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The signal processing community is currently witnessing 
the emergence of sensor array processing and direction-of-
arrival (DoA) estimation in various modern applications, 

such as automotive radar, mobile user and millimeter wave 
indoor localization, and drone surveillance, as well as in new 
paradigms, such as joint sensing and communication in future 
wireless systems. This trend is further enhanced by technology 
leaps and the availability of powerful and affordable multian-
tenna hardware platforms. 

Introduction
New multiantenna technology has led to the widespread use 
of such systems in contemporary sensing and communica-
tion systems as well as a continuous evolution toward larger 
multiantenna systems in various application domains, such 
as massive multiple, input-multiple-output (MIMO) com-
munications systems comprising hundreds of antenna ele-
ments. The massive increase of the antenna array dimension 
leads to unprecedented resolution capabilities, which opens 
new opportunities and challenges for signal processing. For 
example, in large MIMO systems, modern array processing 
methods can be used to estimate and track the physical path 
parameters, such as DoA, direction of departure, time delay 
of arrival, and Doppler shift, of tens or hundreds of multipath 
components with extremely high precision [1]. This para-
metric approach for massive MIMO channel estimation and 
characterization benefits from the enhanced resolution ca-
pabilities of large array systems and efficient array process-
ing techniques. Direction-based MIMO channel estimation, 
which has not been possible in small MIMO systems due to 
the limited number of antennas, not only significantly reduc-
es the complexity but also improves the quality of MIMO 
channel prediction as the physical channel parameters gen-
erally evolve on a much smaller timescale than the MIMO 
channel coefficients.

The history of advances in superresolution DoA estima-
tion techniques is long, starting from the early parametric 
multisource methods, such as the computationally  expensive 
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maximum likelihood (ML) techniques, to the early sub-
space-based techniques, such as Pisarenko and MUSIC 
[2]. Inspired by the seminal review article, “Two Decades 
of Array Signal Processing Research: The Parametric 
Approach” by Krim and Viberg, published in IEEE Signal 
Processing Magazine [3], we are looking back at another 
three decades in array signal processing research under 
the classical narrow-band array processing model based on 
second-order statistics. We revisit major trends in the field 
and retell the story of array signal processing from a modern 
optimization and structure exploitation perspective. In our 
overview, through prominent examples, 
we illustrate how different DoA estimation 
methods can be cast as optimization prob-
lems with side constraints originating from 
prior knowledge regarding the structure 
of the measurement system. Due to space 
limitations, our review of the DoA estima-
tion research in the past three decades is 
by no means complete. For didactic rea-
sons, we mainly focus on developments in 
the field that easily relate to the traditional 
multisource estimation criteria in [3] and 
choose simple illustrative examples.

As many optimization problems in sen-
sor array processing are notoriously difficult 
to solve exactly due to their nonlinearity and multimodality, a 
common approach is to apply problem relaxation and approxi-
mation techniques in the development of computationally effi-
cient and close-to-optimal DoA estimation methods. The DoA 
estimation approaches developed in the last 30 years differ in 
the prior information and model assumptions that are main-
tained and relaxed during the approximation and relaxation 
procedure in the optimization.

Along the line of constrained optimization, problem relax-
ation, and approximation, recently, the partial relaxation (PR) 
technique has been proposed as a new optimization-based 
DoA estimation framework that applies modern relaxation 
techniques to traditional multisource estimation criteria to 
achieve new estimators with excellent estimation performance 
at affordable computational complexity. In many senses, it can 
be observed that the estimators designed under the PR frame-
work admit new insights into existing methods of this well-
established field of research [4].

The introduction of sparse optimization techniques for 
DoA estimation and source localization in the late 2000s 
marks another methodological leap in the field [5], [6], [7], 
[8], [9]. These modern optimization-based methods became 
extremely popular due to their advantages in practically 
important scenarios where classical subspace-based tech-
niques for DoA estimation often experience a performance 
breakdown, e.g., in the case of correlated sources, when 
the number of snapshots is low, or when the model order is 
unknown. Sparse representation-based methods have been 
successfully extended to incorporate and exploit various 
forms of structures, e.g., application-dependent row- and 

rank-sparse structures [10], [11], that induce joint sparsity to 
enhance estimation performance in the case of multiple snap-
shots. In particular array geometries, additional structures, 
such as Vandermonde and shift invariance, can be used to 
obtain efficient parameterizations of the array sensing matrix 
that avoid the usual requirement of sparse reconstruction 
methods to sample the angular field of view (FoV) on a fine 
DoA grid [12], [13]. 

Despite the success of sparsity-based methods, it is, 
however, often neglected that these methods also have their 
limitations, such as estimation biases resulting from off-

grid errors and the impact of the sparse 
regularization, high computational com-
plexity, and memory demands as well as 
sensitivity to the choice of the so-called 
hyperparameters. In fact, for many practi-
cal estimation scenarios, sparse optimiza-
tion techniques are often outperformed by 
classical subspace techniques in terms of 
both the resolution of sources and compu-
tational complexity. From the theoretical 
perspective, performance guarantees of 
sparse methods are generally available 
only under the condition of the minimum 
angular separation between the source 
signals [9]. Therefore, it is important to be 

aware of these limitations and to appreciate the benefits of 
both traditional and modern optimization-based DoA esti-
mation methods.

The narrow-band far-field point source signals with per-
fectly calibrated sensor arrays and centralized processing 
architectures have been fundamental assumptions in the past. 
With the trend of wider reception bandwidth on the one hand, 
and larger aperture and distributed array on the other hand, 
the aforementioned assumptions appeared restrictive and 
often impractical. Distributed sensor networks have emerged 
as a scalable solution for source localization where sensors 
exchange data locally within their neighborhood and in-net-
work processing is used for distributed source localization 
with low communication overhead [14]. Furthermore, DoA 
estimation methods for partly calibrated subarray systems 
have been explored [15], [16].

Model structure, e.g., in the form of a favorable spatial 
sampling pattern, is exploited for various purposes: either to 
reduce the computational complexity and to make the esti-
mation computationally tractable or to generally improve 
the estimation quality. In this article, we revisit the major 
trends of structure exploitation in sensor array signal pro-
cessing. Along this line, we consider advanced spatial 
sampling concepts designed in recent years, including mini-
mum redundancy [17], augmentable [18], nested [19], and 
coprime arrays [20], [21]. The aforementioned spatial sam-
pling patterns were designed to facilitate new DoA estima-
tion methods with the capability of resolving significantly 
more sources than sensors in the array. This is different 
from conventional sampling patterns, e.g., uniform linear 
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estimation quality.



94 IEEE SIGNAL PROCESSING MAGAZINE   |   June 2023   |

array (ULA), where the number of identifiable sources is 
always smaller than the number of sensors.

Signal model
In this overview article, we consider the narrow-band point 
source signal model. Under this signal model, we are in-
terested in estimating the DoAs, i.e., the parameter vector 

R, , ,N1 fi i i= 6 @  of N far-field narrow-band sources imping-
ing on a sensor array composed of M sensors from noisy mea-
surements. 

We assume that the DoA ni  lies in the FoV ,H  i.e., .n !i H  
Let ( ) ( ) ( ) ( )x A s nt t ti= +  denote the linear array measure-
ment model at time instant t where ( )s t  and 

( )n t  denote the signal waveform vector and 
the sensor noise vector, respectively. The 
sensor noise ( )n t  is commonly assumed to 
be a zero-mean spatially white complex cir-
cular Gaussian random process with a cova-
riance matrix .IMo  The steering matrix 

A( )A N!i  lives on an N-dimensional 
array manifold A ,N  which is defined as

 
A u( ), , ( )

, , .

