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Radio Map Estimation:
A Data-Driven Approach to

Spectrum Cartography
Daniel Romero and Seung-Jun Kim

Abstract

Radio maps characterize quantities of interest in radio communication environments, such as the
received signal strength and channel attenuation, at every point of a geographical region. Radio map
estimation typically entails interpolative inference based on spatially distributed measurements. In this
tutorial article, after presenting some representative applications of radio maps, the most prominent radio
map estimation methods are discussed. Starting from simple regression, the exposition gradually delves
into more sophisticated algorithms, eventually touching upon state-of-the-art techniques. To gain insight
into this versatile toolkit, illustrative toy examples will also be presented.

Index Terms

Radio map estimation, spectrum cartography, interpolation, radio environmental map, radio propa-
gation prediction.

I. INTRODUCTION

Spectrum cartography comprises a collection of techniques to construct and maintain radio maps, which
provide useful information on the RF landscape, such as the received signal power, interference power,
power spectral density (PSD), electromagnetic absorption, and channel gain across a geographic area;
see e.g. [1]–[3]. A quick overview on the most representative types of radio map is provided in Table I.

Radio maps find a myriad of applications in wireless communications and networking, such as network
planning, interference coordination and mitigation, power control, resource allocation, handoff manage-
ment, multi-hop routing, dynamic spectrum access, and cognitive radio networking tasks; see [4], [5] and
the references therein. Radio maps are also useful for localization [2] and tomography [6].

Arguably, spectrum cartography can be traced back to the application of Maxwell’s equations to char-
acterize the propagation of radio waves across space. However, due to insufficient computational capacity,
this approach has been traditionally confined to problems involving relatively simple geometries, such
as determining the electromagnetic field radiated by a dipole. To analyze more complex environments,
numerous empirical models have been developed, such as the well-known P-recommendations from the
International Telecommunication Union - Radiocommunication Sector (ITU-R). Unfortunately, this kind
of models often fail to provide estimates that are accurate enough for a given application [7].

With the advent of modern computational resources, finite-element analysis and ray-tracing techniques
paved the way for effectively approximating the solutions of Maxwell’s equations in complex environ-
ments. However, besides their high computational complexity, their main limitation is that an accurate
description of the propagation environment is required through 3D models of all objects and obstacles
along with their electromagnetic properties.
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To mitigate such limitations, radio map estimation (RME) was proposed, originally in the context of
cognitive radios [1]. In RME, a collection of measurements acquired by spatially distributed sensors
is used together with their locations to construct a map of the relevant RF descriptors, typically by
applying some form of interpolation techniques. As this approach does not require physical modeling
of the propagation environment, it constitutes a data-driven alternative to the model-based techniques
mentioned earlier. Since its conception, a sizable body of literature has emerged on the estimation of a
variety of kinds of radio maps for a wide range of application scenarios; see e.g. [2], [4], [5], [8], [9]
and the references therein. Recently, the work in this area has intensified thanks to the boom of deep
learning [10]–[13].

This article provides an introduction to RME by guiding the readers on the foundations and applications
of RME as well as on recent advances in this rapidly growing research area. To this end, the most common
types of radio maps are first described. Afterwards, RME methods for signal strength and propagation
maps are expounded in a tutorial fashion. Practical considerations and future directions are also discussed.

II. RADIO MAPS AND THEIR APPLICATIONS

The signal received at a certain location is determined by i) the transmitted signal; and ii) the
communication channel between the transmitter and the receiver. Depending on whether the focus is
on the combined effect of the two, or rather on the effect of the propagation channel itself, two families
of radio maps can be considered: signal strength maps and propagation maps.

For simplicity, unless stated otherwise, it will be assumed that the maps do not change significantly
within the time interval under consideration. In practice, the length of the interval for which this assump-
tion remains valid depends not only on the speed of variation but also specific applications.

A. Signal Strength Maps

Signal strength maps focus on metrics of the received signal, which are determined by the aggregate
effects of the channel upon the signals transmitted by all active sources. This is the case, for instance, if
the goal is to map interference power levels. Constructing such maps does not require knowledge of the
number, locations, and power of the transmitters, which is appealing in scenarios involving a large number
of mobile transmitters, as in device-to-device communications or cellular uplink channels. Different kinds
of signal strength maps are presented next with the increasing level of detail they capture.

1) Coverage Maps: The coarsest characterization of the radio environment can be provided by a map
that takes only binary values for coverage indication. Specifically, let p(x) denote the signal power that a
radio with an isotropic antenna1 receives at a spatial location x ∈ X , where X represents a geographical
region of interest, typically a subset of R, R2, or R3. A coverage map is a function s : X → {0, 1}
that takes the value s(x) = 1 if p(x) ≥ γ and 0 otherwise, where γ is a given threshold. This threshold
may correspond to the minimum signal power necessary to guarantee a prescribed communication rate.
Coverage maps may also be constructed by replacing p(x) in the above definition with the signal-to-
noise-power ratio (SNR) or the signal-to-interference-plus-noise-power ratio (SINR).

Coverage maps are often used by cellular and TV broadcast network operators to find areas of weak
coverage, which allows them to determine suitable sites for deploying new base stations and relay
antennas. A more recent application is mission planning for autonomous mobile robots or vehicles that
require network connectivity, where coverage maps may assist in, e.g., minimizing the time and distance
traversed without connectivity.

1The case of non-isotropic antenna patterns is discussed later.
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TABLE I: Illustration of the prominent types of radio maps. Although radio maps find applications in
many domains, this table exemplifies their applicability in cellular communications for specificity. The
x-coordinate indexes a point on a road or railway.
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2) Outage Probability Maps: A soft version of coverage maps can be constructed by adopting a
probabilistic perspective, as the effects of the channel, such as fading and shadowing, are often modeled
as random. An outage probability map q(x) is a function q : X → [0, 1] that provides the probability
that p(x) < γ. Since outage probability maps capture more detailed information than coverage maps,
the former can be readily employed in the applications of the latter. However, the additional information
provided by outage probability maps allows more sophisticated decision making, as in route planning [14].

3) Power Maps: A substantially finer characterization of the signal strength is obtained by a power
map, defined as a function p : X → R, which returns the received power p(x) at every spatial location
x ∈ X . As the information contained in power maps is richer than that in coverage or outage probability
maps, power maps can be used not only for tasks such as network planning and trajectory optimization,
but also for localizing transmitters [2]. Also, in fingerprint-based localization, a mobile device can measure
the received powers of nearby access points and determine its position by matching the measurements
with the values of the map.

4) PSD Maps: One is sometimes interested not only in the power distribution across space but also
across the frequency domain. A PSD map is a function p : X × F → R that provides the PSD p(x, f)
of the received signal at each location x ∈ X . Here, f ∈ F is the frequency variable and the set F ⊂ R
contains the frequencies of interest. If the latter is discretized as F = {f1, . . . , fNf

}, constructing a PSD
map is tantamount to constructing a collection of power maps proportional to p(x, f1), . . . , p(x, fNf

).
In addition to the applications mentioned for the previous kinds of signal strength maps, PSD maps

enable additional use cases. For example, they can be used for speeding up handoff procedures in cellular
networks by providing the quality of the relevant channels at a given location, obviating the need for time-
consuming channel measurement or feedback processes. PSD maps can also be utilized for interference
coordination where concurrent transmissions are assigned to different frequency band channels based
on the transceiver locations, promoting efficient spectrum reuse. In cognitive radio networks, PSD maps
can unveil underutilized “white spaces” in the space/frequency/time domains, which can be exploited
opportunistically by unlicensed users [15].

B. Propagation Maps

Whereas signal strength maps capture the aggregate effect of the transmitted signals and the channels,
propagation maps focus exclusively on the channel. Each parameter of interest gives rise to a different
kind of propagation map. As described next, channel gain maps constitute the simplest kind. Suppose
that pRX denotes the power received at location xRX due to a transmitter with power pTX at location xTX.
A channel gain map is a function h : X ×X → R of the transmitter and receiver locations that provides
the channel gain2 h(xTX,xRX) = pRX/pTX.

Clearly, given a channel gain map h(xTX,xRX) together with the locations xTX
1 , . . . ,xTX

S and transmit
powers pTX

1 , . . . , pTX
S of S sources in a region, one can obtain the power map as p(x) =

∑
s h(xTX

s ,x)pTX
s ,

provided that the signals transmitted by different sources are uncorrelated, as generally occurs in practice,
except, e.g., in single-frequency networks such as the ones utilized by digital television broadcast. Thus,
propagation maps can be readily used in the applications of signal strength maps provided that the
locations and transmit-powers of the sources are known. On the other hand, propagation maps offer more
versatile information than signal strength maps: whereas a signal strength map may provide the total
interference at each location, a propagation map reveals the contribution of each source. This enhanced
flexibility is instrumental for tasks such as interference coordination or network planning.

Observe that changes in the locations and transmit-powers of the sources give rise to changes in
signal strength maps, whereas propagation maps remain unaffected. On the other hand, alterations in the

2More sophisticated propagation maps arise by accounting for frequency selectivity. For example, the power gain that each
subcarrier sees in an orthogonal frequency division multiplexing (OFDM) system can be mapped. For simplicity, this article
focuses on channel gain maps, which provide the overall gain that affects a single narrow frequency band.
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scattering environment, such as the construction of new buildings or seasonal changes of foliage, affect
both propagation and signal strength maps. Thus, the time scale of variations of signal strength maps is
never greater than that of propagation maps. Hence, propagation maps can be used to construct signal
strength maps in highly dynamic setups, such as the uplinks of cellular networks, where mobile users
rapidly change their positions and activity patterns.

