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This article reviews significant advances in networked signal 
and information processing (SIP), which have enabled in the 
last 25 years extending decision making and inference, op-

timization, control, and learning to the increasingly ubiquitous 
environments of distributed agents. As these interacting agents 
cooperate, new collective behaviors emerge from local decisions 
and actions. Moreover, and significantly, theory and applications 
show that networked agents, through cooperation and sharing, 
are able to match the performance of cloud or federated solutions 
while offering the potential for improved privacy, increased re-
silience, and conserved resources. A longer version of this man-
uscript, with examples and illustrative applications, is available 
at https://arxiv.org/abs/2210.13767.

Introduction
Since its beginnings, throughout the past century and still 
dominant at the turn of the 21st century, the SIP prevailing 
paradigm has been to process signals and information by 
stand-alone systems or central computing units with no coop-
eration or interaction among them [see Figure 1(a)]. This focus 
has led to tremendous progress in a wide range of problems in 
speech and image processing, control and guidance, estima-
tion and filtering theories, communications theory, and array 
processing, with enormous impacts in telecommunication and 
wireless, audio, medical imaging, multimedia, radar, and other 
application areas. In the nearly 25 years since the turn of the 
century, each of these areas has progressed rapidly, in large 
part due to increases in computational resources along with the 
availability of data, giving rise to a variety of advanced data-
driven processing tools. 

At the end of the century, we also witnessed significant 
technological progress, from massive layouts of fiber at the 
backbone; to successes in high-speed wireless and Wi-Fi 
deployments; to chip advances combining single, miniature 
inexpensive platform functionalities like sensing, storage, 
communication, and computing; and to breakthroughs in net-
work protocols and software. This progress has led, for exam-
ple, to the launching of hundreds, soon thousands and millions, 
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of inexpensive sensing devices (which we call here agents) that 
sense, compute, communicate, and are networked, ushering a 
paradigm shift in SIP. Initially, the agents observed data inde-
pendently of one another and simply forwarded their raw data 
to the cloud, with no local processing in a centralized architec-
ture (see Figure 1).

Parallel architectures soon emerged, 
where agents started processing their local 
data, transferring only their (local) infer-
ences to a fusion center. The fusion center 
aggregated the locally processed data and 
orchestrated the computations that occurred 
in parallel at the individual agents. While 
traditionally computation and communica-
tion occurred in a synchronous fashion, synchrony require-
ments were relaxed, like with federated learning architectures 
[see Figure 1(c)]. But as a result of scenarios with abundant 
data available at dispersed networked locations, such as sen-
sor networks that monitor large geographical regions, robotic 
swarms that collaborate over a common task, or social net-
works of many interacting agents, a new critical trend started 
to materialize. This led to decentralization and democratiza-
tion of technology and, toward the middle and end of the first 
decade of this century, SIP moved definitively from parallel, 
federated, or edge architectures to a distributed, decentralized, 
or networked paradigm. (Note that we interpret an edge archi-
tecture as a layered or hierarchical federated architecture.) The 
agents sense and process their own data, and then cooperate 
with other agents. They transmit to and exchange information 
with agents in their vicinity. It marked the appearance of net-
worked elementary processing units, with each unit collecting 
and processing data and sharing their information with imme-
diate neighbors. 

Individual agents are now capable of local inference deci-
sions and limited actions. The coupling among the agents gives 
rise to powerful network structures that open up vast opportuni-
ties for the solution of more complex problems by tapping into 
the power of the group. Examples of such networked systems 
are plentiful, including instrumented critical infrastructures 
like water, gas, financial networks, and smart grids as well 
as networked mobile devices, swarms of drones, autonomous 
vehicles, or populations of individuals. The interconnectedness 

of the agents within the network allows for their cooperation to 
rise from local to global coherent decision and action. To study, 
understand, and steer the occurrence of these global behaviors 
adds new layers of complexity. More advanced analytical tools 
became necessary to combine local processing with coopera-

tion among the agents. This ushered in the 
design of new processing algorithms, new 
methods to derive performance guarantees 
and assess their quality, to examine the 
effect of agents coupling on network sta-
bility, to endow agents with adaptation and 
learning abilities and with the capacity to 
handle privacy, and to enable such networks 
to contribute to multiple tasks at once.

Distributed, decentralized, or networked architectures 
achieve aggregation and coordination through device-to-
device or peer-to-peer interactions. Computation is no longer 
at the cloud or like in federated or edge computing at a fusion 
center, but fully distributed at the device level. Synchrony 
requirements need not be assumed. Networked architectures 
may be viewed as a generalization of centralized and feder-
ated configurations, allowing us to recover federated algo-
rithms from distributed or decentralized ones by employing 
a star topology.

Networked distributed processing architectures are more 
robust: if an edge or an agent fails, the entire network can 
continue to process data and deliver inference decisions. 
There is no need for costly communications with the cloud or 
a remote edge server. Furthermore, although the exchange of 
processed iterates might still leak some private information, 
recent works have demonstrated that networked architectures 
can be designed to offer improved privacy due to their decen-
tralized nature. Even more importantly, distributed networked 
architectures can be shown to match the performance of cen-
tralized solutions.

