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Recent years have witnessed a rapidly 
growing interest in next-generation 
imaging systems and their combi-

nation with machine learning. While 
 model-based imaging schemes that 
incorporate physics-based forward mod-
els, noise models, and image priors laid 
the foundation in the emerging field of 
computational sensing and imaging, 
recent advances in machine learning, 
from large-scale optimization to building 
deep neural networks, are increasingly 
being applied in modern computational 
imaging. A wide range of machine learn-
ing techniques can be applied to enhance 
the effectiveness and efficiency of com-
putational imaging systems, thus rede-
fining state-of-the-art computational 
imaging algorithms.

Physics-driven machine  
learning has become  
an integral part of  
computational imaging
In contrast to traditional imaging meth-
ods, in which images are directly 
captured by the sensing device, com-
putational imaging involves an imag-
ing system in which computation plays 
a vital role in the image formation 
process. In particular, computational 
imaging can exploit the underlying 
physics of the imaging modality and 
domain knowledge, which needs to be 
exploited and combined with various 
data-driven approaches to benefit 

the imaging process from sensing or 
data acquisition to image reconstruc-
tion. There are compelling challenges 
for such interdisciplinary research that 
remain to be addressed, ranging from 
modeling and machine learning algo-
rithm development and developing 
provable guarantees to novel imag-
ing applications.

The main focus of this special issue 
of IEEE Signal Processing Magazine 
is on recent developments in physics-
driven machine learning techniques 
that can be applied for computational 
imaging. Ten articles selected from the 
original 47 submissions are accepted 
in this issue, covering key theoreti-
cal topics ranging from model-based 
methods, such as sparse and low-rank 
representations and phase retrieval, to 
more advanced physics-informed deep 
learning, such as plug and play, genera-
tive models, and unrolling-based image 
reconstruction. Thanks to the tremen-
dous interest from the research commu-
nity, there are also many contributions 
for interesting applications, which will 
be published in the second volume of 
the special issue in March. 

The survey and tutorial-style arti-
cles in this January special issue aim 
to overview the theoretical frameworks 
of recently proposed physics-driven 
learning methods, which lay the foun-
dation for potential imaging applica-
tions. Furthermore, this issue promotes 
the theoretical aspect of algorithms for 
computational imaging, including con-
vergence guarantees, model analysis, 

and so on, which are critical for reliable 
and interpretable computational imag-
ing systems.

The first two articles focus on phys-
ics-driven learning methods based on 
shallow image models. Specifically, 
[A1] by Zha et  al. provides an over-
view of the learning methods based 
on low-rank and group sparse models 
used in compressed sensing and imag-
ing applications. A unified optimi-
zation framework for incorporating 
these model-based methods is dem-
onstrated via a short tutorial, leading 
to various open problems and future 
directions in the field. The next article, 
[A2] by Dong et al. is a contemporary 
review of the phase retrieval prob-
lem from computational imaging to 
machine learning perspectives. It pro-
vides a useful and accurate taxonomy 
describing the four common forms of 
the phase retrieval problem: Fou-
rier phase retrieval, coded illumination, 
coded detection, and random measure-
ment matrices. It further describes the 
various algorithms and their use cases. 
It also highlights recent theoretical 
results on recovery guarantees.

This issue then discusses unrolling-
based methods for deep imaging tasks 
in [A3] by Zhang et al. Here, the authors 
review several learned unrolled net-
works that are inspired by algorithms, 
such as the alternating direction method 
of multipliers, the iterative shrinkage/
thresholding algorithm, and approximate 
message passing. They then discuss 
additional schemes under “beyond deep 
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unrolling” that address some drawbacks 
of conventional unrolling methods by 
providing robust performance with dif-
ferent measurement operators or tackling 
the inefficiencies in information trans-
mission in stage-by-stage unrolling. The 
authors conclude by discussing recent 
trends in the domain. The next article, 
[A4] by Dong et al. discusses another 
unfolding scheme under the framework 
of Bayesian deep learning. A tutorial 
is presented to summarize the recent 
advances in this approach, which com-
bines physics-driven imaging models 
and learning-based priors. The promise 
of such an approach is demonstrated in 
several computational imaging applica-
tions, such as superresolution and depth 
map completion.

As a popular scheme for physics-
driven learning, [A5] by Kamilov et al. 
presents how one may use image denois-
ers to solve general inverse problems by 
iteratively applying the denoiser together 
with some additional linear operations. 
The article discusses the different tech-
niques to perform this. Specifically, 
it also presents the online form of the 
approach and the case where multiple 
denoisers are being used. The physics-
driven methods are further surveyed in 
detail for magnetic resonance imaging in 
the work [A6] by Hammernik et al. and 
for full waveform seismic inversion in 
the work [A7] by Lin et al.

In [A8] by Chen et al. the role of 
using equivariance in deep learning 
methods for computational imaging is 
discussed. It is shown how one may use 
equivariance properties of problems to 
improve the design of the neural net-
works being used.

The article [A9] by Zhao et al. pro-
vides an overview of a few generative 
modeling techniques, such as variational 
auto-encoder and generative adversarial 
networks as well as more recent develop-
ments in score-based generative models. 
Through different imaging applications, 
the article highlights how the genera-
tive modeling techniques are effectively 
combined with the physics of the imag-
ing problem, e.g., the measurement for-
ward model and physical properties of 
the target objects, to solve inverse prob-
lems. In [A10] by Mukherjee et al., the 

authors specify relevant notions of con-
vergence for data-driven image recon-
struction and provide a survey of learned 
methods with mathematically rigorous 
reconstruction guarantees. They also 
offer the possibility to combine the 
power of deep learning with classical 
convex regularization theory.

Although the original computational 
imaging is based on several decades of 
separate research activities in physics, 
signal processing, and so on, the recent 
rapid developments in this field owe to 
the interdisciplinary collaboration in 
research in physics, signal processing, 
machine learning, statistics, and computer 
vision. This special issue is dedicated 
to further fostering such collaboration 
across multiple fields to enable break-
through developments in imaging.
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