Propagation maps can also help address the classical problem of predicting the potential interference
inflicted to passive receivers, which arises in the context of cognitive radios [15]. For example, when
reusing the TV spectrum, the challenge is to carry out unlicensed transmissions without introducing
detrimental interference to TV receivers. With a propagation map, one can ensure that no receivers in a
certain area will be negatively affected without the need to know their precise locations [16].

Yet another application is the problem of aerial base station placement, where a propagation map of
the air-to-ground channels can be constructed to determine the best set of locations to deploy unmanned
aerial vehicle (UAV)-mounted base stations to serve ground users [17].

III. ESTIMATION OF SIGNAL STRENGTH MAPS

In a typical RME formulation, the goal is to construct a radio map using a set of measurements
acquired by spatially dispersed sensors together with their locations. For signal strength maps, consider
N measurements, where the n-th measurement mn is acquired by a sensor at location xn. In the case of
power maps, mn may be the average power measured in a certain band within a given time interval, which
can be modeled as mn = p(xn) + zn. Here, zn denotes measurement noise, which is caused, e.g., by the
finite length of the averaging time interval. For estimating PSD maps, mn can contain power spectrum
measurements such as periodograms. The RME problem becomes constructing the desired signal strength
map given the pairs {(xn,mn)}Nn=1.

It is worth noting that each sensor may collect measurements at multiple locations provided that they
are taken within a time window whose length is small relative to the scale of variations of the target
map. Thus, the number of sensors may be much smaller than N . In fact, the RME formulation can be
extended to accommodate the decision on where to acquire the measurements sequentially, as discussed
in Sec. V. Furthermore, a sensor need not be a special-purpose device. For example, a user terminal in
a cellular network may function as a sensing device.

The rest of the section presents the main approaches for constructing signal strength maps.

A. Estimation of Power Maps

1) Linear Parametric RME: Let us start from the simple yet illustrative scenario where there is a single
transmitter with known location xTX

1 in free space. As per Friis’ transmission equation, the received power
at location x is inversely proportional to the squared distance ‖x − xTX

1 ‖2. In other words, p(x) can
be written as p(x) = α1ψ1(x), where ψ1(x) := 1/‖x − xTX

1 ‖2 and α1 depends on the (unknown)
transmit power. Therefore, to estimate p(x) everywhere, it suffices to obtain α1. Clearly, this could be
accomplished from a single noiseless measurement m1 = p(x1) at x1 by setting α1 = m1/ψ1(x1).

Similarly, if S transmitters with known locations xTX
1 , . . . ,xTX

S are active in a certain region, one can
let ψs(x) := 1/‖x− xTX

s ‖2 to write p(x) as

p(x) = α1ψ1(x) + . . .+ αSψS(x), (1)

so long as the transmitted waveforms are uncorrelated. Based on (1), one can typically estimate the S
coefficients {αs} from S noiseless measurements by solving the system of equations

m1 = α1ψ1(x1) + . . .+ αSψS(x1)

... (2)

mS = α1ψ1(xS) + . . .+ αSψS(xS).
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Method Input (besides
measurements)

Strengths Limitations

Linear
Parametric
RME

• Transmitter locations
xTX

1 , . . . ,xTX
S

• Path loss law; e.g.
ψs(x) := 1/‖x−xTX

s ‖2

• Simplicity
• Closed form
• Accuracy in line-of-sight (LOS) con-

ditions
• Can easily accommodate knowledge

of transmit antenna patterns

• Inaccurate in non-LOS (NLOS) con-
ditions

• Requires transmitter locations

Kernel-
based
Learning

• Reproducing kernel
κ(x,x′)

• Loss L
• Regularization parame-

ter λ

• High flexibility
• Does not require transmitter locations

• Sensitive to the choice of the kernel
• Depending on L, a numerical solver

may be necessary
• λ must be tuned, e.g. via cross-

validation

Kriging

• Map’s mean µp(x)
and covariance
Cov[p(x), p(x′)]

• Measurement noise vari-
ance σ2

z

• LMMSE optimality
• Closed form
• Naturally suited to the customary log-

normal shadowing model
• Estimation error can be quantified

• Accurate covariance structure may be
hard to obtain

• Requires user locations

Sparsity-
based
Methods

• Discrete grid
• Regularization parame-

ter λ

• Efficient algorithms available for so-
lution

• Recovered sparse solution readily in-
terpretable

• Prior knowledge on propagation char-
acteristics needed

• Errors due to grid mismatch

Matrix
Completion

• Regular grid
• Regularization parame-

ter λ

• Agnostic to propagation characteris-
tics

• Spatial correlation structures exploited

• Low-rank condition is critical
• Sufficient number of measurements

required for stable interpolation

Dictionary
Learning

• Dictionary size Q
• Regularization parame-

ters λs, λL

• Powerful union-of-subspace structure
for spatial patterns

• Can accommodate high temporal dy-
namics

• Nonconvex optimization
• Hyperparameter tuning is necessary

Deep
Learning

• Terrain maps
• Vegetation maps
• Building height maps
• Network architecture
• Training parameters
• etc.

• Can learn propagation patterns from a
data set

• More accurate than other methods if
sufficient data is available [18]

• Large amount of data is required
• Training is computationally intensive

TABLE II: Comparison of the power map estimation methods discussed in this tutorial.
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Fig. 1: Example of map estimation in 1D using a parametric estimator that knows the transmitter locations.
The estimate is reasonably accurate despite the low number of measurements.
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Fig. 2: Example of map estimation by fitting a polynomial of degree 13 via LS. The estimate is clearly
unsatisfactory despite the fact that the estimate fits accurately most of the measurements.

In practice, however, the measurements are noisy and one may use more than S of them to estimate
the coefficients. Upon defining α := [α1, . . . , αS ]>, m := [m1, . . . ,mN ]>, (Ψ)n,s := ψs(xn) and
z := [z1, . . . , zN ]>, (2) can be extended to the case with N > S measurements as m = Ψα + z. The
least squares (LS) estimate of α is therefore α̂ = arg minα ‖m − Ψα‖2. Because the number S of
parameters to be estimated does not depend on the number N of measurements, this approach is termed
parametric. Further parametric and non-parametric estimators are discussed in the rest of this section.

Fig. 1 illustrates a setup where a map needs to be estimated on a line, i.e. the region of interest is
given by X ⊂ R, which may correspond e.g. to a road or a railway. The true map and the estimated
map obtained by substituting α̂ into the right-hand side (RHS) of (1) are compared. The estimated map
is seen to be reasonably accurate and can be shown to converge to the true map for N →∞ under mild
conditions.

So far, it was assumed that propagation takes place in free space. If this is not the case, then the basis
functions ψs(x) = 1/‖x − xTX

s ‖2 may not yield a satisfactory fit. Although one can in principle adopt
other families of basis functions, such as those determined by the well-known Okumura-Hata model, the
flexibility of such an approach is rather limited. Besides, the location of the sources is required, which
may not be a realistic assumption in some applications. These observations suggest generalizing (1) to

p(x) = α1ψ̃1(x) + . . .+ αBψ̃B(x), (3)
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Fig. 3: Example of a function in an RKHS obtained with the expansion in (4) with only 5 terms.

where ψ̃b(x) can take an arbitrary form and need not even be linked to any particular transmitter. For
example, in the case where a map needs to be constructed on a line, {ψ̃b(x)}b could form a polynomial
basis by setting ψ̃b(x) = ψ̃b(x) = xb−1. The coefficients {αb} can again be found by LS estimation.
However, despite the appealing simplicity of this approach, the quality of the estimates is often poor. As
illustrated by Fig. 2 for the same setup as in Fig. 1, this kind of regression methods may be sensitive to
the choice of the basis functions.

2) Kernel-Based Learning: The main challenge faced by the parametric methods described in the
previous section lies in the difficulty to select suitable basis functions. This difficulty is further exacerbated
in higher dimensions, such as when X = R2 or R3. Kernel-based learning can sidestep this issue while
enjoying simplicity, universality, and good performance [19].

Upon postulating a family of functions G, the goal is to select, based on the data {(xn,mn)}Nn=1, a
function p̂ in G that satisfies p̂(x) ≈ p(x) ∀x. In kernel-based learning, G is a special class of functions
termed reproducing-kernel Hilbert space (RKHS), given by

G :=

{
g : g(x) =

∞∑
i=1

αiκ(x,x′i), x
′
i ∈ X , αi ∈ R ∀i

}
. (4)

Here, κ : X ×X → R is a reproducing kernel [19, Ch. 2], which is a function that is (i) symmetric, i.e.,
κ(x,x′) = κ(x′,x) ∀x′,x; and (ii) positive-definite, meaning that the matrix K̄ with entries (K̄)i,j =
κ(xi,xj) is positive-definite for any set of points {x1, . . . ,xN}. A common choice is the so-called
Gaussian radial basis function (RBF) κ(x,x′) := exp

(
−‖x− x′‖2/2σ2

)
, where σ > 0 is a prescribed

parameter. Seen as a function of x, κ(x,x′i) is a bell-shaped surface centered at x′i. Thus, it can be
observed from (4) that a function in G is a superposition of (a possibly infinite number of) Gaussian
bells with different centers and amplitudes, as illustrated in Fig. 3.