This tutorial article surveys the recent history of networked 
SIP, including consensus and diffusion strategies for regression 
problems [1], [2], [3], [4], [5] developed in the 2000s, detec-
tion and parameter estimation over networks [6], [7], [8], [9] 
and their performance guarantees [8], [9], [10], [11], distrib-
uted optimization [12], [13], [14], [15], [16], [17], [18], [19], 
[20], [21], learning, and adaptation [20], [21], [22]. It provides a  
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FIGURE 1. The taxonomy of networked multiagent systems: (a) noncooperative, (b) centralized or parallel, (c) federated, and (d) networked or decentralized.

Distributed, decentralized, 
or networked architectures 
achieve aggregation and 
coordination through 
device-to-device or peer-
to-peer interactions.
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comprehensive coverage of topics and references. We bridge 
the gap by unifying under a common umbrella more recent 
applications to distributed machine learning, including mul-
titask learning [23] and nonconvex optimization [24], [25], 
design variants under different operating scenarios such as 
asynchronous algorithms [26], and connections to alternative 
architectures such as federated learning.

Historical remarks
There has been extensive work on distributed techniques for in-
formation and signal processing over networks. Many optimal 
inference problems adopt a quadratic optimization cost whose 
solution, under linear models and Gaussian noise, is a linear 
statistic of the data. With peer-to-peer communication among 
sensors, the question becomes how to compute the global aver-
age of the local statistics only through cooperation among the 
agents. Departing from centralized architectures, the solution 
is built on the consensus strategy for distributed averaging, 
with no need for a fusion center to collect the dispersed data 
for processing. Consensus was initially proposed by DeGroot 
[27] to enable a group of agents to reach agreement by pooling 
their information and to converge [27], [28] to an average esti-
mate solely by interaction among neighbors. Many subsequent 
works were devoted to characterizing consensus’ convergence 
behavior, the role of the graph topology, random selection of 
neighbors, and several other aspects. Some sample works in-
clude [5], [29], and [30], while useful overviews appear in [7] 
and [22] with many additional references.

Several works in the literature proposed extensions of the 
original consensus construction to more generally minimize 
aggregate cost functions, such as mean-square-error costs, or 
to solve distributed estimation problems of the least-squares or 
Kalman filtering type. These extensions involve constructions 
with gradient descent-type updates. Among these works, we 
mention [29] and [31]. Although an early version of the con-
sensus gradient-based algorithm for distributed estimation and 
optimization already appears in [29], convergence results were 
limited to the asymptotic regime, and there was no understand-
ing of the performance of the algorithm, its actual convergence 
rate, and the influence of data, topology, quantization, noise, 
and asynchrony on behavior. These considerations are of great 
significance when designing practical, data-driven systems, 
and they attracted the attention of the signal processing com-
munity after the turn of the century. Moreover, some of the 
earlier investigations on consensus implementations involved 
separate timescales (fast communication and consensus itera-
tions among agents, and slow data collection), which can be a 
challenge for streaming or online data.

Online consensus implementations, where data are collect-
ed at every consensus step, appeared in works by the authors of 
[5], [8], [12], [32], [33], and others. Using decaying step-sizes, 
these works established the ability of the algorithms to con-
verge. In particular, the work of Kar et al. [8] introduced the 
so-called consensus + innovations variant, which responds 
to streaming data, and established several performance mea-
sures in terms of convergence rate and the effect of topology, 

quantization, and noisy conditions and other factors (see also 
[33]). In parallel with these developments, online distributed 
algorithms of the diffusion type were introduced in [3], [34], 
and [35] to enable continuous adaptation and learning by net-
worked agents under constant step-size conditions. The diffu-
sion strategies modified the consensus update to incorporate 
symmetry, which was shown to enlarge the stability range 
of the network, and to enhance its performance, even under 
decaying step-sizes (see [36] and the overviews in [20] and 
[22]). The diffusion structure was used in several subsequent 
works for distributed optimization, such as in [14], [37], [38], 
and other works.

In all of these and the related works on online distributed 
inference, the goal is for every agent in the network to converge 
to an estimate of the unknown by relying exclusively on local 
interactions with its neighbors. Important questions that arise 
in this context include the following: 

■■ Convergence: Do the distributed inference algorithms con-
verge, and if so, in what sense?

■■ Agreement: Do the agents reach a consensus on their 
inferences?

■■ Distributed versus centralized: How good is the distributed 
inference solution at each agent when compared with the 
centralized inference obtained by a fusion center; in other 
words, are the distributed inference sequences consistent 
and asymptotically unbiased, efficient, and normal?

