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Signal Processing Comes to the Senses
Signal processing is making an impact in taste,  
sentiment, and touch research

Senses allow us to gather informa-
tion about our surroundings, playing 
an important role in everyday life. 

Research teams worldwide are now turn-
ing to signal processing to help replicate, 
augment, or interpret human senses.

A matter of taste
University of Cambridge researchers 
have trained a robot chef to assess the 
saltiness of food at different stages of 
the chewing process, imitating a similar 
practice in humans. The project prom-
ises to contribute to the development of 
automated or semiautomated food prep-
aration by helping robots learn what 
tastes good and what doesn’t.

“We usually refer to it as a robotic 
chef,” says Cambridge graduate student 
Grzegorz Sochacki, who works with 
Arsen Abdulali, a research associate 
in the university’s engineering depart-
ment, and Muhammad W. Chughtai, a 
senior scientist at appliance manufac-
turer Beko.

Collaborating in the university’s 
Bio-Inspired Robotics Laboratory, the 
researchers have created a custom-made 
mobile tasting platform. “The bird’s-
eye view of our setup is a robotic arm 
with a salinity probe attached to it,” 
Sochacki says. The robot is a Univer-
sal Robot (UR5) arm, an off-the-shelf 
device manufactured by Denmark-
based Universal Robots. “We usually 

fit [the arm] with sensors and cooking 
utensils,” he says (Figure 1).

In the case of this study, the probe was 
a conductance sensor created out of two 
platinum electrodes, 
Sochacki says. AC 
voltage is set across 
the electrodes with a 
control circuit and the 
resulting current is 
measured. The final 
value is dependent on 
several factors, including the sampled 
food, seasoning (the amount of salt), 
humidity, and texture.

While a variety of sensors are avail-
able, factors such as the type of food, 
its size, and its composition require 

the use of devices that are easy to clean 
and are least dependent on the food’s 
consistency and contact area. “There-
fore, we went for a conductance sen-

sor that can give us 
enough consistency 
when all of these condi-
tions vary,” Sochacki 
says. He notes that 
it’s easy to clean a 
conductance sen-
sor due to its sturdy 

construction and adaptability to various 
food types.

Signal processing is used at the point 
of sensing to measure the current and 
compute the conductance between the 
electrodes. “A single tasting with our 
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FIGURE 1. A UR5 robot is fitted with a conductance sensor for saltiness tasting. An induction hob is 
used for cooking. Food is presented for tasting on a ceramic plate. The entire installation is controlled 
by a program running on a laptop computer. (Source: University of Cambridge; used with permission.)
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robot consists of 400 samples spread 
across the dish on a square grid and then 
blended,” Sochacki explains. The sam-
ples are typically presented as an image. 
“These images usually differ signifi-
cantly from each other, with the blended 
ones being much more homogeneous 
and with many fewer outliers,” he notes.

Sochacki says that all of the infor-
mation collected from the individual 
tastings needs to be condensed into a 
single number—something that can cre-
ate a goal value. “Therefore, we usually 
compute some statistics of the computed 
values, like mean, median, variance. or 
entropy,” he says. “A bunch of these 
metrics are then used to describe what a 
good dish is, and the robot tries to adjust 
the recipe parameters to produce such 
a dish.”

Various methods, other than com-
puting statistics, can be used to extract 
features. “For example, convolutional 
neural networks work well on images,” 
Sochacki says. Unfortunately, most 
of these methods require a significant 
amount training data, which are expen-
sive to produce when working with 
food. “This is because producing every 
sample [requires] cooking another meal, 
and, also, these meals need to be cooked 
very precisely to make the dataset accu-
rate,” he explains.

Sochacki believes that the technol-
ogy will eventually be used to cre-
ate robotic chefs possessing built-in 
common sense. Such a chef would, 
presumably, understand the outcome 
of its work better and, therefore, need 
much less training and supervision 
than a human.

Although the current system is sim-
ply a proof of concept, the researchers 
believe that, by imitating the human 
processes of chewing and tasting, 
robots will eventually be able to pro-
duce food that humans will enjoy and 
could be adjusted to match individ-
ual tastes.

“We acknowledge that the overhead 
required to implement a robotic chef in 
a restaurant is quite big,” Sochacki says. 
“Therefore, we aim for places that can 
make the most of them.” The team is 
hoping to target food preparation sites 
that operate 24/7 or in high-labor-cost 

areas. “Perhaps airport restaurants 
could be a good place for the first 
implementation,” he notes. Dark kitch-
ens—facilities with no humans present—
could also be a viable application area, 
Sochacki adds.