In view of (4), finding a suitable estimate p̂ in G amounts to determining a set of coefficients {αi}
and centroids {x′i}. To this end, a typical approach is to solve

p̂ = arg min
g∈G

1

N

N∑
n=1

L (mn, g(xn)) + λ‖g‖2G , (5)

where λ > 0 is a pre-determined regularization parameter and L is a loss function quantifying the
deviation between the observations {mn}Nn=1 and the predictions {g(xn)}Nn=1 produced by a candidate
g. If the square loss L(mn, g(xn)) = (mn − g(xn))2 is adopted, (5) becomes kernel ridge regression
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(KRR) [19, Ch. 4]. The RKHS norm3 of g(x) =
∑∞

i=1 αiκ(x,x′i) is given by

‖g‖G :=

√√√√ ∞∑
i=1

∞∑
j=1

αiαjκ(x′i,x
′
j). (6)

To understand the role of the regularization term λ‖g‖2G in (5), first note that L is typically designed so
that its minimum is attained when g(xn) = mn. Thus, in the absence of the regularization term, owing
to the infinite degrees of freedom of g (cf. (4)), the solution p̂ to (5) would achieve a perfect fit for all
measurements. However, such a p̂ would typically be highly irregular since it would fit even the noise
component of the measurements and, thus, likely differ significantly from p at the locations where no
measurements were taken. The regularization term helps avoid such overfitting by promoting smoothness
in p̂. The reason is that, since κ is positive-definite, ‖g‖2G penalizes large values of {αi}, which tend to
occur in overfitted solutions. Parameter λ is adjusted to achieve the “sweet spot” between data fitting
and regularization.

To solve (5), one could initially think of substituting the expansion (4) into (5) and optimizing over
the infinitely many coefficients {αi} and centroids {x′i}. However, this approach is obviously intractable.
Instead, the so-called representer theorem can be invoked [19, Th. 4.2], which states that the solution to
(5) must be of the form

p̂(x) =

N∑
n=1

αnκ(x,xn) (7)

for some {αn}Nn=1. Observe that the centroids in (7) are precisely the measurement locations. This
effectively reduces an optimization problem with infinitely many variables to a problem with just the N
variables α1, . . . , αN . For example, if one adopts the square loss, substituting (7) into (5) yields

α̂ = arg min
α

1

N
‖m−Kα‖2 + λα>Kα, (8)

where (with some abuse of notation) α := [α1, ..., αN ]> and K is an N -by-N matrix with (K)i,j =
κ(xi,xj). It should be noted that now the number of parameters to be determined depends on the number
of measurements N , which is why this kind of methods are called non-parametric. Problem (8) admits
the closed-form solution

α̂ = (K + λNIN )−1m, (9)

from which p̂ can be obtained via (7). Figs. 4 and 5 show the KRR-based map estimates in the same
setup as in Figs. 1 and 2. It can be seen that as the number of measurements increases, the estimated
map becomes closer to the true map.

It is worth mentioning that RME based on kernel methods is best suited for scenarios where no
prior knowledge on the propagation environment is available. When some prior information, such as the
transmitter locations or the path loss exponent, is indeed available, it is also possible to combine the
flexibility of non-parametric kernel methods with the ability of parametric methods to capture prior
information by means of appropriate basis functions. To this end, one can postulate that p can be
represented as the sum of a function in the form of (3) and a function in an RKHS [20]. Such an
approach also generalizes the so-called thin-plate spline regression, which has well-documented merits
in RME [4], [9].

Another limitation of kernel-based methods is the need for choosing the kernel (including its param-
eters), which may affect estimation performance significantly. This difficulty may be alleviated through

3The term ‖g‖2G in (5) can be replaced by other increasing functions of ‖g‖G .
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Fig. 4: Example of KRR estimate. As expected, the quality of the fit is higher in regions with higher
measurement density.
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Fig. 5: Example of KRR estimate with more measurements than in Fig. 4. The fit is considerably better.

multikernel learning, where a dictionary of kernels can be specified and a suitably designed algorithm
uses the measurements to construct a kernel by combining the kernels in the dictionary; see references
in [18].

3) Kriging: RME can also be formulated in a statistical framework, where p(x) is treated as a random
process. A popular approach is kriging, which is a linear spatial interpolator based on the linear minimum
mean square error (LMMSE) criterion [1], [21], [22]. In simple kriging, the mean and the covariance of
p(x) are assumed to be known. That is, µp(x) := E[p(x)] and Cov[p(x), p(x′)] are given for all x and
x′. How to obtain these functions is discussed later.

Under the measurement model mn = p(xn) + zn, n = 1, 2, . . . , N , assume that zn is zero-mean with
variance σ2

z and uncorrelated with zn′ for all n′ 6= n and with p(x) for all x. Thus, the mean and covari-
ance of the measurements are respectively E[mn] = µp(xn) and Cov[mn,mn′ ] = Cov[p(xn), p(xn′)] +
σ2
zδn,n′ , where δn,n′ equals 1 if n = n′ and 0 otherwise. It can also be verified that Cov[p(x),mn] =

Cov[p(x), p(xn)]. Then, it can be shown that the LMMSE estimator of p(x) based on the measurements
m := [m1, . . . ,mN ]> is given by

p̂(x) = µp(x) + Cov[p(x),m]Cov−1[m,m](m− E[m]), (10)

where Cov[m,m] is the N ×N matrix whose (n, n′)-th entry is Cov[mn,mn′ ] and Cov[p(x),m] is the
N × 1 vector with n-th entry equal to Cov[p(x),mn].

It is worth comparing (10) with (7) and (9). It can be easily seen that, except for the mean terms
in (10), the estimators provided by (10) and (7) coincide if one sets κ(x,x′) = Cov[p(x), p(x′)] and
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λ is adjusted properly. This is a manifestation of the well-known fact that a reproducing kernel can be
thought of as a generalization of covariance. As a result, some of the practical issues and corresponding
mitigation strategies for kernel-based learning apply to kriging as well.

To obtain the mean µp(x) and the covariance Cov[p(x), p(x′)] of the map p(x) to be estimated, one
can rely on historic measurement data. Given the covariance function, universal kriging also provides a
framework to estimate µp(x) as a part of the kriging estimator.

Next, a simple example with a single transmitter at location xTX transmitting with power pTX will be
used to illustrate how the mean and covariance can be derived from common propagation models; a more
sophisticated example involving the idea of universal kriging and incorporating temporal variations as
well will be presented in Sec. IV-A. To this end, note that the received power in logarithmic scale can
be written as pdB(x) = pTX

dB +hdB(xTX,x), where pTX
dB and hdB(xTX,x) are expressed in dB. A common

decomposition for the latter is hdB(xTX,x) = hPL(x) − aSF(x) − aFF(x), where hPL(x) is the path
loss, aSF(x) is the attenuation due to shadow fading, and aFF(x) is the attenuation due to fast fading.
The dependence on xTX and the subscript dB on the RHS have been omitted for brevity. Recall that
shadow fading is produced by obstructions in the line of sight between the transmitter and the receiver,
whereas fast fading is due to the constructive and destructive interference between the different multipath
components arriving at the receiver.

With the above decomposition, it is common to model hPL(x) as a deterministic function of x.
Furthermore, aSF(x) and aFF(x′) can be assumed to be uncorrelated for all x and x′ and to have means µSF

and µFF, respectively. The spatial structure of aSF(x) is often captured by a simple correlation model, such
as the Gudmundson model [23], which prescribes that Cov[aSF(x), aSF(x′)] = σ2

SF2−‖x−x
′‖/dSF

. Here,
σ2

SF is a constant and dSF is the distance at which the correlation decays by 50%. On the other hand, due
to the rapid spatial variability of aFF(x), it is reasonable to set Cov[aFF(x), aFF(x′)] = σ2

FFδx,x′ . Then,
we have µp,dB(x) = pTX

dB +hPL(x)−µSF−µFF and Cov[pdB(x), pdB(x′)] = σ2
SF2−‖x−x

′‖/dSF
+σ2

FFδx,x′ .
4) Leveraging Sparsity: In many practical RME problems, estimation performance can be significantly

improved by incorporating prior information. The sparsity prior has played a critical role in compressive
sensing (CS), in which framework RME problems can often be formulated. Moreover, depending on
the choice of the basis functions, the sparsity prior can be physically interpreted in terms of the spatial,
temporal, and spectral scarceness of the RF energy distribution [2], [9].

