised learning applications: social group clustering and image completion. The first application

adopts Bayesian tensor CPD [11], [14], while the second one employs Bayesian tensor TTD [48]–[50].

Exploiting the GSM-based sparsity-promoting prior as introduced in Section IV-C and the effective MF-

VI inference as introduced in Section V-C, the resulting algorithms offer nice features bypassing the need

of hyper-parameters tuning and in dealing with overfitting.

1) Bayesian Tensor CPD for Social Group Clustering: In contrast to matrix decompositions, which are

not unique in general (unless certain constraints are imposed), tensor CPD is provably unique under mild

conditions [42]. This appealing property has made CPD an important tool for extracting the underlying

signals/patterns from the observed data. The interpretability of CPD model can be further enhanced by
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Fig. 15. Bayesian tensor CPD for social group clustering.

incorporating some side information, e.g., non-negativeness [11], into model learning. Here, using the

ENRON E-mail corpus dataset (a 3-D tensor with the size 184 × 184 × 44), we demonstrate how the

Bayesian tensor CPD (with non-negative factor matrices) [11] can be used to simultaneously determine the

number of social groups, cluster people into different groups, and extract interpretable temporal profiles

of different social groups.

The considered dataset records the number of E-mail exchanges between 184 people within 44 months.

In particular, each entry is the number of E-mails exchanged between two people within a certain month.

The physical meaning of three tensor dimensions are: the people who sent E-mails, the people who

received E-mails, and the months, respectively. After applying Bayesian tensor CPD, the automatically

determined tensor rank can be interpreted as the number of underlying social groups. For the first two

factor matrices, the physical meaning for each element is that it quantifies the “score” that a particular

person belongs to a particular E-mail sending and receiving group, respectively. For the third factor

matrix, each column corresponds to the temporal profile of the associated social group, see discussion

in [11].

Typically, we set the initial number of the social groups (i.e., tensor rank) large, (e.g., the minimal

dimension of the tensor data, 44, in the above example), and then run the Bayesian learning algorithm
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[11] to automatically determine the number of social groups that best interprets the data. As seen in Fig.

15, the estimated number of social groups gradually reduces to the value 4, indicating four underlying

social groups. This is consistent with the results published in [43], [89], which are obtained via trial-and-

error experiments. The clustering results can be read from the first factor matrix, which is of size 184×4.

Specifically, for each column, only a few elements have non-zero values, and they can be used to identify

the significance of the corresponding people in this social group. After sorting the scores of each column

in the first factor matrix, the people with top 10 scores in each social group are shown in Table V of [11].

The clustering results are well interpretable as illustrated in Fig. 15. For example, the people in the first

group work either in legal department or as lawyers, thus are clustered together. Moreover, interesting

temporal patterns can be observed from the third factor matrix. It is clear that when the company has

important events such as the change of CEO, crisis breaks and bankruptcy, distinct peaks appear.10 The

E-mail data analysis results have showcased the appealing advantage of Bayesian SAL in the context of

tensor CPD, that is, the automatic determination of the social group number. This is important, since it

leads to interpretable results on the group member and the temporal profiles can be naturally obtained.

2) Bayesian Tensor TTD for Image Completion: Color images are naturally 3-D tensor (with two

spatial dimensions and one RGB dimension). To fully exploit the inherent structures of images, recent

image completion works [90]–[92] usually fold an image into a higher dimensional tensor (e.g., 9-D

tensor), and then apply tensor decompositions to recover the missing pixels, among which TTD is one

of the most important tools due to its excellent performance. The folding operation is called tensor

augmentation, see details in, e.g., [90]–[92]. For a P -D tensor, TTD has P − 1 hyper-parameters (called

TT ranks). Manually tuning different combinations of these hyper-parameters for overfitting avoidance

is time-consuming. To facilitate this process, recent advances, see e.g., [48]–[50], first assume large

values for TT-ranks, employ the sparsity-promoting GSM prior, and use variational inference for effective

Bayesian SAL. The resulting algorithms can automatically learn the most suitable TT-ranks to match the

underlying data pattern [48]–[50].

As an illustration, we consider the image completion of 5 images. Each image is with size 256×256×3,

and 80 percent of its pixels are randomly removed. After tensor augmentation, they are folded into a 9-D

tensor with size 16×4×4×4×4×4×4×4×3. We assume the initial TT-ranks is set as large as 60, and

apply the Bayesian TTD algorithm [50] to complete the missing pixels. In comparison, we present the

image completion results from other recent TTD algorithms: TTC-TV [90], TMAC-TT [91], and STTO

[92], with the suggested hyper-parameter settings in their papers. The widely-used metrics, e.g., the peak

10This information can be acquired via checking the E-mail content and related research works, e.g., [43], [89].
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signal-to-noise ratio (PSNR), were reported in Table II of [50], from which it can be concluded that the

Bayesian TTD algorithm achieves the best overall performance. Particularly, in most cases, the Bayesian

TTD algorithm recovers images with 1-5 dB higher PSNR than other algorithms. This is visually evident

in the recovered images shown in Fig. 16. In this example, the Bayesian SAL-based tensor TTD [50] gets

rid of the costly hyper-parameter tuning process for balancing the trade-off between data fitting and the

noise overfitting; it directly learns these hyper-parameters from observations and shows excellent image

restoration performance.