A a a

n N1

and

for all

N N N n1 1f f

f

1 1 !j j j j j H= =

=

6 @"
,  

(1)

In (1), the steering vector ( ) , , ,a e ej j ( )( ) coscosd d21 fi = r ir i- -6  
e j ( )cosdM Rr i- @  denotes, e.g., the array response of a linear ar-
ray with sensor positions , ,d dM1 f  in half wavelength for 
a narrow-band signal impinging from the direction .i  The 
steering matrix ( ) ( ), , ( )A a a N1 fi i i= 6 @ must satisfy cer-
tain regularity conditions so that the estimated DoAs can 
be uniquely identifiable up to a permutation from the noise-
less measurement. Mathematically, the unique identifiabil-
ity condition requires that if ( ) ( ) ( ) ( )A s A st t( ) ( ) ( ) ( )1 1 2 2i i=  for 

, , ,t T1 f=  then ( )1i  is a permutation of .( )2i  Generally, this 
condition must be verified for any sensor structure and the 
corresponding FoV. Specifically, it can be shown that if the 
array manifold is free from ambiguities, i.e., if any overs-
ampled steering matrix A( )A K!i  of dimension M K#  
with K M$  has a Kruskal rank ( ( )) ,Aq Mi =  then N DoAs 
with N M1  can be uniquely determined from the noiseless 
measurement [3]. Equivalently, any set of M column vectors 

( ), , ( )a a M1 fi i" , with M distinct DoAs , , M1 f !i i H  is 
linearly independent. 

In the so-called conditional signal model, the wave-
form vector ( )s t  is assumed to be deterministic such that 

( ) ( ( ) ( ), ).x A s It tN MC+ i o  The unknown noise variance o  
and the signal waveform ( ), , ( )S s s T1 f= 6 @ are generally 
not of interest in the context of DoA estimation, but they 
are necessary components of the signal model. In contrast, 
in the unconditional signal model, the waveform is assumed 
to be zero-mean complex circular Gaussian such that 

( ) ( , ( ) ( ) ),x A PA It 0N H
M MC+ i i o+  where the noise variance 

o  and the waveform covariance matrix ( ) ( )P s st tE H= " , 
are considered as unknown parameters. We assume, if not 

stated otherwise, that the signals are not fully correlated, i.e., 
P is nonsingular.

Note that in practical wireless communication or radar 
applications, the received signal may be broadband. Such sce-
narios require extensions of the narrow-band signal model, 
e.g., to subband processing or the multidimensional harmonic 
retrieval, which is, however, out of scope of this article.

Cost function and concentration
Parametric methods for DoA estimation can generally be cast 
as optimization problems with multivariate objective functions 
that depend on a particular data matrix Y obtained from the 

array measurements ( ), , ( )X x x T1 f= 6 @ 
through a suitable mapping, the unknown 
DoA parameters of interest ,i  and the un-
known nuisance parameters, which we de-
note by the vector .a  Hence, the parameter 
estimates are computed as the minimizer 
of the corresponding optimization problem 
with the objective function ( ( ), )Y Af ; i a  
as follows:

 ( ) ( ( ), ).argmin min Y AA f 
A( )A N

;i i a=
!i

a
t  (2)

Remark that in (2), we make no restriction on how the data 
matrix Y is constructed from the measurement matrix X. For 
example, in the most trivial case, the data matrix Y can directly 
represent the array measurement matrix, i.e., .Y X=  However, 
for other optimization criteria, the data matrix Y can be the 
sample covariance matrix, i.e., /( )Y R XXT1 H= =t  as a suf-
ficient statistics, or even the signal eigenvectors Y Us= t  (or the 
noise eigenvectors )Y Un= t  obtained from the eigendecompo-
sition R U U UU HH

s s s n n nK K= +t t t t t t t  where ( , , )diag N1s fm mK =t t t  
contains the N-largest eigenvalues of .Rt  In Table 1, some 
prominent examples of multisource estimation methods are 
listed: deterministic ML (DML) [2, Sec. 8.5.2], weighted sub-
space fitting (WSF) [22], and covariance matching estimation 
techniques (COMET) [23]. 

As we are primarily interested in estimating the DoA 
parameters ,i  a common approach is to concentrate the objec-
tive function with respect to all (or only part of) the nuisance 
parameters .a  In the case that a closed-form minimizer of the 
nuisance parameters w.r.t. the remaining parameters exists, the 
expression of this minimizer can be inserted back to the origi-
nal objective function to obtain the concentrated optimization 
problem. More specifically, let ( )a it  denote the minimizer 
of the full problem for the nuisance parameter vector a  as a 
function of ,i  i.e., a( ) ( ( ), ).argmin Y Af ;a i i a=t  The con-
centrated objective function ( ( )) ( ( ), ( ))Y A Y Ag f; ;i i a i= t  
then depends only on the DoAs .i  Apart from the reduction 
of dimensionality, the concentrated versions of multisource 
optimization problems often admit appealing interpreta-
tions. In Table 1, the concentrated criteria corresponding to 
the previously considered full-parameter multisource criteria 
are provided. We observe, e.g., in the case of the concentrated 
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DML and the WSF criteria, that at the optimum, the residual 
signal energy contained in the nullspace of the steering matrix 
is minimized. 

Due to the complicated structure of the array manifold AN  
in (1), the concentrated objective function ( ( ))Y Ag ; i  is, for 
common choices in Table 1, highly nonconvex and multimodal 
w.r.t. the DoA parameters .i  Consequently, the concentrated 
cost function contains a large number of local minima in the 
vicinity of the global minimum. This can, e.g., be observed 
in Figure 1, where the cost function of the DML estimator 
is depicted. While multisource estimation criteria generally 
show unprecedented asymptotic as well as threshold perfor-
mance for low sample size, signal-to-noise ratio (SNR), and 
closely spaced sources, their associated computational cost is 
unsuitable in many practical applications. The exact minimi-
zation generally requires an N-dimensional search over the 
FoV, which becomes computationally prohibitive even for low 
source numbers, e.g., .N 3=

In the past three decades and beyond, significant 
efforts have been made to devise advanced DoA estima-
tion  algorithms that exhibit good tradeoffs between perfor-
mance and  complexity. While some very efficient methods 
have been proposed in a different context and based on pure 
heuristics, in this feature article, we focus on optimization-
based estimators that stem, in some way or another, from 
multisource optimization problems for the classical array 
processing model (compare Table 1). Considering the array 
processing literature, a vast amount of estimators proposed in 

the past years can be derived from multisource optimization 
problems. Optimization-based estimators have the advantage 
that they are not only well-motivated but also intuitively inter-
pretable and flexible for generalization to more  sophisticated 
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FIGURE 1. An example of the DML cost function for two sources evaluated 
over the FoV. Multiple local minima are observed. Consequently, local 
optimization search cannot guarantee to converge to the global minimum.

Table 1. Conventional DoA estimators.  
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DML PR-DML Conventional Beamformer 

Signal fitting Original argmin X AS F

S

2

C
AA
N T

N

< <-
! #
!

 argmin min X as BJ F
A , ,a s B J

N 2

1

- -R
!

argmin min X as F
Aa s

N 2

CT
1

- R

! !

Concentrated argmin XXtr H

AA
A

N

P=

!

^ h  argmin XXH

Aa
a

N
k

k N

M

1

m P=

! =

^ h| argmin XXtr H

Aa
a

N

1

P=

!