Consider once more the linear parametric RME model (1), but rather than assuming that the number
S and locations {xTX

s } of the transmitters are known, simply discretize the map area using Ng grid
points {xgrid

ng }ng
⊂ X representing the possible locations of the transmitters. Then, upon defining α̃ :=

[α̃1, . . . , α̃Ng
]> and Ψ̃ ∈ RN×Ng with (Ψ̃)n,ng

= ψng
(xn) := 1/‖xn−xgrid

ng ‖2 for n = 1, . . . , N and ng =

1, . . . , Ng, one has the model m = Ψ̃α̃+z. In practical scenarios, it is expected that only a small subset
of the grid points are actually occupied by transmitters, that is, S � Ng. Thus, one can impose the sparsity
prior on α̃. For example, a Lasso problem can be formulated as ˆ̃α := arg minα̃ ‖m− Ψ̃α̃‖22 + λ‖α̃‖1,
where λ > 0 and the term ‖α̃‖1 :=

∑Ng

ng=1 |α̃ng
| is known to promote sparsity in α̃. The non-zero entries

of the obtained ˆ̃α reveal the (grid-based) locations {xTX
s } and the number S of the transmitters. Then,

one can reconstruct the desired power map p(x) using (1).
As in the linear parametric RME approach, the adopted basis functions ψng

(x) = 1/‖x−xgrid
ng ‖2 may

not accurately capture the actual propagation characteristics. Possible remedies for this issue include sparse
total least-squares (TLS) [8], kernel-based learning [9], and sparse Bayesian learning techniques [24]. In
particular, the basis mismatch issue due to the grid-based discretization of space can be mitigated in the
atomic norm minimization framework.

5) Matrix Completion: Another useful framework for RME is low-rank matrix completion. For in-
stance, consider building a power map over a rectangular area R ⊂ R2. By discretizing R using a
regular grid {xgrid

(i,j) : i = 1, . . . , I, j = 1, . . . , J}, one can obtain a power map matrix P ∈ RI×J

where (P )i,j := p(xgrid
(i,j)). Of course, only a small subset of the entries will be actually observed by the
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sensors. However, when the grid is dense enough compared to the spatial variability of the map, adjacent
entries of P will be similar, which will, in turn, manifest itself as an approximate rank deficiency of
P , that is, rank(P )� min{I, J}. Matrix completion thus tries to estimate the unobserved entries of P
under a low-rank prior. Since directly promoting low rank gives rise to non-convex problems, tractable
formulations are typically pursued by penalizing the nuclear norm of the estimate, which is the sum of
its singular values. Denote the set of indices of the observed entries as O ⊂ {1, . . . , I}×{1, . . . , J} and
the nuclear norm of P as ‖P ‖∗. Also, let M be the matrix whose (i, j)-th element equals the sensor
measurement at xgrid

(i,j) if (i, j) ∈ O and 0 otherwise. A matrix completion problem for the power map
can be posed as

minimize
P

1

2

∑
(i,j)∈O

[
(P )(i,j) − (M)(i,j)

]2
+ λ‖P ‖∗. (11)

With a sufficient number of observed entries, which depends on the rank and the incoherence of P , the
desired map can be reconstructed reliably.

When R grows large, the rank of P may increase, as the power distribution may become more diverse.
In this case, local matrix completion on submatrices of P may be a viable approach [25]. The matrix
completion idea can also be extended to tensors, when the maps in a 3-D space are desired [26], or when
the time and frequency domains are considered together with space [27].

6) Dictionary Learning: When it is desired to capture the temporal variations of the power map, e.g.,
to exploit unused spectral resources over both time and space, it is useful to learn a library of power
maps, from which the suitable one can be chosen to explain the power distribution at a given time.
Dictionary learning is an unsupervised learning method that seeks a possibly overcomplete basis, termed
a dictionary, such that the data vectors can be expressed as linear combinations of a small number of
vectors in the dictionary.

Denote the power measurements of the N sensors at time t as m(t) := [m1(t), . . . ,mN (t)]> for
t = 1, . . . , T . Dictionary learning postulates that m(t) can be represented using a dictionary D ∈ RN×Q
as m(t) ≈Ds(t), where s(t) ∈ RQ is a sparse vector of coefficients for the measurements at time t. The
columns of D are called the atoms. Collecting the data samples into a matrix M := [m(1), . . . ,m(T )] ∈
RN×T+ , one can appreciate that finding such a dictionary can be viewed as a matrix factorization task since
M ≈DS, where S := [s(1), . . . , s(T )] is a sparse matrix. There are various optimization formulations
to learn D from M [28].

In the present context of power map estimation, consider the case where the sensors do not report
their measurements every time due to e.g. energy-saving sleep modes or congested signaling channels.
Thus, the network controller must apply an appropriate interpolation technique to estimate the missing
observations. A helpful piece of side information is the topology of the network of sensors, which
is typically maintained for various network control tasks such as routing. To leverage this topology
information, let A ∈ {1, 0}N×N be the adjacency matrix of the network topology, i.e., the (n, n′)-th
entry an,n′ of A is equal to 1 if nodes n and n′ can communicate directly with each other and 0
otherwise. The Laplacian matrix L is defined as L := diag{A1}−A, where 1 is the all-one vector. As
seen next, this matrix can be used to promote spatial smoothness in the sense that the power estimates
at adjacent sensors are similar.

For training, at each time t, a subset N obs(t) ⊂ N := {1, . . . , N} of sensors acquire power measure-
ments, which are stacked in vector mobs(t) ∈ R|N

obs(t)|
+ . Also, let O(t) denote the matrix which contains

the n-th row of the N ×N -identity matrix if and only if n ∈ N obs(t). Then, upon defining

f(s,D;mobs(t),O(t)) :=
1

2
‖mobs(t)−O(t)Ds‖22 + λs‖s‖1 +

λL
2
s>D>LDs, (12)
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the dictionary can be learned via

D̂ := arg min
D∈D,{s(t)}

T∑
t=1

f(s(t),D;mobs(t),O(t)), (13)

where D := {[d1, . . . ,dQ] ∈ RN×Q : ‖dq‖22 ≤ 1, q = 1, . . . , Q}. The first term in (12) promotes the
fitness of the reconstruction to the training datum in a LS sense; the second term, with an adjustable
weight λs > 0, is an `1-norm-based regularizer encouraging sparsity in s; and the third term, with weight
λL ≥ 0, captures the prior information that the power levels at the neighboring sensor nodes should be
similar, since it holds that v>Lv = 1

2

∑N
n=1

∑N
n′=1 ann′(vn − vn′)2 for any v := [v1, . . . vN ]> ∈ RN .

Problem (13) can be solved efficiently via a block coordinate descent (BCD) algorithm [29].
In the operational phase, once the dictionary D̂ is obtained from (13), given a (new) set of measurements

m̄obs and the corresponding observation matrix Ō (corresponding to the observation set N̄ obs), one first
finds the sparse coefficients by solving s̄ := arg mins f(s, D̂; m̄obs, Ō). Then, the missing power levels
for sensors n ∈ N̄miss := N\N̄ obs can be obtained by first reconstructing the whole ˆ̄m = D̂s̄ and
extracting the entries { ˆ̄mn}n∈N̄miss . A practical challenge is to implement the algorithm for online
and distributed operation to handle large-scale real-time computation [29], [30]. Additionally, tuning
the hyperparameters, such as the dictionary size, and the regularization parameters may require cross-
validation based on historic measurements.

7) Deep Learning: A deep neural network (DNN) is a function gw that can be expressed as the
composition of more elementary functions called layers, which are parameterized by a vector w. Training
a DNN involves finding w so that gw fits the given data set. DNNs feature a large learning capacity and
can be efficient trained via stochastic optimization methods. Spatial structures in the data can be readily
exploited utilizing convolutional layers, in which case the DNN is called a convolutional neural network
(CNN). Next, multiple approaches to use DNNs for signal strength map estimation are described.

a) Pointwise DNN Estimators: The simplest approach is to use a DNN to construct a function,
where the input is the sensor location and the output is the signal strength at that location. This approach
was pursued in [10], where the input was encoded using a spherical coordinate system located at the
(single) transmitter. Since the dimensionality of the input is small, the network architecture can be kept
simple and the resulting estimator is not affected by the so-called curse of dimensionality [19, Sec. 4.3].

However, such an approach cannot easily capture the spatial structure of the map using CNNs. Besides,
the DNN needs to be re-trained for each specific RF environment. Therefore, it cannot benefit from
measurements previously collected in other scenarios, such as different cities.

b) Local DNN Estimators: To alleviate the aforementioned limitations of pointwise DNN estimators,
the network input can be replaced with a collection of matrices that capture information about the local
environment of the sensor. These matrices, typically stacked as slabs of a tensor, can be thought of as
local maps defined over a rectangular grid centered at the sensor. A transmitter (alternatively a sensor)
distance map, for example, is a matrix whose (i, j)-th entry equals the distance from the (i, j)-th grid
point to the transmitter (sensor) [11], [12]. It is also possible to include a local terrain map that indicates
the altitude of the terrain at each grid point. Further kinds of local maps include building indicator
maps [18], building height maps [31], [32], or foliage maps [31]. One can also use aerial or satellite
images of the surroundings of the sensor as a local map [33]. Fig. 6 provides an illustration of this kind
of setup.

This input format lends itself to CNN architectures that leverage spatial information in the vicinity of
the sensor to predict the received power. To learn across different environments where the transmitters
possibly employ different transmit power, one can set the output of the network to be the gain between
each transmitter and the sensor and work out the received power afterwards. This effectively sets this
approach halfway between signal strength and propagation map estimation.
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p̂(x)

Fig. 6: Illustration of a local DNN estimator, which provides p̂(x) at a single x.