■■ Rate of convergence: What is the rate at which the distrib-
uted inference at each agent converges?
These questions require very different approaches than the 

methods used in the “consensus or averaging-only” solution 
from earlier works. Solutions that emerged of the consensus 
and diffusion type combine at each iteration 1) an aggregation 
step that fuses the current inference statistic at each agent with 
the states of their neighbors with 2) a local update driven by 
the new observation at the agent. This generic framework, of 
which there are several variations, is very different from the 
standard consensus wherein each time step only local averag-
ing of the neighbors’ states occurs, and no observations are 
processed, and from other distributed inference algorithms 
with multiple timescales, where between-measurement 
updates involve a large number of consensus steps (theoreti-
cally, an infinite number of steps). The classes of successful 
distributed inference algorithms that emerged add only to the 
identifiability condition of the centralized model that the net-
work be connected on average. The results of these algorithms 
are also shown to hold under broad conditions like agents’ 
communication channel intermittent failures, asynchronous 
and random communication protocols, and quantized commu-
nication (limited bandwidth), making their application realistic 
when 1) a large number of agents are involved (bound to fail at 
random times), 2) packet losses in wireless digital communica-
tions cause links to fail intermittently, 3) agents communicate 
asynchronously, and 4) the agents may be resource constrained 
and have a limited bit budget for communication. Furthermore, 
these distributed inference algorithms make no distributional 
assumptions on the agents and link failures that can be spatially 
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correlated. The reader may refer to the overviews in [7], [20], 
[22], and the many references therein.

There have of course been many other useful contribu-
tions to the theory and practice of networked information and 
signal processing, with many other variations and extensions. 
However, space limitations prevent us from elaborating further. 
The reader can refer to the overviews in [7] and [22]. Among 
such extensions, we may mention extensive works on distrib-
uted Kalman filtering in [39], [40], [41], and others. Other parts 
of this manuscript refer to other classes of distributed algo-
rithms, such as constructions of the primal and primal-dual 
type, and the corresponding references. The presentation actu-
ally presents a unified view of a large family of distributed 
implementations, including consensus and diffusion, for online 
inference by networked agents.

Notation
All vectors are column vectors. We employ bold font to empha-
size random variables, and regular font for their realizations as 
well as deterministic quantities. Upper-case letters denote ma-
trices, while Greek letters denote scalar variables. We employ 
k to index nodes or agents in the network, and i to index time. 
In this way, x ,k i  will denote the data available to agent k at time 
i, modeled as a random variable. When discussing supervised 
learning problems, ,x hcol, , ,k i k i k i_ c" , will contain both the 
feature vector h ,k i  and the associated label .,k ic

Unified view
In the networked SIP context, K agents are nodes of a connect-
ed network, whose graph is described by a weighted adjacency 
matrix ,C RK K! #  where c Ck k_, ,6 @  denotes the strength of 
the link from node ,  to node k. We denote by Nk  the neigh-
bors of node k, i.e., those other agents with which k commu-
nicates directly and cooperates. With undirected graphs, the 
graph is also described by its (weighted) Laplacian matrix, 

1 .L C Cdiag= -" ,  Here, 1` _ denotes the vector consisting of 
all 1s of appropriate size. We illustrate an example of a graph 
and its adjacency matrix in Figure 2. We further associate 
with each node a local model ,w Rk

M!  which can correspond 
to unknown parameters describing a random field, param-
eterizing a channel or filter, or representing a hyperplane or 
a neural network. For convenience, we define network-level 
quantities, which we denote through calligraphic letters; they 
aggregate quantities from across the network. In this manner, 
we can write compactly .wcolw k_ " ,  This notation allows us 
to highlight a useful relation between the adjacency matrix C, 
and the Laplacian matrix L, namely, that for undirected graphs

	
R
Lc w w w wk

K

k

K

k
11

2
- =,,

,==

// � (1)

where we defined L .L IM_ ,  Relation (1) captures through 
the variational operator L  the weighted variation of the local 
models wk  across the network, and is fundamental when deriv-
ing algorithms for distributed processing over networks, as we 
illustrate further in the next section.

Unification through stochastic optimization
Suppose we would like each agent in the network to estimate 
the unknown parameter wk

o  used to generate local observations 
through the linear model

	 R .h vw, , ,k i k i k
o

k ic = + � (2)

In a parameter estimation framework, h ,k i  denotes the local 
known observation model, v ,k i  denotes noise, and ,k ic  are the 
observations. In a machine learning interpretation, during 
training, we learn the weights or model wk

o  in (2) from known 
pairs of input data h ,k i  and target values .,k ic  Common other 
terminology refers to h ,k i  as a regressor, feature vector, inde-
pendent variables, or inputs. We may then formulate local esti-
mation or learning problems based on the mean square error 
(MSE) risk, R( ) ,hJ w wE , ,k k k i k i k

2
_ c -  and pursue

	 ( ) ( ) .arg min minw J w J wor equivalentlyk
o

w
k k k

k

K

k
1R w

k
M

_
! =

/ � (3)

If, however, we are provided with prior information that the 
parameters wk

o  vary smoothly as defined by the variational rela-
tion (1) over a graph with Laplacian L, we may instead pursue

	
R
L( ) .min J w

2
w wk

k

K

k
1

w

h
+

=

) 3/ � (4)

The regularization term R
/ L2 w wh^ h  couples the indepen-

dent objectives ( )J wk k  and encourages parameterizations wk  
that vary smoothly over the graph. It can be verified that the 
coupled optimization problem (4) corresponds to a maximum 
a posteriori estimate of the models wk

o  in the linear model 
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FIGURE 2. The schematic of a general network and its adjacency matrix. 
(a) Topology of a sample network. (b) Corresponding adjacency matrix.
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(2) under a Gaussian–Markov random-field prior. Motivated 
by applications in wireless sensor networks, least-squares 
problems of this form were the focus of many of the early 
works on distributed processing [3], [4], [5], [9], [31]. 