^ h

WSF PR-WSF Variant of Weighted MUSIC* 

Subspace fitting Original argmin U W AV
F

V

2
1 2

s

C
A ,A

N N
N

-
! #
!

t  argmin min U W a BQv
F

A , ,a B Qv

N 2
1 2

s
1

- -R
!

t argmin min U W av
F

Aa v

N 2
1 2

s
CN

1

- R

! !

t

Concentrated argmin WUUtr H

AA
A s s

N

P=

!

t t^ h  argmin WU UH

Aa
a

N
k

k N

M

s s
1

m P=

! =

t t^ h| argmin U WUtr H

Aa
a

N
s s

1

P=

!

t t^ h

COMET PR-CCF Variant of Capon Beamformer**

Covariance fitting Original argmin R R R R

R APA Isubject to

F

H

A

,P
A

2
1

2
1 2

N

o

-

= +

!

o

- -t t t^ h

( )

argmin min R aa GG

R aa GG

G N 1

0subject to

rank

H
F

H

H

H

A ,a G

N

0

2
s
2

s
2

2
1 s

#

*

v

v

- -

- -

-

! $v

t

t

argmin min R aa

R aa 0subject to

F
H

H

Aa

N

0

2
s
2

s
2

2
1 s

*

v

v

-

-
! $v

t

t

Concentrated See [23, eq. (35)] argmin R
a R a

aa1 H
H

Aa

N
k

k N

M
2

1
1

m -
! =

-
t

tb l| argmin R
a R a

aa1 H

F
H

Aa

N
1

2

1

-
!

-
t

t

( )I A A A AH H
A

1
P = -
= -  denotes the orthogonal projector onto the nullspace spanned by the columns of A. The code for the different variants of the PR methods can be 

downloaded at https://github.com/PartialRelaxationMethods. 
*Conventional weighted MUSIC algorithm (e.g., see [2, eq. (9.258)]) applies the weighting on the noise subspace. This variant applies the weighting on the signal subspace.
**Note that the optimizer 2

svt  is the spectrum of the Capon Beamformer. The null spectrum of this estimator contains both the spectra of the Conventional Beamformer and the 
Capon Beamformer.
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realistic array signal models. Interestingly, some of the esti-
mators in Table 1 were initially derived by heuristics and are 
reintroduced here from the perspective of multisource opti-
mization problems.

Modern convex optimization for DoA estimation
The progress in modern convex optimization theory and 
the emergence of efficient constrained optimization solvers 
with the turn of the millennium, such as, e.g., the SeDuMi 
software for solving semidefinite programs, had a signifi-
cant impact on the research across disciplines in the sig-
nal processing, communication, and control communities. 
In fact, it comes as no surprise that the advances in sensor 
array signal processing of the past three decades are well 
aligned with this trend that facilitates advanced constrained 
optimization-based design approaches. Three closely related 
universal concepts have been intensively used in array sig-
nal processing to make  optimization-based estimation pro-
cedures numerically stable and computationally feasible. 
These are: 1) structure exploitation, 2)  approximation, and 
3) relaxation.

 ■ Structure exploitation: This refers to techniques that make use 
of particular redundancies in the measurement system to intro-
duce convenient data reorganizations and  reparameterizations. 
Examples are methods particularly designed for uniform, shift-
invariant, and coprime array geometries.

 ■ Problem approximation: These techniques provide local 
approximations of the multidimensional multimodal non-
convex objective function with the goal to decompose a 
complex problem into several subproblems. Each sub-
problem, whose minimizer is much generally simpler to 
obtain than that of the original problem, is solved in paral-
lel or sequentially, ideally in closed form. Examples are 
the expectation-maximization algorithm, the orthogonal 
matching pursuit (OMP), and the single-source approxi-
mation methods.

 ■ Problem relaxation: Problem relaxation techniques in 
DoA estimation aim at simplifying the complicated mani-
fold structure associated with the estimation problem. The 
manifold relaxation is carried out, e.g., to convexify the 
constraint sets in the associated optimization problems 
such that numerical methods can be applied.
Approximation and relaxation techniques have in com-

mon that they are used to deliberately ignore some parts of the 
problem structure at the expense of the optimality or perfor-
mance of the solution. The objective is to simplify the problem 
so that efficient suboptimal solutions can be obtained that, in 
many cases, are close to optimal and often even admit per-
formance guarantees. The DoA estimators reviewed in this 
overview article apply one or more of the aforementioned 
optimization concepts, as explained in more detail in the fol-
lowing sections.

Single-source approximation
Spectral-based DoA estimation methods, like the popular 
MUSIC algorithm, belong to the class of single-source ap-

proximation methods. In contrast to the full parameter search 
of minimizing the multisource objective ( ( ), )Y Af ; i a  over 
the N-source signal model with the array manifold AN  and 
nuisance parameter vector ,a  the optimization problem in 
the single-source approximation approach is simplified, and 
the optimization is carried out only over a single-source 
model with array manifold, i.e., A( ) ( )A a 1" !i i  and nui-
sance parameters .1"a a  It is important to note that, while 
the number of signal components considered in the opti-
mization is reduced in the single-source approximation ap-
proach, the data term Y in the objective remains unchanged. 
The locations ( )a it  of the N-deepest minima of the so-called 
null spectrum ( ( ), )Y af 1; ai  evaluated for all steering vec-
tors A( )a 1!i  with angles in the FoV are considered as the 
steering vector of the estimated DoAs. By using the com-
pact notation ( )argmin gN $  to represent the spectral search 
of the cost function ( )g $  for the N-deepest local minima, the 
single-source approximation is formulated as follows:

 ( ) ( ( ), ) .argmin mina Y af
A( )

1
a

N

1
1

; ai i=
!i

a

t" ,  (3)

For clarity, the concept of the single-source approximation and 
the corresponding spectral search are visualized in Figure 2. 
As summarized in Table 1, classical spectral search methods, 
such as the conventional beamformer, Capon beamformer, and 
MUSIC, can be reformulated as single-source approximations 
of the corresponding multisource criteria.

Partial Relaxation methods
Similar to the conventional parametric methods, the PR ap-
proach considers the signals from all potential source direc-
tions in the multisource cost function. However, to make the 
problem tractable, the array structures of some signal com-
ponents are relaxed. More precisely, instead of enforcing 
the steering matrix ( ), , ( )A a a N1 fi i= 6 @ to be an element 
in the highly structured array manifold A ,N  as in the multi-
source criteria in (2), without the loss of generality, we main-
tain the manifold structure of only the first column ( )a 1i  of 
A, which corresponds to the signal of consideration. On the 
other hand, the manifold  structure of the remaining sources 

( ), , ( ) ,a a N2 fi i6 @  which are considered as interfering sources, 
is relaxed to an arbitrary matrix B C ( )M N 1! # -  [4]. Mathemati-
cally, we assume that AA N! r  where the relaxed array mani-
fold AN

r  is parameterized as

 A Au( ) ( ), ( ) , .A a B a B C ( )
N

M N
1

1! !j j j= = # -r 6 @" ,  (4)

We remark that every matrix element in the relaxed array 
manifold AN

r  in (4) still retains the specific structure from 
the geometry of the sensor array in its first column, hence 
the name PR. However, only one DoA can be estimated from 
the first column of the matrix minimizer if the cost func-
tion of (2) is minimized on the relaxed array manifold AN

r  
of (4). Therefore, we perform the spectral search similarly to 
the single-source approximation in the “Single-Source Ap-
proximation” section as follows. First, we fix the data matrix 
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Y and minimize and concentrate the objective function in (2) 
with respect to B and other nuisance parameters a  to obtain 
the concentrated cost function. Then, we evaluate the con-
centrated cost function for different values of A( )a 1!j  to 
determine the locations of the N-deepest local minima. The 
concept of the PR approach is illustrated in Figure 3. Using 
similar notation as in the single-source approximation ap-
proach, the PR approach admits the following general opti-
mization problem:

 

( ) ( ( ), )

( ( ), , ).

argmin

argmin min min

a Y A

Y a B

f

f
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t
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(5)

The rationale for the PR approach lies in the fact that, when 
a candidate DoA i  coincides with one of the true DoAs ,ni  
then with B modeling the steering vectors of the remaining 
DoAs, a perfect fit to the data is attained at a high SNR 
or large number of snapshots T. When the candidate i  is, 
however, different from all true DoAs ,ni  the number of de-
grees of freedom in B is not sufficiently large to represent 
the contribution of all N-source signals. By applying dif-
ferent cost functions to the general optimization problem in 
(5), multiple novel estimators in the PR framework are ob-
tained in [4]. A summary of estimators under the PR frame-
work and their relations with conventional multisource and 
single-source approximation-based DoA estimators are 
provided in Table 1.