Sochacki states that finding a theory 
behind taste is the most interesting and 
important part of his team’s work. “We 
believe that formalizing a theory of 
robotic taste can lead to its proliferation 
in the future.”

Determining sentiment
Making artificial intelligence (AI) “emo-
tionally intelligent” promises to open the 
door to more natural human–machine 
interactions. To achieve this goal, it will 
be necessary to determine a user’s sen-
timent during a human–machine dia-
logue, says Shogo Okada, an associate 
professor in the School of Information 
Science of the Japan Advanced Institute 
of Science and Technology (JAIST).

Speech and language recognition tech-
nology is becoming increasingly common-
place, as Amazon’s 
Alexa, Apple’s Siri, 
and similar technolo-
gies are incorporated 
into a growing num-
ber of stationary and 
mobile devices. A 
significant milestone 
in the advancement 
of highly accurate 
AI dialogue systems 
will be the  addition of emotional intel-
ligence to speech and language rec-
ognition. A system that’s capable of 
re  cognizing users’ emotional states would 
create a deeper empathetic response, 
leading to a fuller, more immersive user 
experience, Okada says.

Multimodal sentiment analysis is a 
collection of methods that can auto-
matically analyze a person’s psy-
chological state from their speech, 
inflection, posture, and facial expres-
sion, all of which are essential cues 
for human-centered AI systems, Okada 
notes. The technique could poten-
tially lead to an emotionally intelli-
gent type of AI that can understand 
its user’s sentiment and generate an 
appropriate response.

To accomplish this feat, it’s neces-
sary to detect the user’s sentiment 
during a human–machine dialogue. 
Physiological signals could provide a 
direct route to such sentiments, Okada 
says. Existing emotion estimation meth-
ods concentrate entirely on observable 
information. What’s not detected is 
critical information embedded in unob-
servable signals, particularly physiolog-
ical signals.

Work ing with Prof.  Kazunor i 
Komatani of the Institute of Scien-
tific and Industrial Research at Osaka 
University, Okada has added physi-
ological signals to multimodal senti-
ment analysis.

An individual’s internal emotional 
state is not always accurately reflected 
within dialogue content, but it’s difficult 
for people to intentionally manage their 
biological signals, such as breathing or 
heart rate. Okada believes, however, that 
it could be useful to use such involun-
tary signals for estimating a subject’s 
emotional state.

Project partici-
pants communicated 
with a virtual agent 
presented on a display. 
The vocal utterances 
of each participant 
were recorded with a 
Microsoft Kinect V2 
sensor. Participants’ 
facial expressions 
were recorded with 

a video camera, while motion data were 
acquired via the Kinect sensor.

Electrodermal activity (EDA) data 
were collected in the form of physiolog-
ical signals during the dialogues using 
a physiological sensor—an Empatica 
E4 wristband. “Since the E4 device is 
wireless and worn like a wristwatch, it 
causes neither disturbance nor discom-
fort, which is a top priority for naturalis-
tic dialogue,” Okada says.

The EDA measured skin conduc-
tance (SC), which reflects sweat gland 
activity through the sympathetic ner-
vous system. The SC level was cal-
culated using polynomial fitting, 
and the galvanic skin response was 
detected using PeakUtils, a utilities 
software package.

A system that’s capable 
of recognizing users’ 
emotional states 
would create a deeper 
empathetic response, 
leading to a fuller, 
more immersive user 
experience, Okada says.



24 IEEE SIGNAL PROCESSING MAGAZINE   |   January 2023   |

The researchers analyzed 2,468 
exchanges from 26 volunteers to esti-
mate the level of enjoyment experienced 
by the user during the conversation. 
Each individual was asked to assess 
how enjoyable or unenjoyable the con-
versation was. The team used a multi-
modal dialogue dataset, “Hazumi1911,” 
that uniquely combined speech recogni-
tion, voice color sensors, facial expres-
sion, and posture detection with skin 
potential (Figure 2).

The research suggests that the dis-
covery of physiological signals in 
humans, generally hidden from external 
view, could open the door to a new gen-
eration of emotionally intelligent AI-
based dialog systems, allowing for more 
natural and relevant human–machine 
interactions.

“The aim of our study was to clar-
ify the effects of physiological signals 
in multimodal sent iment  analysis 
by comparing other 
modalities, such as 
text and audiovi-
sual signals,” Okada 
says. “Therefore, we 
decided on . . . signal 
processing, which is 
often used in affec-
tive computing.”