The practical limitation of this approach is that it requires knowledge of the locations (and the transmit
powers if one wishes to estimate the gains) of all transmitters and the measurements must be obtained
separately for each transmitter. Furthermore, it only exploits the information in the vicinity of the sensor
but, in practice, obstacles or scatterers far away from the sensor may also affect the received power
significantly. In addition, networks designed in this way provide the received power (or channel gain)
only at a single location per evaluation (also known as forward pass). To construct the entire map, the
estimator needs to be evaluated repeatedly for each point on a grid, resulting in significant computational
complexity.

c) Global DNN Estimators: To accommodate global, rather than local, environment information, one
can create a regular grid across the region where the map needs to be constructed and formulate the RME
problem as a matrix or tensor completion task [13], [18], [31], [32], [34]. To this end, each measurement
is associated with the nearest grid point and a matrix is constructed with an entry per grid point. If a
single measurement is assigned to a grid point, the corresponding entry contains the measurement. If
multiple measurements are assigned to a grid point, the corresponding entry may contain their average.
Those points with no associated measurements can simply be filled with physically unlikely values [32],
[34], [35], or a separate binary mask matrix can be included in the input [18], [36].

Other maps with side information, such as the ones used in local DNN estimators, can also be appended
to the input tensor to the network. However, note that now these maps must be global in the sense that
they capture the entire region of interest.

The global input can naturally be processed by CNN architectures. The most common ones are
autoencoders [18], [35] and UNets [13], [32]. The motivation for the former is described in Box 1.
A global DNN estimator is illustrated in Fig. 7.

Unlike local DNN estimators, a single forward pass of the DNN produces the entire map. Furthermore,
using map measurements collected from multiple environments, the architecture can readily learn across
different RF environments. On the other hand, collecting a sufficiently large data set to train such a
network may be challenging. To alleviate this difficulty, one may resort to data augmentation or incorporate
synthetic data from ray-tracing simulators [18]. Another limitation deals with the spatial resolution of the
constructed maps. A high resolution map requires a dense grid, significantly increasing computational
complexity.

B. Estimation of PSD Maps

PSD maps describe how the power distributes not only across space but also across the frequency
domain. To estimate a PSD map p(x, f), most schemes assume that the sensors measure the power that
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p̂(x)

Fig. 7: Illustration of a global DNN estimator, which provides p̂(x) for all values of x on a grid.

Box 1: Manifold structure of power maps.

Autoencoder networks are attuned to situations where the data lies on a low-dimensional manifold
embedded in a high-dimensional space. To see that this is the case of radio maps, consider the values
of a power map in 2D produced by 2 sources radiating with a fixed height and power in free space.
A data set can be generated where each map is obtained by placing the sources over random locations
on the horizontal plane. Each map is therefore uniquely identified by the 4 scalars corresponding to the
locations of the sources. If the maps are defined on a 32 × 32 grid, they comprise 322 = 1024 points,
which means that these maps lie on a manifold of dimension 4 embedded in a space of dimension 1024.
This observation is corroborated in [18] by training an autoencoder on the aforementioned data set. An
autoencoder is the concatenation of an encoder and a decoder. In this case, the encoder takes a 32× 32
map and produces a code vector λ of length 4. The decoder takes this vector at its input and aims at
reconstructing the original 32 × 32 map. For properly trained encoder and decoder, the output of the
decoder resembles closely the input of the encoder, which means that the code effectively condenses the
information of the map in just 4 numbers.
Each value of the code identifies a point in the manifold. The top panel of Fig. 8 shows the output of
the decoder when its input equals the average of the codes associated with each map in the data set.
The rest of panels show the output of the decoder applied to the result of perturbing the entries of this
average code indicated by index set S by an amount equal to the standard deviation of that entry across
the data set. This procedure yields different points in the manifold. All panels approximately correspond
to maps of the kind composing the data set, which supports the above manifold hypothesis.
If propagation does not take place in free space or if the power or height of the sources is variable, a
longer code needs to be utilized to capture all information in the maps. Experiments with other data sets
reveal that, in presence of propagation phenomena such as shadowing and fading, radio maps lie close
to a manifold of low dimension [18].

they receive at a set of frequencies f1, . . . , fNf
. The n-th measurement is therefore a vector mn =

[p̃(xn, f1), . . . , p̃(xn, fNf
)]>, where p̃(x, f) denotes the measured PSD at location x and frequency f ,

possibly obtained by using a periodogram or Welch’s method. Relying on these measurements, the goal
is to obtain a PSD map estimate p̂ such that p̂(x, f) is as close to the true p(x, f) as possible. To this
end, several alternatives are explored next.

1) Separate Estimation per Frequency: The simplest approach is to consider each frequency separately
and essentially decompose the problem of estimating a PSD map at Nf frequencies as Nf problems of
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Fig. 8: Decoder outputs for the average code and its perturbed versions obtained with an autoencoder
with code length 4 [18].

estimating a single power map [35]. More specifically, the n-th power map is estimated from PSD
measurements of p(x1, fn), . . . , p(xN , fn) using the techniques described earlier. The main limitation
of this approach is that it disregards any structure in the frequency domain, making it more sensitive
to measurement noise than other schemes explored later. On the upside, these approaches are simple
and do not require prior knowledge on the channel or transmit PSD characteristics. Moreover, a twofold
benefit arises in terms of the sizes of the training set and the parameters for schemes such as deep
learning estimators. First, provided that the propagation environment affects all frequencies in a similar
fashion, considering each frequency separately will increase the number of training examples by a factor
of Nf . On the other hand, if the neural network takes per-frequency measurements as the input rather than
processing all frequencies jointly, the number of parameters to be learned can be significantly reduced [18,
Sec. III-C1].

2) Estimation in Narrowband Channels: When the width of the band of interest is small or moderate,
it makes sense to assume that the channel is not frequency selective [27], [36]. This means that the
true PSD map can be written as p(x, f) =

∑
s hs(x)pTX

s (f), where hs(x) = h(xTX
s ,x) is the channel

gain from the s-th transmitter to location x. This implies that the measurements essentially provide Nf

noisy linear combinations of the S functions h1(x), . . . , hS(x). Therefore, when Nf � S, one can
effectively exploit the structure in the frequency domain, improving robustness to measurement noise.
One of the main benefits of this approach is that no knowledge of the transmit PSD is required, as it
can often be estimated using tools such as nonnegative matrix factorization without requiring any prior
knowledge [36].
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Fig. 9: A basis expansion model can be used to decompose a PSD as a linear combination of functions
in a basis. In this case, the basis functions are raised cosine functions, each one corresponding to a
transmission in a different band. This makes it possible to exploit prior information about bandwidths,
central frequencies, and transmission pulse shapes.

3) Estimation in Wideband Channels: For a wideband channel, one cannot realistically assume that
the channel response is flat. In order to exploit the frequency domain structure, one can utilize prior
knowledge on the transmitter waveforms. Specifically, the PSDs of the transmitted waveforms are typically
constrained by communication standards and spectrum regulations, which specify the bandwidth, carrier
frequencies, transmission masks, roll-off factors, number of subcarriers, and so forth [37]. Therefore,
the transmit PSD of a source can be approximated by a basis expansion model (BEM) as pTX

s (f) =∑
c βs,cφc(f), where φc denotes the c-th basis function and βs,c is a nonnegative quantity. This decom-

position is illustrated in Fig. 9.
If the signals transmitted by different sources are uncorrelated, the received PSD at a location x can

be expressed as p(x, f) =
∑

s h(xTX
s ,x, f)pTX

s (f), where h(xTX
s ,x, f) is the channel gain at frequency

f . Then, using the BEM, one arrives at p(x, f) =
∑

c

∑
s βs,ch(xTX

s ,x, f)φc(f). If the bandwidths of
the basis functions are small relative to the entire band, it is reasonable to assume that h is approximately
frequency-flat in the band of each basis function. This yields h(xTX

s ,x, f)φc(f) ≈ h(xTX
s ,x, f̃ c)φc(f),

where f̃ c is the central frequency of the c-th basis function. With this approximation, one can write
p(x, f) =

∑
c pc(x)φc(f), where pc(x) =

∑
s h(xTX

s ,x, f̃ c)βs,c constitutes the power captured by the
c-th basis function at location x.

Observe that introducing the BEM has reduced the problem of estimating Nf power maps to the
problem of estimating the C � Nf power maps p1, . . . , pC . Clearly, the smaller C, the smaller the
sensitivity to measurement noise. The approaches in the preceding subsections can be seen as the extreme
cases of choosing C = Nf and C = 1, respectively. To estimate a PSD map, the aforementioned technique
can be used in combination with virtually any of the approaches for power map estimation discussed
earlier [2], [4], [8], [9]. A recent example is [18], where a BEM is used in the last layer of a DNN for
RME.

The main limitation of estimators that rely on a BEM is a manifestation of the well-known bias-variance
trade-off. In particular, if the number of basis functions is small, the approximation h(xTX

s ,x, f)φc(f) ≈
h(xTX

s ,x, f̃ c)φc(f) may not hold, which will generally result in estimation bias. On the other hand, if
the number of basis functions is large, the representation capacity of the BEM is large, which results in
a small bias, but a larger variance must be expected as the result of the increase in the number of scalar
maps to be learned for a fixed number of samples.
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IV. ESTIMATION OF PROPAGATION MAPS

Propagation maps quantify channel effects, such as channel gains, for links between arbitrary pairs of
locations where no sensors may have been deployed. The n-th measurement is collected by a pair of
sensors, one at location xn and the other at x′n. The channel gain of the link between them can be measured
possibly by employing pilot signals. The resulting measurement can be expressed as mn = h(xn,x

′
n)+zn,

where h is the true map and zn represents measurement noise. The RME problem is to obtain an estimate
ĥ of h given {(xn,x′n,mn)}Nn=1. A good RME algorithm should have good generalization properties,
meaning that ĥ(x,x′) ≈ h(x,x′) for all location pairs (x,x′), even those for which no measurements
have been collected.