FoV

Residual
Error

Arbitrary Array with M Sensors

Source 1 Source N. . .

Collection of Array Responses
on the Sampled FoV

Measured
Signal

Reconstructed
Signal

=

×

Mixing
Matrix

=

×

FIGURE 3. An illustration of the PR concept. The optimization is carried out 
over the relaxed array manifold A ,N

r  where the structure of the first column 
in ( )a 1i  is maintained and the structure of the remaining columns is 
relaxed to an arbitrary complex matrix, ( ), , ( ) .a a B C ( )

N
M N

2
1"f !i i # -6 @  

Unlike the single-source approximation, the influence of the remaining 
source signals during the spectral search is considered by the unstruc-
tured matrix B (depicted by gray columns in the mixing matrix), which 
generally leads to an improvement of the DoA estimation when sources 
are closely spaced.

FoV
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Error

Arbitrary Array With M Sensors

Source 1 Source N

Collection of Array Responses
on the Sampled FoV

Measured
Signal

Reconstructed
Signal

Mixing
Matrix

rce 1 Source

=

×

FIGURE 2. An illustration of the single-source approximation concept. 
The optimization is carried out only over a single-source model with an 
array manifold, i.e., A( )A a 1" !i i^ h  (note that the mixing matrix has 
only one nonzero column corresponding to the candidate DoA ( )) .a i  The 
influence of the remaining source signals during the spectral search is 
neglected, which is denoted by zero columns in the mixing matrix. The 
data term Y  in the objective function of the single-source approximation 
method is, however, identical to that of the corresponding multisource 
optimization problem.
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Sequential techniques
While the PR methods show excellent threshold performance 
in scenarios with a low number of uncorrelated sources, their 
performance quickly degrades as the number of sources in-
creases. This phenomenon can be explained in short as fol-
lows: the approximation error associated with the manifold 
relaxation of the interfering sources increases with the number 
of sources. The same holds true for the single-source approxi-
mation methods. As the approximation error increases, the ca-
pability of incorporating the influence of multiple structured 
source signals in the optimization problem decreases, and 
thus, a degradation in the estimation performance is  observed. 
To  overcome the degradation effect in scenarios with large 
source numbers, sequential estimation techniques have been 
proposed in which the parameters of multiple sources are esti-
mated one after the other. 

We revise three closely related and most widely known 
sequential estimation techniques: the MP technique, OMP, 
and the orthogonal least-squares (OLS) [24], [25] method. 
These methods have in common that the DoAs for N-sourc-
es are estimated sequentially and that the approximation is 
successively improved. In each iteration, the DoA of one 
additional source is estimated based on minimizing a func-
tion approximation of a given multisource criterion (compare 
Table 1), while the source DoAs estimated in the previous iter-
ations are kept fixed at the value of their respective estimates. 

Similar to the single-source approximation, the remaining 
sources whose DoA estimates have not yet been determined 
are ignored in the optimization. 

The three methods differ, however, in the way the nuisance 
parameters corresponding to each source are treated in the 
optimization and in the corresponding parameter updating 
procedure. Concerning the MP algorithm, in each iteration, 
the nuisance parameters corresponding to the new source 
DoA are fixed and inserted as parameters in the objective in 
the following iterations. In contrast, in the OMP algorithm, 
the nuisance parameters of all estimated sources are updated 
in a refinement step after the DoA parameter of the current 
iteration is determined. The nuisance parameters are then 
inserted as parameters in the objective for the following esti-
mation of the source DoA in the next iteration. The additional 
update step is generally associated with only a slight increase 
of the computational complexity. Nevertheless, this strategy 
effectively reduces error propagation effects. 

OLS yields further performance improvements at the 
cost of more sophisticated estimate and update expres-
sions. More precisely, in the OLS algorithm, the nuisance 
parameters corresponding to the sources of the previous 
and current iterations are treated as variables and optimized 
along with the DoA parameter of the new source in the cur-
rent iteration. In Table  2, we provide the sequential esti-
mation and update procedures of the MP, OMP, and OLS 
for the DML criterion (compare Table 1). At this point, 
we remark that the sequential estimation approach is gen-
eral and can also be applied to other multisource criteria 
in Table 1, hence the WSF and the COMET criteria. Fur-
thermore, sequential estimation can also be combined with 
the concept of PR that we introduced in the “PR Methods” 
section to further enhance the threshold performance and 
reduce the error propagation effects. As an example, we also 
provide the PR-DML-OLS method in Table  2. A numeri-
cal performance comparison of the sequential estimators is 
provided in Figure 4, where it can be observed that the OLS 
method shows improved performance as compared to OMP; 
however, both methods suffer from a bias. The PR-DML-
OLS method is, in contrast, asymptotically consistent, and 
its root-mean-square error (RMSE) is close to the Cramér-
Rao bound (CRB).

Sparse reconstruction methods
The nonlinear LS DML problem in Table 1 generally re-
quires a multidimensional grid search over the parameter 
space to obtain the global minimum. More precisely, the 
objective function is evaluated at all possible combinations 
of N DoAs on a particular discretized FoV. Clearly, the com-
plexity of this brute-force multidimensional search strategy 
grows exponentially with the number of sources. To reduce 
the computational cost associated with the nonlinear LS op-
timization, convex approximation methods based on sparse 
regularization have been proposed.

We assume that for a particular FoV discretization 
RK!iu  containing K M&  angles, a so-called oversampled 
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FIGURE 4. A performance evaluation of the sequential DoA es-
timation techniques for four uncorrelated source signals at 

R, , ,90 93 135 140° ° ° °i= 6 @  with an array composed of M 10=  sensors 
and SNR = 3 dB. OMP and OLS are biased as the first DoA is estimated 
according to the conventional beamformer, which cannot resolve two 
closely spaced sources at °90  and °93  regardless of the number of avail-
able snapshots .T  On the other hand, PR-DML-OLS is asymptotically 
consistent, and its RMSE is close to the CRB.
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dictionary matrix ( )A A i=u u  of dimensions M K#  is con-
structed and the DML problem is  equivalently formulated 
as the linear LS minimization problem with a cardinality 
constraint, i.e.,

  min X AS S Nsubject toF ,
S

2
2 0

CK T
#-

! #

u u u
u

 (6)

where #M mk 0, k2 0 2 !< < ; < <= ^ h" ,  denotes the ,2 0,  mixed 
pseudonorm of a matrix R, , ,M m mK1 f= 6 @  i.e., the num-
ber of rows mk  with nonzero Euclidean norm mk 2< <  for 

, , .k K1 f=  This is illustrated 
in Figure 5. Given a solution 
S*u  of the optimization prob-
lem in (6), the DoAs estimates 

( )A it t  are determined from the 
support of S ,*u  i.e., the loca-
tions of the nonzero rows. Sev-
eral approximation methods 
have been proposed to sim-
plify the problem in (6) using 
sparse regularization. Sparse 
regularization approaches are 
directly devised from the La-
grangian function of the opti-
mization problem in (6), i.e.,

min X AS SF ,
S

2
2 0n- +u u u

u
 (7)

where the hyperparameter n  
(also called the regularization 
parameter) balances the trad-
eoff between data matching 
and sparsity. For small values of ,n  the mismatch between 
the model and the measurements is emphasized in the min-
imization, whereas for larger values of ,n  the row sparsity 
of the solution is enhanced. Since the discretized FoV is 
given and, thus, the oversampled dictionary matrix Au  is 
constant, the data-matching term in the objective func-
tion of (7) is a simple linear LS function. Nevertheless, 
the sparse regularization term is both nonsmooth and non-
convex w.r.t. S,u  and thus, the problem in (7) is difficult 
to solve directly. In [26], a convergent iterative fixed-point 
algorithm is proposed that solves a sequence of the smooth 
approximation problems of (7).