More generally, with each agent, we associate a local objec-
tive function ( ) ( ; ),xJ w Q wE ,k k k k i=  where x ,k i  refers to the 
data that are available to agent k, and ( ; )xQ w ,k k i  is a loss func-
tion. Setting R( ; )x hQ w w, , ,k k i k i k i k

2
_ c -  recovers the MSE 

loss leading to (4). We consider the general class of coupled 
optimization problems

	 w w( ) ,  .min J w R subject to
w

k
k

K

k
1RK M

!h X+
! =

^ h) 3/ � (5)

The coupling regularizer wR^ h and constraint w !X encode 
relationships among local objectives and encourages local 
cooperation. Letting R

/ LR 1 2w w w= ^^ hh  
and RKMX=  recovers the smoothed 
aggregate learning problem (4). Although 
decentralized algorithms for learning and 
optimization can be developed for general 
asymmetric-adjacency matrices RC C!  
[22], [42], for the sake of simplicity, we focus 
on symmetric-adjacency matrices in this  
section. We comment on the implications of employing asym-
metric combination policies in the “Asymmetric Combination 
Policies” section.

Stochastic gradient approximations
A common theme in many networked data processing appli-
cations is the limited access to the cost function ( )Jk $  and its 
gradient ( )Jk $d  due to the fact that the cost ( )Jk $  is defined 
as the expected value of the loss ( ; ),xQ ,k k i$  and x ,k i  follows 
some unknown distribution. As a result, gradient descent al-
gorithms that rely on the use of the true gradient ( )Jk $d  are 
replaced by stochastic gradient algorithms, which employ an 
approximated gradient denoted by ( ) .J k $d\  The most common 
construction for a stochastic gradient approximation is to em-
ploy ( ) ( ; ),xJ Q ,k k i$ $d d_\  where x ,k i  denotes a single sample 
of the variable xk  obtained at time i. However, other construc-
tions are possible depending on the setting. For example, we 
may envision a scenario where agent k is provided with sev-
eral independent samples x , ,k i b b

B
1

k
=" ,  at time i, allowing for 

the minibatch construction /( ) ( ; ) .xJ B Q1 , ,k k b
B

k i b1
k$ $d d_ R =^ h\  

Alternatively, one may be faced with a situation where agents 
may be able to provide a gradient approximation with only 

some probability ,kr  either due to lack of data, slow or delayed 
updates, or computational failure. Such asynchronous behavior 
can be modeled via [26]

	 ( )
( ; ),

,

,

.

x
J

Q1

0 1

with prob.

with prob.

,
k k

k

k

k i
$

$
d

d
r

r

r
=

-
*\ � (6)

As a final example of commonly used constructions for 
stochastic gradient approximations, we note perturbed 
stochastic gradients of the form ( ) ( ; ) ,x rJ Q , ,k k ik i$ $d d= +\  
where r ,k i  denotes some additional zero-mean noise. Exam-
ples of settings where additional noise is added to gradient 
approximations are plentiful, and include noise added due 
to quantization, noise used to ensure differential privacy, 
or noise used to escape from saddle points in nonconvex 

environments [24]. As we will see in the 
learning guarantees that we survey later, 
performance of the algorithms based on 
stochastic gradient approximations will 
in some way depend on the quality of 

( ) .J k $d\  Most commonly, this is quantified 
through bounds on its variance.

Condition 1 (variance of the gradient approximation)
The gradient approximation ( )wJ ,k k i 1d -\  is required to be un-
biased with bounded variance as follows:

	 ( ) ( )w w wJ JE , , ,k k i k i k k i1 1 1d d=- - -" ,\ � (7)

( ) ( ) .w w w wJ J wE , , , ,k k i k k i k i k k
o

k i k1 1
2

1
2

1
2 2d d # b v- - +- - - -" ,[

� (8)

Here, ,k
2b  k

2v  denote nonnegative constants, and wk
o  denotes 

an arbitrary reference point, most commonly, the minimizing 
argument from (3). 