Feeling touched
Although often overlooked,  tact i le 
sensation is a critical sense—one that 
allows humans to perceive reality. Hap-
tic devices can produce extremely spe-
cific vibrations that mimic touch, yet 
people are very particular about wheth-

er or not something feels quite “right.” 
Unfortunately, virtual textures don’t 
always hit the mark.

Researchers at the 
University of South-
ern California (USC) 
Viterbi School of 
Engineering have 
developed a more 
accurate haptic tex-
ture detection meth-
od. The framework 
takes advantage of 
humans’ ability to 

distinguish between certain texture 
details, using this natural attribute as a 
tool to bring virtual counterparts closer 
to accurate sensations.

Heather Culbertson, an assistant pro-
fessor of computer science at the USC 
Viterbi School of Engineering, says 
she began developing realistic haptic 
texture models in 2010. Her early work 
involved creating data-driven texture 
models, recording the vibrations and 
forces that a user feels when dragging 
a pen across a textured surface. Those 
models required a costly data recording 
installation to document data for each 
new texture. “The benefit of this new 
preference-driven work is that we can 
create models for new textures without 
needing to record data,” she says.

The current technology uses a ma -
chine learning network, a generative 
adversarial network, that’s trained by a 
set of data-driven models developed for 
100 different textures. “This training 
tells the network how a texture model 
should behave in terms of its features 
and response to the user’s motions,” 
Culbertson says. The network is then 
able to create new texture models fol-
lowing an evolutionary approach that 
relies only on user input on how a gen-
erated model feels in comparison to the 
real texture.

In the system’s current version 
(Figure 3), virtual material friction and 
hardness are created as forces via a 
force-feedback device. The textures are 
then displayed as vibrations through a 
voice-coil actuator that’s attached to the 
handle of the touch device. The actua-
tor is controlled by the host computer’s 
audio output. “We have also created a 

FIGURE 3. Interfaces for interacting with real and virtual textures. A haptic device (right) displays 
both force and vibration output. (Source: Shihan Lu, USC; used with permission.)
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FIGURE 2. A multimodal neural network predicts user sentiment from text, audio, and visual data. 
(Source: Shogo Okada, JAIST; used with permission.)

The network is then able 
to create new texture 
models following an 
evolutionary approach that 
relies only on user input 
on how a generated model 
feels in comparison to the 
real texture.
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more simplified version of the virtual 
textures where we only play the vibra-
tions through a voice-coil actuator 
attached to a stylus used in conjunction 
with a tablet,” Culbertson explains.

The system is currently limited to 
modeling isotropic and homogenous 
materials that feel the same in all direc-
tions and in all areas. “But even given 
these limitations, we can still model a 
wide range of textures, including fab-
rics, metals, wood, plastics, stone, and 
carpet,” Culbertson says. “The network 
was trained with 100 data-driven mod-
els, and we have used the system to train 
10 additional textures.”

The researchers record the tool’s 
vibration in the form of three-axis 
acceleration signals—vibrotactile sig-
nals—and the user’s interactive motions 
when dragging the tool across textured 
surfaces. The tool’s vibration and user’s 

normal force are recorded at 10 kHz 
by an accelerometer and a force/torque 
transducer, respectively. User position 
and orientation are recorded at 125 Hz 
by a magnetic position sensor, which is 
converted to the user’s tangential speed 
and up-sampled to 10 kHz for match-
ing the sampling rate of the vibration 
and force.

“For the signal processing, we apply a 
high-pass filter at 20 Hz to the recorded 
three-axis acceleration signals to elim-
inate the effects of gravity and human 
motions,” explains doctoral student 
Shihan Lu. A low-pass filter at 1,000 Hz 
is applied to the accelerations to remove 
the effects of sensor resonance as well 
as frequencies that are imperceptible 
to humans. “Furthermore, the filtered 
three-axis acceleration signals are 
transformed into a single-axis accel-
eration signal using the DFT321 algo-

rithm by preserving the perceptual 
fidelity,” he notes. “This single-axis 
acceleration signal is the base of the 
texture modeling through the autore-
gressive process.”

Looking ahead, Culbertson envi-
sions online retailers creating haptic 
models of their products, allowing 
potential customers to virtually feel the 
texture of fabrics and other products. 
“Game designers could model different 
materials to add some realism to the 
virtual environments in their games,” 
she adds.
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