To make the optimization in (7) more tractable, a common 
approach is to convexify the regularizer in (7) by approximat-
ing the ,2 0,  norm by the closest convex mixed-norm ,,2 1,  which 
is defined as mM , k

K
2 1 2< < < </= k 1=  for R, ,M m m .K1 f= 6 @  The 

resulting multiple measurement problem (MMP)

 min X AS SF ,
S

2
2 1n- +u u u

u
 (8)

is convex and thus can be solved efficiently [10]. One impor-
tant drawback of the formulation in (8) is that the number 

of optimization variables grows linearly with the number of 
snapshots T and, therefore, also the associated computational 
complexity. Interestingly, the MMP can be equivalently ex-
pressed as the Sparse Row-Norm Reconstruction (SPAR-
ROW) problem as follows [11]:

 .min I RADA D
T2

tr trH

DD
M

1n
+ +

!

-

+

u u u t u
u

cc ^m m h  (9)

We remark that in (9), the optimizing variable D=u  
( , , )d ddiag K1fu u  is a nonnegative diagonal matrix whose 
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X = A S

FIGURE 5. The concept of sparse reconstruction methods. In the  
noiseless case, the received signal X  is decomposable into a product  
of a fixed oversampled steering matrix Au  and a row-sparse source  
signal matrix .Su  The locations of the nonzero rows in Su  correspond  
to the DoAs.

Table 2. Sequential DoA estimators.
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 dimension does not depend on the number of snapshots T. 
The first term in (9) can be interpreted as a data-matching 
term, while the second term induces sparsity. The optima 
S*u  and D*u  of the respective problems share the same sup-
port, and the diagonal elements of D*u  represent the scaled 

2,  row norms of .S*u  The SPARROW problem is convex 
and can be efficiently solved using, e.g., a block-coordinate 
descent (BCD) algorithm. Remarkably, the support of the 
solution of (9) and therefore also the so-
lution of the MMP (8) are fully encoded 
in the sample covariance matrix ,Rt  while 
the measurement matrix X is not explic-
itly required for the estimation of the 
DoAs. Making use of the Schur comple-
ment, the optimization problem in (9) can 
further be reformulated as the semidefi-
nite problem (SDP).

 
.

min UR D

U

I

I

ADA I

M

T

1

2
0

Tr Tr

subject to H

H

,D U

M

M

M
*n

+

+

t u

u u u

u
^ ^h h

> H 
(10)

An alternative SDP formulation also exists for the under-
sampled case, when the number of snapshots is smaller than 
the number of sensors, i.e., .M T$  While from a computa-
tional point of view, the SDP formulations quickly become 
intractable when the dictionary Au  becomes large and the BCD 
solution is preferable for large K, the SDP formulations admit 
interesting extensions for ULAs and other structured arrays 
that do not require the use of a sampling grid and the explicit 
formation of the dictionary A.u  The so-called gridless sparse 
reconstruction methods are motivated by the following obser-
vation: in the ULA case, the dictionary Au  is a Vandermonde 
matrix so that the matrix product ADAHu u u  with any diagonal 
matrix Du  can be substituted by a Toeplitz matrix ( )uToep  
with u denoting its first column. Inserting the compact Toeplitz 
reparameterization in the SDP problem (10) and making use 
of the property / /( ) ( )( ) ( )D uADAM M1 1Tr Tr Tr ToepH= =u u u u  
the SDP reformulation becomes independent of a particular 
choice of the dictionary A.u

Consequently, the off-grid errors are avoided. An impor-
tant question at this point is under which conditions the decom-
position ( )u ADAToep H= u u u  holds and whether the solution 
is unique. If such a decomposition exists with a unique 
solution, the gridless reformulation of the SDP is equiva-
lent to the original grid-based formulation. The answer to 
this question is provided by the well-known Carathéodo-
ry’s theorem, which states that the Vandermonde decom-
position of any positive semidefinite low-rank Toeplitz 
matrix is always unique. Hence, provided that the solu-
tion ( )uToep *  is positive semidefinite and rank deficient, 
it can be uniquely factorized as ( )( ) A D AuToep H=* * * *  
[27]. Given the generator vector u*  retrieved from a low-
rank Toeplitz matrix, the DoA estimates can be uniquely 

recovered, e.g., by solving the corresponding system of 
linear equations.

We remark that the gridless approach for sparse recovery in 
the MMP has first been introduced in the context of the atomic 
norm denoising problem [12], which can be considered as the 
continuous angle equivalent of the ,2 1,  norm regularized LS 
matching problem (8). The associated SDP formulation in the 
ULA case with Toeplitz parameterization can be shown to be 

equivalent to the gridless version of (10). 
We further remark that gridless sparse 

reconstruction methods are not limited to 
contiguous ULA structures. Also, other 
redundant array geometries can be exploit-
ed, such as shift-invariant arrays or thinned 
ULAs, i.e., incomplete ULAs with missing 
sensors (“holes”). In thinned ULAs, ambi-
guities may arise in the array manifold, 
and the model parameters may no longer 

be uniquely identifiable from the measurements. These ambi-
guities have, e.g., been characterized in [28], [29], and these 
references can provide guidelines for the choice of favorable 
thinned ULA geometries. Following a similar procedure as 
in the Toeplitz case, a substitution of the type Q ADAH= u u u  
can be introduced where Q is no longer perfectly Toeplitz but 
contains other structured redundancies that can be expressed 
in the form of linear equality constraints in the problem 
(10). In these cases, estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) or root-MUSIC can 
be employed to estimate the DoAs from the minimizer .Q*  
Even though unique factorization guarantees for Q*  similar 
to Carathéodory’s theorem do not exist, the generalized grid-
less recovery approach performs well in practice as long as 
the number of redundant entries in Q is sufficiently large. 

While we focused in our overview on sparse regulariza-
tion methods that are based on the DML cost function in 
Table 1 as the data-matching term, there exist numerous 
alternative approaches that use other matching terms. See 
[9] for a comprehensive overview of sparse DoA estimation 
techniques. A particularly interesting sparse DoA estima-
tion method is the Sparse Iterative Covariance-Based Esti-
mation Approach (SPICE) [8], which, as the name suggests, 
stems from a weighted version of the covariance matching 
criterion in Table 1. Remarkably, the SPICE formulation 
does not contain any hyperparameters to trade off between 
the data-matching quality versus the sparsity of the solu-
tion, which makes SPICE an attractive candidate among 
sparse reconstruction methods.