As previously shown in [38], the zero-mean condition (7) 
can be verified to hold for many popular constructions, includ-
ing the constructions listed previously. In (7) and (8), we con-
dition on the current iterate w ,k i 1-  and take expectation with 
respect to the remaining variability in generating the gradi-
ent approximation ( ),wJ ,k k i 1d -\  which is the data available to 
agent k at time i. For example, in the case of ordinary stochas-
tic gradient descent ( ) ( ; ),xJ Q ,k k i$ $d d_\  this corresponds to 

,x ,k i  which is generally assumed to be independent of .w ,k i 1-  
Variance bounds of the form (8), on the other hand, need to 
be verified for specific choices of loss functions ( ; ),xQ k$  dis-

tributions of the data ,x ,k i  and gradient 
approximations ( ) .J k $d\  Nevertheless, 
the key takeaway is that conditions 
of this form hold for most processing 
and learning problems of interest. The 
resulting constants ,k

2b  k
2v  quantify the 

quality of the utilized gradient approxi-
mation. In Table  1, we list the relevant 
quantities for the MSE and logistic loss 
as examples. It is also useful to note that, 

Table 1. Constants in gradient variance bounds for popular loss functions for supervised learning 
problems with col ,x hk k k_ c# -  [22]. The quantities 2

vv  and Rh denote the data statistics 
vE ,

2
k i  and R ,h hE , ,k i k i  respectively.

Loss Gradient Approximation k
2b  (Relative) k

2v  (Absolute)
R

h w2
1

, ,k i k i

2
c -

R
h h w, , ,k i k i k ic -^ h R

h hRE h k k

2
- ( )RTrv h

2v  

ln e w1 2
h w 2, ,k i k i

t
+ +c-

R^ h h
e

w
1

1
, , hk i k i w, ,k i k i
c t

+
+c

Rb l 0 ( )RTr h  

A common theme in many 
networked data processing 
applications is the limited 
access to the cost function 
and its gradient.
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given the constants ,k
2b  k

2v  for an ordi-
nary gradient approximation, such as 
those listed in Table 1, one can immedi-
ately recover those of the variants listed 
previously; this is illustrated in Table 2. 

We finally note that the current expo-
sition mainly focuses on methods that 
assume first-order (i.e., gradient-type) 
information is available or accessible in 
the construction of the distributed algo-
rithms. Due to intractability of gradient 
computation in certain applications (for 
instance, in scenarios where the cost 
model is not directly available but perhaps may be computed 
at desired query points via noisy simulations), one can resort to 
zeroth-order approaches. In this case, noisy and biased gradi-
ent estimates obtained from measuring function values using 
various difference approximations are used in the algorithm 
design in lieu of exact or unbiased gradients as assumed in the 
first-order setting (see [38], [43], and the references therein for 
more details).

Task relationships
As a separate consideration from the choice of the risk functions 

( ),J wk k  one may consider various frameworks for the relation 
between individual models ,wk  also referred to as tasks. In the 
absence of coupling regularization or constraints, i.e., in the case 
the regularizer R w 0k k

K
1 ==^ h" ,  and ,RKMX=  optimization 

over the aggregate cost ( )J wk k k
K

1R =  decouples into independent 
problems ( )J wk k  over local models .wk  These can be pursued in 
a noncooperative manner.

Perhaps the most commonly studied framework for dis-
tributed optimization is that of consensus optimization, where 
individual models are required to be common, i.e., ,w wk =  
giving rise to

	 ( ) .min J w
w

k
k

K

1=

/ � (9)

Networked algorithms for (9) can be developed from (5) in 
several ways, giving rise to different families of algorithms for 
distributed optimization [38], as we proceed to show.

Penalty-based approaches
We may encourage consensus by penalizing pairwise 
differences between connected agents, i.e., /w( ) ( )R 1 2=  

,c w wN
K
k k k1

2
kR R -, , ,!=  resulting in

	
R

J Lw w w

( )min

min

J w c w w
2

2

N

w

{ }w
k

k

K

k k
k

K

k
1 1

2

k k
K

k1

,

h

h

+ -

+
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,!= ==

^ h

)

$ .

3/ //
�

(10)

where, in addition to making use of (5), we defined J w _^ h   
( ).J wK

k k k1R =  It can be verified that, as long as the graph described 
by C is connected, / ,c w w1 2 0N

K
k k k1

2
kR R - =, , ,!=^ h  if 

and only if w wk =  for all k, and hence, (10) is equivalent to (9) 
in the limit as ."3h  At the same time, this fact implies that 
for finite ,h  problems (10) and (9) will, in general, have dis-
tinct solutions. It is for this reason that penalty-based methods 
generally operate with large choices of the penalty parameter 

,h  exhibiting some small bias relative to the exact consensus 
problem (9), unless ."3h  Applying stochastic gradient de-
scent to (10) results in

	 L J .Iw w wi i i1 1dnh n= - -- -^^ hh \ � (11)

If we set LA I_ nh-  and return to node-level quantities, 
we recover the recursion

	 ( )w w wa J
N

, , ,k i k i k k i1 1
k

dn= -,

,

,

!

- -\/ � (12)

which corresponds to the decentralized (stochastic) gradient 
descent algorithm [12], [29] of the “consensus + innovation” 
type [8]. If we instead, following [44], appeal to an incremental 
gradient descent argument, where we first take a step relative 
to the cost J w ,^ h  and subsequently descend along the penalty 

R
/ L ,w w2h^ h  we obtain the adapt-then-combine (ATC) diffu-

sion algorithm [3], [21]

	 ( )w wJ, , ,k i k i k k i 11 d} n= - -- \ � (13)

	 .w a
N

, ,k i k i

k

}= ,

,

,

!