Like signal strength RME, propagation RME is a function estimation problem. Therefore, the techniques
described in Sec. III can again be employed in principle. The key difference is that now the function to
be estimated depends on two locations rather than one. If x denotes a location in 3D space, it is clear
that h is a function of a 6-dimensional input, namely the entries of x and x′. This means that the number
of measurements necessary to attain a given accuracy may be considerably greater than for estimating a
signal strength map — a manifestation of the curse of dimensionality. Thus, as explored next, a number
of algorithms have been tailor-made for propagation RME to alleviate such a difficulty.

A. Non-tomographic Approaches

In the non-tomographic approaches, channel gains are directly modeled based on basic wireless
propagation models without introducing any underlying auxiliary map. In order to maintain tractability,
however, the RME problem is often simplified by fixing one end of a link. For example, one may consider
estimating the maps {hn(x) := h(x,xn)}n for fixed positions {xn}Nn=1 where the sensors are located.
The individual functions {hn(x)}n can be estimated using methods employed for signal strength maps.
Since (static) signal strength map estimation techniques have been explained in the preceding sections,
here we extend the RME problem to include the time domain to capture the temporal variation of channel
gains. Needless to say, static channel gain maps can also be constructed in a non-tomograhpic fashion.

Consider the channel gain hn(x, t) between locations x and xn at time t [5]. Suppose that the effect
of small-scale fading has been averaged out, allowing hn(x, t) to be expressed in dB as hn,dB(x, t) =
hPL
n (x) − aSF

n (x, t), where hPL
n (x) is the known path loss from xn to x and aSF

n (x, t) is the shadow
fading between x and xn at time t. Note that hPL

n (x) can be assumed known whenever both xn and x
as well as the antenna gains are known. Thus, the problem becomes tracking the time-varying shadow
fading map aSF

n (x, t).
To do this, shadow fading measurements are needed, which can be obtained by subtracting the transmit-

power and the path loss from the received power measurement. By letting N−n := {1, . . . , n − 1, n +
1, . . . , N}, the noisy measurements {ăSF

n (xj , t)}j of shadow fading obtained at time t by the sensor at
xn using the pilot signals sent from the radios at {xj}j∈N−n

can be expressed as

ăSF
n (xj , t) = aSF

n (xj , t) + zn(xj , t), j ∈ N−n, (14)

where zn(xj , t) is zero-mean Gaussian measurement noise. Upon defining ăSF
n (t) := [ăSF

n (x1, t), . . . ,
ăSF
n (xn−1, t), ă

SF
n (xn+1, t), · · · , ăSF

n (xN , t)]
>, the problem is to estimate hn,dB(x, t) for arbitrary x based

on the measurements ĂSF
n (t) := {ăSF

n (τ)}tτ=1 up to time t.
This problem can be tackled in the framework of kriged Kalman filtering, also known as space-time

Kalman filtering [38]. Employing the log-normal shadowing model, it is assumed that aSF
n (x, t) is a

Gaussian process with spatio-temporal dynamics [5], [38]

aSF
n (x, t) = µSF

n (x, t) + νn(x, t) (15)

µSF
n (x, t) =

∫
wn(x,u)µSF

n (u, t− 1)du+ ηn(x, t), (16)
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Fig. 10: Illustration of possible approximations of the tomographic integral.

where µSF
n (x, t) is the spatio-temporally correlated component, wn(x,u) captures the interaction of this

component at location x at time t and at location u at time (t − 1), and νn(x, t) and ηn(x, t) are
spatially correlated but temporally white zero-mean Gaussian processes. Process νn(x, t) is uncorrelated
with zn(u, τ), and ηn(x, t) is uncorrelated with νn(u, τ) and zn(u, τ) for all u and τ . Moreover,
E{νn(x, t)µSF

n (u, t)} = E{ηn(x, t)µSF
n (u, t− 1)} = 0 for all x,u and t.

Since the state-space model in (15)–(16) is infinite-dimensional, adopt a BEM for tractability, as in
universal kriging. For a set of K orthonormal basis functions {ψk(x)}k, µSF

n and wn are respectively
approximated as µSF

n (x, t) ≈
∑K

k=1 αn,k(t)ψk(x) and wn(x, t) ≈
∑K

k=1 βn,k(t)ψk(x) with expansion
coefficients {αn,k(t)} and {βn,k(t)}. Substituting these expansions into (14)–(16) and evaluating the
resulting equations at {xj}j∈N−n

yields the finite dimensional state-space model

ăSF
n (t) = Ψnαn(t) + νn(t) + zn(t) (17)

αn(t) = Ψ†nBnαn(t− 1) + Ψ†nηn(t). (18)

Here, ψ(x) := [ψ1(x), . . . , ψK(x)]>, αn(t) := [αn,1(t), . . . , αn,K(t)]>, and βn(x) is defined like-
wise. Vectors νn(t), zn(t), and ηn(t) are constructed in a similar fashion from {νn(xj , t)}j∈N−n

,
{zn(xj , t)}j∈N−n

, and {ηn(xj , t)}j∈N−n
, respectively. Bn and Ψn are matrices constructed by respec-

tively arranging βn(xj)
> and ψ(xj)

> as rows for j ∈ N−n.
Based on (17)–(18), the MMSE estimate α̂n(t|t) of αn(t) given ĂSF

n (t) can be obtained via ordi-
nary Kalman filtering, from which the temporally dynamic component µSF

n (x, t) can be estimated as
E{µSF

n (x, t)|ĂSF
n (t)} = ψ(x)>α̂n(t|t). To capture νn(x, t) as well, a kriging estimator is employed; cf.

Sec. III-A3. Overall, the MMSE estimate âSF
n (x, t) := E{aSF

n (x, t)|ĂSF
n (t)} can be obtained exploiting

the covariance structure [5]. Once âSF
n (x, t) is obtained, the channel gain map estimate ĥn,dB(x, t) can

be constructed as ĥn,dB(x, t) = hPL
n (x)− âSF

n (x, t).

B. Tomographic Approaches

The radio tomographic model can be used to estimate shadow fading maps. It postulates that the
attenuation due to shadowing can be expressed in terms of an underlying auxiliary map termed spatial
loss field (SLF) [16], [39]. The SLF characterizes how much radio waves attenuate when passing
through each location and, hence, is specific to each propagation environment [40]. Specifically, the
radio tomographic model prescribes that the shadowing attenuation between locations x and x′ is given
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by the line integral [40]

aSF(x,x′) =
1√

‖x− x′‖

∫ x′

x
F (x̄)dx̄, (19)

where F : X → R+ is the SLF. This naturally captures the notion that nearby radio links generally
experience similar shadowing due to the presence of common obstacles. Since the above integral provides
the shadowing attenuation between two arbitrary locations, one does not need to fix one end of a link,
as in the non-tomographic approach explained earlier. Remarkably, time-varying maps can be readily
accommodated in the tomograhpic approach [16]. Furthermore, as the SLF can reveal the locations of
obstacles, the SLF itself can be useful for various applications such as device-free passive localization [6],
surveillance monitoring for intrusion detection [41], and through-the-wall imaging for emergency or
military operations [6].

To approximate the line integral in (19), F can be discretized on a regular grid of 2D or 3D spatial
locations. One common approach is to approximate this integral as a weighted sum of the SLF values on
the grid points that lie inside an ellipse or an ellipsoid with foci at x and x′, as shown in Fig. 10. The
intuition is that the attenuation between the two end points should be heavily affected by the obstacles
around the line of sight or, more specifically, within the so-called Fresnel zone, which is an ellipse whose
geometry is dictated by the wavelength. Several functions have been proposed in the literature [41] to
generate such weights, mainly based on heuristics. Alternatively, the weights can be learned from the
data through blind schemes [42].

While easy to implement, this approximation yields shadowing maps with discontinuities, as small
changes in x and x′ may lead to a change in the set of grid points that lie in the ellipse. Even more, if
the ellipse misses all the grid points, as shown by the left ellipse in Fig. 10, the approximation becomes
0. Thus, to attain a good accuracy, the grid must be dense enough.

This motivates an alternative approach, where the SLF is approximated as a piecewise constant function,
taking a constant value within each grid cell [17]. The integral can then be computed as the weighted
sum of the SLF values in the cells that the line of sight traverses. The weight simply corresponds to
the distance traversed in each cell. This is illustrated by the colored line in Fig. 10. This approximation
involves less computational burden than the one based on the ellipse, is continuous in x and x′, and does
not vanish unless the SLF vanishes. Thus, the need for a dense grid is relaxed — particularly attractive
in 3D [17].