As mentioned previously, the traditional superresolution 
methods, such as the multisource estimation methods of 
Table 1 as well as the PR methods and MUSIC for uncor-
related sources, are capable of resolving arbitrary closely 
spaced source even with a finite number of sensors as long 
as the number of snapshots or the SNR is sufficiently large. 
It is important to note that such guarantees generally do not 
exist in convex sparse optimization methods [9], [12], [27]. 
Furthermore, sparse regularization-based DoA estimation 

Considering the array 
processing literature, a 
vast amount of estimators 
proposed in the past 
years can be derived from 
multisource optimization 
problems.
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methods are known to suffer from bias, which marks one of 
their most important drawbacks. First, the bias can be origi-
nated from the grid mismatch of the source DoAs in the for-
mation of the dictionary. Second, the sparse regularization 
term generally introduces a bias to the solution. While the 
former source of bias can be entirely avoided in the gridless 
sparse reconstruction formulations, the latter remains and 
can be reduced only by decreasing the regularization param-
eter ,n  e.g., in (7). This in turn leads to an 
enlarged support set whose sizes are much 
larger the true number of sources N. 

However, in the context of sparse reg-
ularization-based DoA estimation, if the 
model order N is known, it is often prefer-
able to use comparably small values of the 
regularizers n  and to perform a local search 
for the N-largest maxima of the recovered 
row-norm vector , ,d d dK1 f=* * * Ru u u6 @  in (9) 
to determine the DoA estimates. More specifically, the DoA 
estimates are the N entries in the sample DoA vector iu  that are 
indexed by .argmaxi dN

k k= *u" ,
In conclusion, sparsity-based methods have their merit 

in difficult scenarios with low sample size or highly cor-
related and even coherent source signals where the sample 
covariance matrix does not exhibit the full signal rank N. In 
these scenarios, conventional subspace-based DoA estima-
tion methods usually fail to resolve multiple sources. This is  
confirmed in the simulation example of Figure 6. Further-
more, sparsity-based methods can resolve multiple sources 
even in the single-snapshot case provided that the scene is 
sparse in the sense that the number of sources is small com-
pared to the number of sensors in the array. A simple but 
interesting theorem for robust sparse estimation with noisy 
measurements regardless of the chosen sparse estimation 
approach is given by [30, Theorem 5].

Another benefit of sparse regularization methods is that, 
unlike parametric methods in DoA estimation, the knowl-
edge of the number of sources N is not required for the 
estimation of the DoAs. In turn, the number of sources is 
implicitly determined from the sparsity of the solution. How-
ever, sparse reconstruction methods, with the exception of the 
hyperparameter-free SPICE method [8], are usually sensitive 
to a proper choice of the sparse regularization parameter .n  
Furthermore, the associated computational complexity of 
sparse regularization methods, in particular for the SDP for-
mulations in the grid-based and gridless cases, is higher than 
that of conventional subspace-based methods.

Exploitation of incomplete structural information
In many modern applications, such as the networks of aerial 
base stations, DoA estimation is carried out in a distributed 
fashion from signals measured at multiple subarrays, where 
the exact locations of subarrays are often unknown. Even in 
conventional centralized large sensor arrays, it is a challenging 
task to have a central synchronized clock among all sensors 
of the device and to maintain precise phase synchronization 

due to large distances in the array. Therefore, in practice, large 
array systems are partitioned into local subarrays, where due 
to the proximity, each subarray can be considered as perfectly 
calibrated, whereas the relative phase differences between sub-
arrays are considered as unknown. In this setup, it is common-
ly assumed that the narrow-band assumption remains valid; 
hence, the waveforms do not essentially decorrelate during the 
travel time over the array.

DoA estimation in partly calibrated 
sensor arrays has first been considered in 
shift-invariant sensor array systems, which 
are composed of two identically oriented 
identical subarrays separated by a known 
displacement .d  For this configuration, 
the popular ESPRIT algorithm has been 
proposed [31]. In shift-invariant arrays, the 
overall array steering matrix ( )A i  can be 
partitioned into two potentially overlap-

ping blocks, ( )A CM N1!i #  and ( ) ,A CM N2!i #  respectively, 
representing the array response of the reference subarray and 
the shifted subarray. For notational simplicity, we assume that 

.M M M2 21 2= =  Due to the shifting structure, the two subar-
ray steering matrices are related through right multiplication 
with a diagonal phase shift matrix ( ) , ,D z z zdiag N1 f=d d d^ h 
with unit-magnitude generators z e j ( )cos

n
n= r i-  that account 

for the known displacement d  measured in half wavelength, 
hence ( ) ( ) ( ).A A D zi i=

Interestingly, ESPRIT as well as the enhanced Total-LS- 
ESPRIT (TLS-ESPRIT) method [31] can be reformulated as 
subspace-fitting techniques according to Table  1. Similar to 
the PR approach, a particular form of manifold relaxation is 
applied that maintains some part of the array structure and 
deliberately ignores other parts of the structure to admit a 
simple solution. The ESPRIT and TLS-ESPRIT estimators 
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FIGURE 6. A performance evaluation of the sparse reconstruction-based 
DoA estimation techniques for two coherent sources at R,90 1 02° °i= 6 @  
with an array composed of M 6=  sensors and .10SNR dB=

Similar to the conventional 
parametric methods, 
the Partial Relaxation 
approach considers the 
signals from all potential 
source directions in the 
multisource cost function.
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are obtained from minimizing the subspace fitting functions 
( )U V A F

1 2
s< <i--t  [22] and ( )U A V ,F

2
s< <i-t  respectively, for 

nonsingular V, where the array manifold AN  of the fully cali-
brated subarray defined in (1) is relaxed to the ESPRIT manifold 

R R RA ( ) , ( ) , ,A A A D c A AC CN
M N M NESPRIT 1;! !j= =# #6 @"

/, ( ( ) )( ) .cos argc cCN 1! j rd= -- ,
We remark that in the ESPRIT manifold A ,N

ESPRIT  only 
part of the shift-invariance structure of AN  is maintained, 
and the particular subarray steering matrix structure in 

( ) ( ), , ( )A a a N1 fj j j= 6 @ is relaxed to an arbitrary complex 
matrix .A CM N1! #  In addition, the magnitude-one structure 
of the diagonal shift matrix ( )D zd  is relaxed to an arbitrary 
diagonal matrix ( ) .D c  This implies that in the ESPRIT and 
TLS-ESPRIT algorithms, neither the subarray geometry nor 
potential directional gain factors between the two subarrays 
need to be known as long as the subarrays are identical and 
subarray displacements are known. Due to this particular man-
ifold relaxation, the subspace fitting problems admit efficient 
closed-form solutions.

The concept of DoA estimation in subarray structures has 
been generalized in [32] to cover the case of multiple shift 
invariance arrays. In more general partly calibrated array 
scenarios, we assume that the sensor positions are generally 
unknown. Nevertheless, only several displacements between 
selected pairs of sensors in the array, the so-called lags of the 

array, are known. Let , , K1 fd d  denote known displacements 
in half wavelength in the array that are all pointing into the 
same direction. This is illustrated in Figure 7. The subarrays 
are flexibly defined by pairs of sensors that share a common 
lag kd  (or their summations). Depending on the number of 
known lags among the sensor arrays, one particular sensor can 
belong to one or more subarrays. 

For all known lags, we consider again the subspace 
fitting approach and apply the ESPRIT manifold relax-
ation technique. Hence, defining T V 1= -  and relax-
ing the structure of the subarrays, the objective becomes 

, , ( ) ,U T U T A I D z
F, ,

K
k k ks s

k/ - d
2

k 1=
t t8 6B @  where A k  is an 

arbitrary complex-valued matrix of known dimension that 
models the unknown subarray structure corresponding to the 
kth displacement kd  and .U ,ks

t  The matrix U ,ks
t  contains the 

corresponding rows of the signal eigenvectors in .U ,ks
t  Insert-

ing the LS minimizers /( ) ( )A U T U TD z1 2, , ,k k kLS s s
k= + ) dt t t` j 

back into the objective function, the concentrated objective 
function of the relaxed multiple shift-invariant ESPRIT is 
given by

( )

( ) .