/ � (14)

Reversing the order in the argument instead yields the com-
bine-then-adapt variation of diffusion [3], [21].

Imperfect and noisy communication
In the exposition thus far, we have assumed for simplicity 
that the interagent communication is perfect. In practice, we 
may have random packet dropouts or link failures and distor-
tions in the data exchanged by agents due to channel noise, 
quantization, or other forms of compression. There has been 
extensive research on consensus and diffusion procedures 
that deal with time-varying or stochastic Laplacian matri-
ces to model issues such as link failures, whereas in other 
instances, controlled randomization in the communication 
has been used via random Laplacians as a tool to improve 
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communication efficiency (see [5], [26], [29], and [30] for a 
sample of the relevant literature). On the other hand, noise in 
the observations or communication, either injected as addi-
tive communication noise or through quantization and other 
forms of compression, are handled by carefully designing 
the mixing parameters, the a sk\,  in (12)–(14), and building 
on tools from stochastic approximation as in the “Stochastic 
Gradient Approximations” section [8], [26], or through the 
use of probabilistic ideas such as dithering [33]. Most of the 
development in the current article will continue to hold for 
such imperfect interagent communication through appropri-
ate modifications as discussed earlier.

Primal-dual approaches
As an alternative to penalty-based approaches, one may 
wish to enforce exact consensus by introducing constraints, 
such as [38]

	 ( ) .min J w c w w 0s.t.
Nw
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k
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k k
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In contrast to penalty-based formulations, constrained for-
mulations of the consensus problem can no longer be pursued 
using pure gradient-based algorithms. Instead, constraints 
are most commonly enforced through dual arguments such 
as alternating direction method of multipliers (ADMM), dual 
averaging, or the augmented Lagrangian. Early algorithms 
involving primal-dual arguments for exact consensus optimi-
zation, such as [13], [16], [45], and [46], involved the propa-
gation and communication of dual variables in addition to 
weight vectors .wk  ADMM-based algorithms [13], [46] gener-
ally involve two timescales, where an auxiliary optimization 
problem is solved in between every outer iteration. Although 
these methods exhibit appealing convergence properties, their 
implementation is only practical in situations where the inner 
optimization problem has a specific structure that allows it to 
be solved efficiently or in a closed form.

Single timescale primal-dual algorithms [16], [45] instead 
employ first-order approximations at every, step thus avoiding 
the need to solve a costly inner optimization problem. As a 
representative example, we list here the stochastic, first-order 
augmented Lagrangian strategy from [45]

	 R
L J Bw w wIi i i i1 1 1d mnh n nh= - - -- - -^^ hh \ � (16)

	 Bwi i i1 1m m nh= +- - � (17)

where R .L B B=  An examination of (16) reveals that the aug-
mented Lagrangian-based strategy corrects the “consensus + 
innovation” algorithm (12) by adding the additional term 

R
B ,i 1mnh- -  which compensates the bias induced by the 

penalty-based formulation (10). Although effective at ensur-
ing an exact consensus, the propagation of dual variables is 
associated with additional overhead in terms of both compu-
tation and communication. Conveniently, dual variables can 
frequently be eliminated and replaced by a momentum-like 
term. To illustrate this point, let us consider a variant of (16) 

and (17), where the primal and dual updates are performed in 
an incremental manner, allowing the dual update to make use 
of the most recent primal variable w ,i  rather than w .i 1-  This 
results in

	 R
L J Bw w wIi i i i1 1 1d mnh n nh= - - -- - -^^ hh \ � (18)

	 Bw .i i i1m m nh= +- � (19)

After setting /1h n=  and following [47], we can verify that 
(18) and (19) are equivalent to
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which is equivalent to the EXTRA algorithm of [15] for ap-
propriately chosen weight matrices. Letting ,A I L_ -  and 
returning to node-level quantities we obtain
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These recursions can again be identified as a bias-corrected 
version of the “consensus + innovation” recursion (12), but now 
rely on the momentum term waN , ,k i k i1 1k zR -, , ,! - -  rather 
than the propagation of dual variables, as in (17). Making the 
same incremental gradient adjustment that led to the penalty-
based ATC diffusion algorithm (13) and (14), we obtain the 
exact diffusion algorithm from [44]
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Exact diffusion is also referred to as D2  [48] or NIDS [60]. 