In either approach, the shadowing attenuation is a linear function of the SLF values at the grid
points. Thus, the SLF can be estimated via (nonnegative) LS. However, this requires that the number
of measurements is significantly larger than the number of grid points. One can mitigate this through
appropriate regularizers [43] or by specifying a prior distribution in a Bayesian framework [44]. Another
limitation of tomographic approaches is that only the attenuation due to absorption (shadowing) is
accounted for. Other propagation effects such as reflection, refraction, and diffraction are completely
ignored.

V. SPECTRUM SURVEYING

In order to collect the measurements needed to build radio maps, traditionally technicians in a vehicle
with measurement equipment would drive around the site. With the advances in mobile robotics of the
last decade, it is now possible to employ an autonomous UAV with an on-board sensor to collect the
desired measurements. This is clearly more efficient in terms of time and personnel cost.

An important task is to plan the path traversed by the autonomous UAV for acquiring measurements.
A common approach is to define a grid and take measurements at each grid point. However, visiting
each grid point can be very time-consuming and puts a strain on the limited battery capacity, especially
when the grid is dense. A more efficient approach is to collect measurements at a small set of highly
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Fig. 11: Example of a surveying operation with an autonomous UAV in an urban environment seen from
above. White boxes denote buildings. Red and white crosses denote measurement locations.

informative locations and apply the interpolation techniques discussed in previous sections to construct
the entire map. To this end, besides the map estimate, RME algorithms need to provide an uncertainty
map that indicates how informative a measurement would be at each location given the measurements
collected so far [22]. Based on the uncertainty map, a route planning algorithm can produce a trajectory
through areas of high uncertainty. This approach achieves a much higher estimation quality in the given
surveying time (or requires much shorter time for a given quality) compared to the naive grid-based
approach.

Fig. 11 illustrates an example of a surveying operation using a ray-tracing data set in a region of
downtown Rosslyn, Virginia. The three panels show the UAV trajectory seen from above. White boxes
correspond to space occupied by buildings, where no measurements can be taken. Red and white crosses
denote measurement locations. The leftmost panel shows the ground truth power map in a setup with two
transmitters. The middle and right panels respectively show the estimated power map and the uncertainty
map when only the measurements marked by red crosses have been collected. At that point in time, the
UAV plans a trajectory through areas of high uncertainty, represented by white crosses. The estimator
in this case is a global DNN estimator capable of learning the nature of propagation phenomena from a
data set; see Sec. III-A7.

VI. PRACTICAL CONSIDERATIONS

In this section, some challenges that arise when implementing RME techniques in practical setups are
discussed. These include coping with localization errors, non-isotropic antenna patterns, decentralized
implementation, and reducing the bandwidth required to collect measurements.

A. Localization Errors

The RME schemes described earlier typically require accurate knowledge of the measurement locations.
In practice, the sensor locations are themselves estimated based on localization systems such as GPS in
the following way. A number of transmitters with known locations, such as satellites or cellular base
stations, regularly transmit signals termed localization pilots. Each sensor then extracts certain features
from the pilots to estimate its location. For example, the received signal strength or the propagation delay,
which contain information on the distance to the transmitters, are used to produce location estimates based
on geometric principles. Thus, the quality of the estimates can be significantly degraded due to multipath
propagation as in indoor and dense urban scenarios, where localization errors may reach tens of meters.
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(a) Free space. (b) Scenario with 4 walls.

Fig. 12: The color of each point indicates the x-coordinate of the location estimate obtained by a sensor at
that location. The black circles indicate the positions of the transmitters. The estimate accurately matches
the true coordinate when there is no multipath; cf. Fig. 12a. Thus, Fig. 12a serves as a color bar. On the
other hand, the estimation error is large in the presence of multipath; cf. Fig. 12b. (Both figures were
taken from [45].)

This phenomenon is illustrated in Fig. 12, where the x-coordinates of the location estimates are
compared in a scenario without multipath (Fig. 12a) and with multipath (Fig. 12b). The localization
algorithm is based on the time difference of arrival between the pilot signals arriving from each pair
of transmitters; see [45] for details. The poor quality of the location estimates in Fig. 12b hinders the
application of conventional RME techniques. This is because the maps are indexed by the locations (e.g.,
the input for the power map p is x), and thus the localization error in x propagates to the output p(x).

The key realization is, therefore, that x is not suitable as the “index” of the map. To mitigate this
issue, one can resort to the so-called location-free (LocF) cartography framework [45]. To motivate
this framework, it is worth stepping back and recalling that the location estimates are produced by a
localization algorithm based on the pilot features. It is sensible, therefore, to bypass this step and directly
use the pilot features to index the map, since these features evolve more smoothly across space than the
location estimates.

Once such a map has been estimated, there are two approaches to evaluate it at a given location. If a
terminal is present at that location, it can directly employ the features of the pilot signals. If no sensor
is present, one can interpolate the features, e.g., based on the low rank prior.

Due to the larger input dimension of the map function, location-free RME requires a larger number
of measurements than location-based approaches in the absence of localization errors. Another difficulty
is that the availability of the features depends on the availability of the pilot signals. However, one can
reconstruct the missing features [45] or define features that can be extracted from regular communication
signals, e.g. the ones broadcast by cellular base stations, rather than from dedicated localization pilots [46].

B. Antenna Patterns

So far, we assumed that a signal strength map p(x) provides the power received by a sensor with an
isotropic antenna at location x. If the antenna pattern is not isotropic, the measured power will depend
on the sensor orientation. For this reason, it may be convenient to estimate the angular spectrum map
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p(x,θ), which provides the angular power density received by a sensor at location x from direction θ.
Here, θ parameterizes the direction through, e.g. the azimuth and elevation angles.

If Γ(θ−θ′) denotes the antenna gain along direction θ for a sensor with orientation θ′, it follows that
the power received by such a sensor when placed at x will be

∫
Γ(θ − θ′)p(x,θ)dθ. If the sensor

orientations associated with all measurements are known, then each measurement is a noisy linear
observation of p(x,θ) and, therefore, the latter can be estimated. The techniques described earlier for
PSD map estimation in the frequency domain can be adapted to this end, possibly upon discretizing the
aforementioned integral. Specifically, p(x,θ) can be estimated for a discrete set of angle bins separately
or by parameterizing p(x,θ) by means of a BEM with standard or tailored basis functions along the
lines of [4, Sec. III-A], although the choice of suitable basis functions seems to warrant further research.

The challenges emerging in this approach are twofold. First, due to the curse of dimensionality and
the fact that function p(x,θ) takes the additional input θ, a significantly larger number of measurements
may be required to estimate p(x,θ) relative to p(x). Second, sensors need to be able to measure
their orientation, e.g. through accelerometers and magnetometers, which affects the cost and introduces
additional error sources.

A pragmatic alternative is to treat the sensor orientations as random variables with uniform distribution
over orientations θ. This implies that the isotropic power map p(x) equals the expectation of p(x,θ) and,
thus, one can still estimate p(x) using the procedures described in previous sections upon disregarding
orientation. The uncertainty introduced by the directionality of the antennas translates into additional
measurement noise, which therefore increases the number of measurements required to estimate p(x)
with a target accuracy. This is the price to be paid for circumventing the aforementioned limitations.

C. Decentralized Implementation

Unlike conventional spectrum sensing techniques, which often assume a common spectrum occupancy
over the entire area of interest [15], spectrum cartography accounts for spatial variability. Thus, it is
necessary that the measurements are obtained at various locations {xn}Nn=1 within the region, which
then must be processed jointly. While this can be achieved in theory by collecting the measurements at
a fusion center (FC) for centralized processing, the feedback overhead and the associated delay can be
significant in practice. Moreover, the FC must operate with higher resource and security requirements.
An alternative is to employ distributed in-network processing, where all sensors collaboratively estimate
the map via local interactions, i.e., the n-th sensor, n ∈ N := {1, . . . , N}, exchanges information only
with its set of single-hop neighbors Nn ⊂ N [2], [5], [9], [16], [47]. The key idea is that RME tasks
often boil down to a regression problem of the form

minimize
θ

1

2
‖y −Xθ‖22 + ψ(θ), (20)

where y ∈ RM and X ∈ RM×Θ represent the targets and the regressors, respectively, θ ∈ RΘ contains
the regression coefficients, and ψ(·) is a convex regularizer that captures prior information; see, e.g., (8).
It is often the case that the data X and y consist of the collection of the data {Xn} and {yn} from
the individual sensors. That is, y = [y>1 , . . . ,y

>
N ]>, where yn ∈ RMn for n ∈ N and

∑N
n=1Mn = M .

Likewise, X = [X>1 , . . . ,X
>
N ]> with Xn ∈ RMn×Θ for n ∈ N .