T U U TD z T U U U U T

T U U TD z

Tr H H H H H
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FIGURE 7. The equivalence between the partly calibrated array setup and multiple shift-invariant setup. As depicted in the center, an exemplary partly cali-
brated array setup comprises three linear subarrays with unknown intersubarray displacements. The displacements between sensors in one subarray are, 
however, a priori known. From the known intrasubarray displacement, multiple shift-invariant structures between sensor pairs are exploited while formulat-
ing the optimization problem. Such exploitation allows reinterpretation of the RARE algorithm [15], [16] as a generalized multiple shift ESPRIT [31].
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Due to the diagonal structure of ( ),D z kd  the objective function 
in (11) is separable into N identical terms, one for each source. 
Hence the subspace fitting problem reduces to finding the N 
distinct minima of the rank reduction estimator (RARE) [15], 
[16] function ( ) ( )min t M tf H

t 1RARE i i= < <=  with respect to the 
DoAs !i H  where

( )M U U U U U U

U U

e

e

j

j

H H H
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and t  represents a particular column of T. The unit-norm con-
straint in the RARE problem is introduced to ensure that the 
zero solution t 0=  is excluded since the zero solution t 0=  
violates the constraint that T and V are nonsingular. The 
minimization of the RARE cost function w.r.t. to the vector 
t admits the minor eigenvector of ( )M i  as a minimizer. As 
a result, the concentrated RARE cost function is given by 

( ) ( ( )).Mf minRARE i m i=  Thus, similar to the single-source ap-
proximation approach, the DoAs are determined from the N-
deepest minima of the RARE function. This ensures that the 
corresponding transformation matrices T and V are nonsingu-
lar. We remark that the RARE estimator has originally been 
derived from a relaxation of the MUSIC function, and the min-
imum eigenvalue function can equivalently be replaced by the 
determinant of the matrix ( ).M i  The latter is, e.g., useful for 
developing a search-free variant of the spectral RARE algo-
rithm based on matrix polynomial rooting in the case that the 
shifts , , K1 fd d  are integer multiples of a common baseline.

Exploitation of array configuration
As mentioned in the “Signal Model” section, the number of 
signals N that can be uniquely recovered from DoA estimation 
methods with second-order statistics is strictly upper bounded 
by the Kruskal rank of the oversampled ( )K M$  steering 
matrix A ,A K!u  which, e.g., for ULA geometries is equal  
to the number of sensors. A direct consequence is that, using 
the conventional signal model in the “Signal Model” section, 
the number of uniquely identifiable sources N must be less than 
the number of sensors M. If further information on the source 
signals is available, e.g., that the source signals are uncorre-
lated, then the number of uniquely identifiable source signals 
can be improved.

This claim can be explained by comparing the number 
of equations and the number of unknowns, which are implied 
from the covariance model ( ) ( ) ( ) ,R A D p A IH

Mi i o= +  
w i t h  ( ) ( , , ).D p p pdiag N1 f=  We assume that the num-
ber of snapshots T is sufficiently high such that the covariance 
matrix R can be estimated with high accuracy. In addition, we 
remark that the structure of the covariance matrix depends on 
the geometry of the sensor array. For example, for a ULA, the 
covariance matrix is a Hermitian Toeplitz matrix. Conversely, 
if we assume that the sensor array does not exhibit any particu-
lar geometry, e.g., no ULA structure, then there is generally no 
relation between the elements in the covariance matrix. Conse-

quently, the covariance matrix R is parameterized by maximal-
ly .M M 12 - +  independent real-valued variables (note that the 
diagonal entries are all identical). Thus, the number of indepen-
dent equations from the covariance model is also .M M 12 - +

On the other hand, in the uncorrelated source case, the 
model on the right-hand side ( ) ( ) ( )A D p A IH

Mi i o+  con-
tains only N2 1+  unknowns (N DoA parameters in vector 

,i  N-source powers in R, ,p p p ,N1 f= 6 @  and the noise vari-
ance ) .o  This observation suggests that it is possible to signifi-
cantly increase the number of uniquely identifiable sources in 
an array from O( )M  to O( )M2  if the number of redundant 
entries in the covariance matrix is reduced. Therefore, from 
the viewpoint of improving the number of detectable sources 
for a fixed number of sensors, we should deviate from the con-
ventional ULA array structure. The reason is that the cova-
riance matrix in the case of a ULA and uncorrelated source 
signals is a Hermitian Toeplitz matrix, which contains only 
( )M2 1-  real-valued independent entries.

In fact, the covariance matching approach in Table 1 
combined with the concepts of sparse reconstruction in DoA 
estimation and positive definite Toeplitz matrix low-rank 
factorization has inspired an interesting line of research on 
nested and coprime arrays that aims at designing favorable 
nonredundant spatial sampling patterns [19]. These types of 
arrays include the class of minimum redundancy and aug-
mentable arrays whose design approaches rely on thinned 
ULA geometries. One example is the sparse nonuniform 
arrays with intersensor spacings being integer multiples of a 
common baseline .d  These geometries have the benefit over 
arrays with arbitrary noninteger spacings that they allow the 
use of search-free DoA estimation methods (compare the 
gridless sparse methods introduced in the previous section) 
and spatial smoothing techniques to build subspace estimates 
of the required rank. More precisely, given the stochastic sig-
nal model in the uncorrelated source case with source powers 
p, hence, ( ) ( ) ( )R A D p A I ,H

Mi i o= +  an equivalent single-
snapshot model is obtained from vectorization. 

Defining ( ) ( ) ( )C A A9i i i= )  as the steering matrix 
of a so-called virtual difference coarray, where 9  stands for 
the Khatri-Rao product, i.e., column-wise Kronecker prod-
uct, the vectorized covariance model reads ( )r Rvec= = 

( ) ( )C p Ivec Mi o+  [19]. For this model, the -,2 1, norm regular-
ized LS approach in (8) is a suitable candidate for DoA estima-
tion. An interesting alternative approach that does not rely on 
sparsity but on the nonnegativity property of the source power 
vector p is proposed in [33]. 

In the vectorized covariance model, the number of identi-
fiable sources is fundamentally limited by the Kruskal rank 
of the difference coarray steering matrix ( ).C i  Hence, the 
design objective for the physical array is to place the sensors 
such that, in the difference coarray, redundant rows of the 
difference coarray steering matrix ( )C i  are avoided and the 
number of contiguous lags is maximized. Avoiding redundant 
rows is equivalent to maximizing the diversity of the coarray, 
i.e., the number of different lags in the coarray. Maximizing 
the number of contiguous lags in the coarray corresponds to 
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maximizing the size of the largest “hole-free” ULA partition of 
the coarray, which in turn is directly related to the Kruskal rank 
of the ULA partition (and therefore also the Kruskal rank of the 
entire difference coarray) due to the Vandermonde property of 
the ULA steering matrix. 

Because of the Khatri-Rao structure of the difference coar-
ray steering matrix ( ),C i  the Kruskal rank and, thus, the num-
ber of uniquely identifiable sources, grows quadratically rather 
than linearly with the number of physical sensors M. While 
coarray designs allow one to significantly increase the number 
of detectable sources for a given number of physical sensors 
using standard DoA estimation algorithms, recent theoretical 
performance results reveal that, in the regime where the num-
ber of sources N exceeds the number of sensors M, the mean-
square estimation error of the MUSIC algorithm applied to the 
coarray data does not vanish asymptotically with SNR [34].