Gradient-tracking-based approaches
An alternative to the approaches described previously is 
based on gradient tracking. Although the initial motivation 
[19], [49] for the construction was based on the dynamic 
average consensus algorithm, it has been noted in [50] that 
gradient-tracking-based algorithms for decentralized optimi-
zation can be viewed as a variation of the primal-dual argu-
ments leading to the EXTRA and exact diffusion algorithms 
described earlier. The interested reader is referred to [38] and 
[50] for details, and simply list the resulting NEXT [19]/DIG-
ing [50] algorithm
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Following an incremental construction, on the other hand, 
analogous to the step from EXTRA to exact diffusion men-
tioned before, results in an ATC variant of the NEXT/DIGing 
algorithm, proposed in [49] under the name Augmented Dis-
tributed Gradient Method (Aug-DGM) 

	 w g, , ,k i k i k i1 1} n= -- - � (28)
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Decentralized algorithms for consensus optimization based 
on gradient tracking generally have similar convergence prop-
erties to their primal-dual counterparts EXTRA and exact 
diffusion. One key difference is the fact that exchanges of the 
gradient estimate ,g ,k i  in addition to the local models, result in 
an increase in communication cost roughly at a factor of two.

Constrained learning
In our discussion thus far, the constraint X  of (5) has 
been used to encode equality constraints of the form X= 
w w .c w w w w k0N

K
k k k k1

2
k 6R R - = = =, , ,!=$ ". ,  T h i s 

ensures consensus on a common model w. In many applications,  
we may wish to further constrain the common model w to some 
set .H  The variations of most of the algorithms described in the 
“Unified View” section for constrained optimization and learn-
ing were developed and studied by employing Euclidean and 
proximal projections or penalty functions [14], [51], [52], [53]. 
These solve the constrained consensus optimization problem 

( ) .min J ww k k
K

1R!H =  For example, applying the same incremen-
tal argument that led to (13) and (14), followed by projection onto 

,H  leads to a projected variant of the ATC diffusion or consen-
sus + innovation algorithm (12)–(14), studied in [14] and [53]
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Similarly, we may introduce projections into primal-dual 
algorithms to derive projected variants of primal-dual algo-
rithms, such as the PG-EXTRA generalization [51] of the 
EXTRA algorithm (20).

Multitask learning
Although the pursuit of an optimal average model, as defined 
in (9), is appropriate in many situations, it is important to rec-
ognize that a good average model may perform poorly on any 
local cost ( ) .Jk $  This observation motivates the pursuit of net-
worked multitask learning algorithms [23], where agents aim 
to learn from one another without forcing an exact consensus. 
More recently, this area has received attention under the name 
personalized federated learning. Multitask learning is gener-
ally achieved using variations of the regularized aggregate 
problem (5), where the regularization is chosen to match some 

underlying prior on task relationships (rather than to enforce 
exact consensus). Solutions can again be pursued using primal 
or primal-dual approaches. Due to space limitations, a detailed 
treatment of multitask learning is beyond the scope of this ar-
ticle, so we refer the reader to [23] and the references therein.

Applications

Weather prediction
The task of predicting weather patterns naturally lends itself to 
networked solutions because 1) measurements tend to be avail-
able in dispersed locations, and 2) it is reasonable to believe that 
weather models ought to be related in adjacent regions, encour-
aging the diffusion of information as a means of improving per-
formance. To illustrate this fact, here we reproduce a simulation 
study from [54]. The simulation is based on meteorological data 
from across the United States, shown in Figure 3(a) and (b). The 
implementation is based on the regularized learning problem (4), 
with logistic risks 

R

( ) .lnJ w e w1E h
k k

w
k

2, ,k i k i k t= + +c-^ h  The 
performance is shown in Figure 3(c), where the choice 0h =  
corresponds to a noncooperative implementation, 1h n= -  cor-
responds to the ATC diffusion algorithm (13) and (14), and other 
choices of h  correspond to softer coupling of local models. Due 
to space limitations, we refer the reader to [54] for a more de-
tailed discussion of the setup and results.

Wide area monitoring in power systems
Wide area monitoring in power transmission systems consists 
of tracking the overall system state based on measurements 
obtained at control areas or balancing authorities (nodes or 
agents in our current exposition). The geographical distribution 
and practical data sharing limitations among the control ar-
eas naturally calls for distributed state estimation algorithms 
(see [55]), with the goal of monitoring the global system’s state 
while minimizing data exchange among the control areas. In 
[55], fully distributed approaches for wide area state estimation 
based on consensus + innovation-type algorithms [see (12)] 
are proposed, both for dc and ac state estimation. The typi-
cal quantities of interest in wide area monitoring are voltage 
magnitudes and relative angles (phases) at the system buses 
based on power flow measurements at subsets of transmission 
lines, and power injection measurements at the system buses. 
In dc state estimation, the bus voltage magnitudes are typically 
assumed to be at a nominal 1 per-unit reference value (see [55] 
for details), and the unknown phase estimation at the buses re-
duces to a linear least-squares-type formulation, as in (2). 

In particular, Figure 4 shows the application of a consensus 
+ innovation approach with decaying step-sizes (taken from 
[55]) for dc state estimation on an IEEE 118-bus benchmark 
test system: Figure 4(a) depicts the 118-bus system partitioned 
into eight control areas that communicate over a connected 
communication graph (typically, this graph conforms to the 
physical coupling between the control areas, or is chosen 
based on geographical proximity); the application essential-
ly consists of reformulating the wide area phase estimation 
objective as a least-squares cost minimization, with ( )J wk k  of 
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the form in (2) and (3), and applying the consensus + innova-
tion approach.