In order to solve (20) in a decentralized manner, consider first an undirected graph G := (N , E) with
vertex set N and edge set E , where vertices represent sensors and the edge (n, n′) is in E whenever
sensors n and n′ can communicate in a single hop, i.e., n′ ∈ Nn. If G is connected, i.e., there is a
(possibly multi-hop) path between every pair of sensors, it can be easily shown that (20) is equivalent
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to

minimize
{θn,γn,γ(n,n′)}

N∑
n=1

[
1

2
‖yn −Xnγn‖22 +

1

N
ψ(θn)

]
(21a)

subject to γn = θn, n ∈ N (21b)

θn = γ(n,n′) = θn′ , n
′ ∈ Nn, n ∈ N , (21c)

where {γn} and {γ(n,n′)} are auxiliary variables. Per (21b), γn is just a copy of θn. {γ(n,n′)} facilitate
the derivation of simple update rules and are eventually eliminated. A decentralized algorithm can be
derived by applying the alternating direction method of multipliers (ADMM) to (21a)–(21c). Following
steps similar to those in [9, App. D], one can obtain the decentralized update rules for iteration k as

u[k]
n = u[k−1]

n + ρ
∑
n′∈Nn

(
θ[k]
n − θ

[k]
n′

)
(22a)

λ[k]
n = λ[k−1]

n + ρ
(
θ[k]
n − γ[k]

n

)
(22b)

θ[k+1]
n = arg min

θ

1

Ncn
ψ(θ) +

1

2
‖θ − an‖22 (22c)

γ[k+1]
n =

(
ρIΘ +X>nXn

)−1 (
X>n yn + ρθ[k+1]

n + λ[k]
n

)
, (22d)

where ρ > 0 is the step size, cn := ρ(1 + 2|Nn|), and

an :=
1

cn

(
ρ
∑
n′∈Nn

(
θ[k]
n + θ

[k]
n′

)
+ ργ[k]

n − u[k]
n − λ[k]

n

)
(22e)

for n ∈ N . As can be seen in (22a) and (22e), the updates involve only local communication with the
neighbors. The proximal problem in (22c) admits a closed form solution for various common choices of
ψ(·). It can be proved that the iterate θ[k]

n for any n ∈ N converges to the solution of (20) as k →∞ [9].

D. Rate Constraints

To maintain up-to-date maps, every certain time interval, the sensors need to collect new measurements,
which are then sent to a fusion center or shared with other nodes. For maps that change rapidly over
time or require high-dimensional measurements, such as PSD maps, the bandwidth required to report
the measurements may be significant. To mitigate such an issue, compression and quantization can be
employed [4].

The idea is twofold. First, instead of directly computing PSD estimates at the sensors, each sensor
measures the powers at the outputs of a filter bank acting on the received signal. Then, only quantized
versions of those measurements are reported; see Fig. 13.

To simplify the exposition, assume for now that each sensor employs a single filter. Recall that p(x, f)
denotes the PSD at location x. If the received signal at location xn is processed by a filter with frequency
response Γn(f), the output power is given by p̄n :=

∫
p(xn, f)|Γn(f)|2df . Due to the measurement noise,

the measured value p̃n will be generally different from the true p̄n. Subsequently, p̃n is quantized to m̆n,
which is then sent to the fusion center or other sensors. This clearly requires much smaller bandwidth
than sending, e.g., the entire periodogram.

To see how the map can be estimated from these linearly compressed and quantized measurements,
recall the decomposition p(x, f) =

∑
c pc(x)φc(f) from Sec. III-B3. Since the basis functions φc

are known, this decomposition reduces the problem of estimating p to that of estimating C func-
tions p1, . . . , pC . It also follows that p̄n can be written as p̄n =

∑
c pc(xn)

∫
φc(f)|Γn(f)|2df =

[p1(xn), . . . , pC(xn)]φn, where the c-th entry of vector φn is
∫
φc(f)|Γn(f)|2df . In other words, p̄n is a
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Fig. 13: To reduce the rate necessary to report measurements, sensors may use a bank of random filters.
The energy of each filter is measured, quantized, and sent to a fusion center that performs RME.

linear combination of the values that the functions p1, . . . , pC take at xn. If the true powers p̄1, . . . , p̄N
were known exactly, one could seek RKHS functions p̂1, . . . , p̂C such that [p̂1(xn), . . . , p̂C(xn)]φn =
p̄n ∀n using kernel-based learning.

Now consider the case where instead of p̄1, . . . , p̄N , one has the quantized measurements m̆1, . . . , m̆N ,
but it holds that p̃n = p̄n for all n, i.e., there is no measurement noise. Each m̆n therefore indicates which
quantization interval contains p̄n. Upon denoting the endpoints of the interval that contains m̆n as a(m̆n)
and b(m̆n), it makes sense to now seek p̂1, . . . , p̂C that satisfy [p̂1(xn), . . . , p̂C(xn)]φn ∈ [a(m̆n), b(m̆n)]
for all n.

Finally, in the case where there is measurement noise, p̃n is generally different from p̄n. If the noise
is small relative to the width of the quantization interval, the result of quantizing either values will
be often the same, but not always. This means that one cannot impose that [g1(xn), . . . , gC(xn)]φn
necessarily falls in the quantization interval [a(mn), b(mn)]. Instead, the condition must be encouraged
in a soft manner by penalizing deviations from the interval. Interestingly, by penalizing deviations in
a linear fashion, it can be shown that the resulting estimates can be obtained through support vector
regression [4].

The previous considerations can be extended to the case where the filter bank at each sensor contains
L > 1 filters, as depicted in Fig. 13. Observe that now two subscripts are necessary to index each
branch. The power at the l-th branch of the sensor at xn is given by p̄n,l = [p1(xn), . . . , pC(xn)]φn,l.
Since all the vectors φn,1, . . . ,φn,L multiply the same [p1(xn), . . . , pC(xn)], the values p̄n,l are not fully
informative about p1, . . . , pC unless the vectors φn,1, . . . ,φn,L are linearly independent. This imposes
a design constraint on the filters. For example, filters with pseudorandom impulse responses may be
utilized, which are expected to yield linearly independent vectors φn,1, . . . ,φn,L so long as L ≤ C.

VII. FUTURE DIRECTIONS

Although RME has been the subject of a sizable research body, a large number of open issues still
remain. First of all, the potential of radio maps to endow applications with radio situational awareness
is yet to be fully exploited. A large part of the progress in this regard has taken place in the context of
device-free localization (see e.g. [43]) and UAV communications (see e.g. [17] and references therein),
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but a number of tasks arising in cellular networks such as resource allocation are yet to be explored.
Radio maps can also be used as priors for enhanced channel estimation in mobile communications.

Improving inference biases in data-driven radio map estimators is also necessary. This can be achieved
by collecting extensive data sets in multiple bands, since most works so far rely on synthetic data
generated with ray-tracing software. Such data sets would also open the door to devising improved
uncertainty metrics for spectrum surveying. Remarkably, these can be used for improving spectrum
surveying techniques [22]. Furthermore, hybrid model-based and data-driven approaches have the potential
to combine the best of both worlds [33]. The rationale is that radio propagation models may significantly
reduce the amount of data required to train data-driven estimators, whereas learning from data can
significantly improve the accuracy of model-based approaches.

Methods for coping with various sources of error must also be devised. For example, time variations
may be better predicted by exploiting side information on the mobility of terminals. In this context,
trajectories of ground vehicles on the road or UAVs in aerial corridors may be instrumental to reduce
the effective dimensionality of propagation maps. One can also model how groups of persons or vehicles
move to better predict signal strength maps as a whole. Other sources of error to counter include the use
of antennas with two polarizations and non-isotropic gain patterns.

Recent developments adopt machine learning algorithms to predict the CSIs of desired multi-antenna
channels based on pilot CSIs. This approach can capture the characteristics of small-scale fading, going
beyond the channel gain maps. In [46], the pilot CSIs are obtained from a set of links that are different from
the target link. The optimal transmit-beampattern of the desired link is predicted based on the acquired
CSIs. When the source and the target links are not collocated, the traditional assumption is that the CSIs
are statistically independent. In reality, there can be significant dependency between the CSIs and the
geometry of the propagation environment, transceiver locations, line-of-sight path, and other multipaths
within the coherence time of the channels. Given sufficiently rich pilot CSI measurements that capture
the relevant geometry, an appropriate nonlinear mapping (e.g. via a DNN) can exploit this dependency.
As a related idea, channel charting obtains in an unsupervised fashion low-dimensional embeddings of
the high-dimensional CSIs that approximately provide the spatial locations of the measurements [48].

Finally, further types of radio maps may also be explored. For example, maps may be developed for
massive MIMO and mmWave networks to benefit from reduced search time for beam selection. As another
example, exploring delay-Doppler maps could be instrumental in the context of resource allocation for
the emerging Orthogonal Time Frequency and Space (OTFS) modulation.

VIII. RELATED WORK

The interested reader can delve deeper into RME through the surveys [49], [50]. In [49], the focus
is on occupancy maps, which are radio maps that provide the fraction of time that a certain frequency
channel is used. On the other hand, the authors of [50] focus on power map estimation and review other
methods that are not discussed here due to space limitations. Relative to these works, the present tutorial
is more introductory in nature and considers more classes of maps as well as more recent methods.

IX. CONCLUSION

Radio maps characterize important metrics of the RF spectrum landscape across a geographical area.
Two families of radio maps were considered based on whether the received signal strength or the
propagation channel effects are of interest, and a large number of representative applications were
discussed. Tutorial expositions of various data-driven methods for RME have been presented, ranging
from parametric, non-parametric, and probabilistic approaches, to recent powerful deep learning tech-
niques, incorporating useful priors such as sparsity, low rank, and union-of-subspace structures. Practical
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issues related to spectrum surveying, noisy location estimates, decentralized implementation, and limited-
rate measurements were also discussed. With the advent of ultra-dense and ultra-dynamic deployment
scenarios often envisioned in future wireless networking, the role of data-driven spectrum cartography
enabled via sophisticated RME techniques will likely become even more relevant.
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