In the minimum redundancy array design, the number of 
contiguous lags in the difference coarray, and hence the size of 
the largest ULA partition, is maximized by definition, which 
generally requires a computationally exten-
sive combinatorial search over all possible 
spatial sampling patterns. The nested and 
coprime array designs, in contrast, repre-
sent systematic design approaches associ-
ated with computationally efficient analytic 
array design procedures [19]. Nested array 
and coprime arrays are composed of two 
uniform linear subarrays with different 
baselines. In the nested array structure, each subarray is com-
posed of M1  and M2  sensors with baselines d  and ( ) ,M 11 d+  
respectively, where the first sensor of the first subarray lies at 
the origin and the first sensor of the second subarray is displaced 
by .M1  It can be shown that, with an equal split (M M1 2=  and 
M M 11 2= +  for even and odd M, respectively), the difference 
coarray becomes a ULA with ( )M M2 1 12 1 + -  elements.

Coprime arrays represent more general array structures 
and comprise, as the name suggests, two uniform linear sub-
arrays with M1  and M 12 -  sensors, respectively, with M1  
and M2  being coprime numbers. The first and the second 
subarray have baselines L1d  and ,L2d  respectively, where 
L M1 2=  and /L M F2 1=  are coprime numbers and integer F 
is a given array compression factor in the range .F M1 1# #  

Furthermore, the subarrays are displaced by integer multiples 
of the baseline .d

In Figure 8, the nested and coprime array structures and 
their respective virtual coarrays are illustrated for the case of 
three sensors in each subarray. While the nested array struc-
ture yields a coarray with a maximum number of contiguous 
lags, the coprime array structure may often be preferable in 
practice as it can achieve not only a larger number of unique 
lags, i.e., degrees of freedom of up to / /( ) ,M M2 22 +  but also 
a larger virtual coarray aperture as well as a larger minimum 
interelement spacing of the physical array to reduce, e.g., mutu-
al coupling effects.

To further increase the estimation performance of DoA 
estimators in a coprime array structure, low-rank Toeplitz 
and Hankel matrix completion approaches have been pro-
posed to fill the “holes” and augment the data in sparse vir-
tual coarrays to the corresponding full virtual ULA [35]. 
This concept has been successfully applied in [36] in the 
context of bistatic automotive radar to improve the angular 

resolution without increasing the hard-
ware costs. Similarly, in [37], matrix com-
pletion for data interpolation in coprime 
virtual arrays has been used for subspace 
estimation in hybrid analog and digi-
tal precoding with a reduced number of 
analog-to-digital converters and radio fre-
quency chains in the hardware receives. 
Conditions under which, in the noise-free 

case, the completion from a single temporal snapshot is exact 
have been derived in [38].

Conclusions and future directions
In this review article, we revisit important developments in 
area sensor array processing for DoA estimation in the past 
three decades from a modern optimization and structure ex-
ploitation perspective. From several illustrative examples, we 
show how novel concepts and algorithms that have advanced 
the research field in the last decades are proposed to solve, 
in some way or the other, the same notoriously challenging 
multisource optimization problems, such as the well-known 
classical DML problem. Advances in convex optimization re-
search and the development of efficient interior point solvers 

for semidefinite programs made it pos-
sible to compute close-to-optimal ap-
proximate solutions to these problems 
with significantly reduced effort. 

In addition, we also show how par-
ticular structure in the measurement 
model has been efficiently exploited 
to make the problems computationally 
tractable, both in terms of an affordable 
computational complexity as well as in 
terms of well posedness of the problem 
for identifying the parameters of inter-
est. Nevertheless, we remark that our 
coverage of the sensor array  processing 

Sparsity-based methods 
have their merit in 
difficult scenarios with 
low sample size or highly 
correlated and even 
coherent source signals.
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FIGURE 8. Examples of the coprime and nested array structure consisting of two subarrays, each with 
three sensors. The baseline of each physical subarray is a multiple of the baseline of the virtual coarray.
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research of the past three decades is by no means meant to 
be exhaustive. Given the long history of array signal process-
ing, by now, this field of research can certainly be consid-
ered mature. Despite all the progress that has been made over 
the past decades, many important and fundamental research 
problems in this area have not yet been solved completely 
and require new ideas and concepts, and some of these are 
outlined next.

Harmonic retrieval in large dimensional datasets
One example is the extension of the parameter estimation in 
1D spaces, such as in conventional DoA estimation, to higher 
dimensional spaces, e.g., as required in the aforementioned 
parametric MIMO channel estimation problem. With the 
trend to massive sensing systems and high dimensional da-
tasets, the harmonic retrieval problem in extremely large di-
mensions gains significant interest. Due to the phenomenon 
known as the curse of dimensionality, where the computation 
workload increases exponentially with 
the number of dimensions, the extension 
of 1D DoA estimation methods to higher 
dimensions is not straightforward. Exist-
ing works on multidimensional harmonic 
retrieval either consider rather low dimen-
sions or rely on dimensionality reduction 
approaches, i.e., projecting the multidi-
mensional datasets into lower dimensions. 
This is, however, associated with a signifi-
cant performance degradation if sources are not well sepa-
rated in the projected domain.

Incorporation of signal properties as prior information 
The use of particular structures in the array manifold, which 
is considered in this review article, is only one form of in-
corporating additional prior information into the estimation 
problem. As more information is exploited, the parameter es-
timation task can be correspondingly simplified, and the es-
timation performance is enhanced. Theoretical investigations 
on the general use of additional side information incorporated 
in the DoA estimation problem as well as its estimation per-
formance bound are addressed in [39]. In modern applications, 
the received signals as well as the waveforms often exhibit ad-
ditional properties that can be exploited while designing novel 
DoA estimators. For example, constant modulus properties of 
the transmitted signals or signal waveforms with temporal de-
pendence as, e.g., in radar chirp signals, enable coherent pro-
cessing across multiple snapshots and dramatically enhance 
the resolution capabilities. Another example of signal exploita-
tion is the DoA estimation with quantized or one-bit measure-
ments, which has been studied in [40].

Robust sensor array processing 
In many real-world applications, the classical array signal 
model may be oversimplistic. This can lead to a severe per-
formance degradation of conventional high-resolution DoA 
estimation methods, which are known to be very sensitive 

to even small model mismatches. In recent years, significant 
efforts have been made to design DoA estimation meth-
ods that are robust to various model mismatches, including 
 array  imperfections due to miscalibration, impairments of the 
 receiver front ends, mutual coupling between antennas, wave-
form decorrelation across the sensor array in inhomogeneous 
media, and multipath environments as well as impulsive and 
heavy-tailed noise [41].

Combining model-based with data-driven  
DoA estimation
Recently, data-driven machine learning approaches have been 
successfully introduced in many areas of signal processing to 
overcome the existing limitations of traditional model-based 
approaches. Data-driven algorithms have the benefit that they 
naturally generalize to various statistics of the training data and, 
thus, are flexible to adapt to time-varying estimation scenarios. 
As such, data-driven algorithms are potential candidates to over-

come the aforementioned challenges in DoA 
estimation. However, typical off-the-shelf 
data-driven algorithms are known to be data 
hungry, which limits their practical use in 
many DoA estimation applications. Recent-
ly, hybrid model-and-data-driven methods 
were proposed in the context of deep algo-
rithm unfolding, which combine the benefits 
of both approaches. The hybrid algorithms 
inherit the structure of existing model-based 

algorithms in their learning architecture to reduce the number 
of learning parameters and therefore speed up the learning and 
improve the generalization capability of the algorithms [42].
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