Some suggestions are provided on the real implementations of Bayesian tensor decomposition algo-

rithms. a) Initialization: To assist the algorithm to avoid being trapped in a poor local minima, the initial

factor matrix is usually set equal to the singular value decomposition approximation of the matrix, which

is obtained by unfolding the tensor data along a specific dimension, see e.g., [10], [11], [14], [50]. b) On-

the-fly pruning: To accelerate the learning process while not affecting the convergence, in each iteration,

if some of the columns in the factor matrices are found to be indistinguishable from an all-zeros column

vector, they can be safely pruned, see, e.g., the discussion in [10], [11]. c) Robustness against strong

noise: When the corrupting noise sources are of large power, it was shown in [10] that slowing the noise

precision learning can increase the robustness of the algorithm. Demo codes of Bayesian tensor CPD and

TTD algorithms are online available from https://github.com/leicheng-tensor?tab=repositories.

VII. CONCLUDING REMARKS AND FUTURE RESEARCH

In this article, we have presented an overview of some state-of-the-art sparsity-promoting priors for both

Bayesian linear and non-linear modeling, as well as parametric and non-parametric models. In particular,

these priors are incorporated into three advanced data analysis tasks, namely, the GP models, Bayesian

deep neural networks, and tensor decomposition models, that can be applied to a wide spectrum of signal

processing and machine learning applications. Commonly used inference algorithms for estimating the

associated hyper-parameters and the (approximate) posterior distributions have also been discussed.

To demonstrate the effectiveness of the considered advanced sparsity-promoting models, we have

carefully selected four important use cases, namely the time series prediction via the GP regression,

adversarial learning via Bayesian deep neural networks, social group clustering and image completion

using tensor decompositions. The reported results indicate that: a) Sparsity-promoting priors are able to

adapt themselves to the given data and enable automatic model structure selection; b) The resulting sparse

solution can better reveal the underlying (physical) characteristics of a target system/signal with only a

few effective components; c) Sparsity-promoting priors, acting as the counterparts of the regularizers in

optimization-based methods, can effectively help to avoid data overfitting, especially when the data size
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Fig. 16. Experimental results for visual comparison on image completion with 80% missing data. Ground-truth

images are in the top row. The second row includes the images with missing values. The third to the bottom rows

include results from Bayesian TTD, TTC-TV, TMAC-TT, and STTO.

May 31, 2022 DRAFT



58

is relatively small; and (4) Sparsity-promoting priors lead to natural and more reasonable uncertainty

quantification which is hard to obtain via traditional deep learning models.

Despite the rapid development of Bayesian learning and the enumerated advantages of sparsity-

promoting models, still, such models are confronted with some challenges. Some open research directions

are summarized as follows.

• Quality of the posterior/predictive distribution. As we mentioned before, a unique feature of Bayesian

learning models lies in its posterior distribution that can be used to generate a point prediction and

meanwhile provide an uncertainty quantification of the point prediction. Various recent works [23],

[93], [94] indicate that the quality of the posterior distribution that is derived via the Bayesian deep

neural networks and GP models can be significantly improved by using cold tempering:

p(θ|X,y) ∝ (p(y|X,θ) · p(θ))1/T , T < 1. (66)

Two conjectures lie in the misspecification of the learning model and careless adoption of an

inadequate, unintentionally informative prior [93]. Deeper analysis of such behavior is highly de-

manded. It is of great value to verify either analytically or experimentally if adopting the sparsity-

promoting priors can help to avoid the use of cold tempering. It is also interesting to investigate the

generalization property of the sparsity-promoting Bayesian learning models.

Another path to improve the quality of posterior/predictive distribution is through designing more

effective inference methods. There is a recent trend to integrate the strengths of the variational

inference [58] and Monte Carlo sampling [95] in a principled fashion, see, e.g., [96], in order to

achieve the best trade-off between the inference accuracy and the computational efficiency. Given

multiple inference results, Bayesian deep ensembles, e.g., [23], were also proposed for improved

posterior/predictive distribution. It will be interesting to investigate how these recent general-purpose

advances can be tailored to the sparsity-aware Bayesian modeling introduced in this article.

• More emerging applications in complex systems. We have witnessed various applications of Bayesian

learning models, and they will surely continue to play important role in large and complex systems,

such as 6G wireless communication systems [25] and autonomous systems [76], that are constantly

facing rapid changing environments and critical decision making. Sparsity-promoting models are

flexible enough to adapt themselves (for instance by nulling irrelevant basis kernels in the GP

models) to changing data profile and provide rather reliable uncertainty quantification with small

computational expense.

• More and tighter interactions of the three data analysis tools. Each of the three data analysis tool

(introduced in this article) has already tapped into the design of other tools, see, e.g., DNN and GP
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[16], GP and tensor [97], DNN and tensor [98], to achieve performance enhancement by borrowing

the strengths of other tools. However, many of these works are not under the framework of Bayesian

SAL, and thus do not possess the associated comparative advantages. It is promising to investigate

how to combine the strengths of the three popular models, especially under the Bayesian SAL

umbrella, to tackle challenging tasks such as non-linear regression for multi-dimensional and even

heterogeneous data with deep kernels.

• Sparsity-awareness in emerging learning paradigms. Recently, we have witnessed various new

paradigms, including, for instance, federated learning, life-long learning, meta learning, etc. We

strongly believe that by further encoding sparsity-awareness through Bayesian sparse learning strate-

gies, these emerging learning paradigms can further improve their learning efficiency over the

learning models that were introduced in this article.
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