In Figure 4(a), we compare the gap (referred to as the phase 
angle gap) between the relative phases obtained by the iterative 
distributed approach, and those from a hypothetical, fusion-
center-based, optimal one-shot least-squares estimator across 
multiple bus pairs, i.e., for instance, the quantity g ,1 2  denotes 
the gap between the phase difference between buses 1 and 2 
obtained by the distributed approach and that obtained by the 
centralized estimator. As expected, by the convergence guar-

antees discussed in the “Task Relationships” section, these 
gaps converge to zero as the iterations progress. Similar dis-
tributed approaches may be used for distributed (nonlinear) ac 
state estimation where the objective is to estimate both the bus 
voltages and relative angles. This is performed by resorting to 
a nonlinear least-squares-type minimization in [53] and [55], 
and applying a projected variant of the consensus + innovation 
approach [see the discussion pertaining to (31) and (32)] to deal 
with certain trigonometric nonlinearities associated with the 
ac power flow model.
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FIGURE 4. Wide area state estimation using consensus + innovation algorithms (taken from [55]). (a) An IEEE 118-bus system partitioned into eight 
control areas or nodes with possible internode communication patterns. (b) The relative phase angle estimation error at different bus pairs. 
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FIGURE 3. Weather prediction using diffusion algorithms (taken from [54]). (a) Actual occurrence of rain. (b) Predicted occurrence of rain. (c) Prediction 
accuracy as a function of the regularization parameter h  of (4). 
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Performance guarantees in distributed learning
We now proceed to survey some performance guarantees of 
algorithms for decentralized learning, with a particular em-
phasis on stochastic settings. Given space limitations, it is not 
possible for us to provide a comprehensive survey; instead, we 
aim to highlight some key insights that have emerged from an 
extensive body of work over the past two 
decades, in an attempt to provide the reader 
with a starting point and guidelines when 
matching the choice of a learning algorithm 
to a problem at hand.

Constant and diminishing step-sizes
Optimization algorithms based on stochastic 
gradient approximations are subject to persis-
tent noise, and hence, generally, do not con-
verge to exact solutions. This can be remedied by employing a 
time-varying and diminishing step-size, resulting in slower but 
exact convergence. We highlight this by comparing the perfor-
mance guarantees of the primal consensus and diffusion algo-
rithms from [3], [8], and [21], although similar conclusions apply 
to other decentralized algorithms. For strongly convex costs and 
using a constant step-size construction, the asymptotic perfor-
mance of the penalty-based algorithms described in the “Task 
Relationships” section is given by [22, Example 11.8]
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The excess-risk (ER) measures the average suboptimal-
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o
k
K

1
_ -

=
/  The notation ( )o n  

denotes terms that are higher order in the step-size and hence 
negligible for sufficiently small step-sizes μ. The constants 

k
2v  correspond to the absolute gradient noise variance of (8). 

The analysis in [22] is performed for general left-stochastic 
adjacency matrices A A! <  with Perron eigenvector .Ap p=  
For symmetric-adjacency matrices, the weights reduce to 

./p K1k =  Convergence to the steady-state value occurs at 
a linear rate given by ( )o1 2a on n= - +  [22, eq. (11.139)], 
where o  denotes the strong-convexity constant of the aggre-
gate cost J(w). If we instead employ a diminishing step-size of 
the form ,/i1in =  it holds asymptotically for large i that [36]
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and hence, .lim 0ERi i ="3  At the same time, we note that 
convergence using a diminishing step-size occurs at a sublinear 
rate ,/O i1^ h  rather than the linear rate ( ( )) .O o1 2 ino n- +^ h

These remarks reflect a well-known trade-off between con-
vergence rate, asymptotic error, and tracking ability of a learning 
algorithm [8], [36], [56]. Algorithms with vanishing step-sizes 
can converge asymptotically to the exact minimizer with zero 
error, albeit at a slower rate than when constant step-sizes are 
used. In this latter case, the algorithms approach the minimizer 
at a faster exponential rate, albeit within an MSE range that is 

proportional to the step-size parameter. When this parameter is 
small, as is normally the case, this construction enables the algo-
rithm with a constant step-size to track drifts in the underlying 
parameter when the statistical properties of the data change with 
time. Often, implementations in practice may use a combination 
of vanishing and constant step-sizes. On the other hand, when 

one is interested in asymptotic convergence 
of the error to zero, then it is known from 
statistical learning theory and large-sample 
asymptotics in parameter estimation, that 
the /O i1^ h rate is optimal for statistically 
consistent online estimators (i.e., estimators 
that achieve asymptotically zero error almost 
surely), where i, the iteration count, coincides 
with or is proportional to the number of data 
points or online stochastic gradients sampled 

during the estimation process. Further, in this online scenario, 
within the class of statistically consistent estimators, the ones 
with optimal asymptotic variance, i.e., asymptotically efficient 
estimators, may be obtained by appropriately tuning the dimin-
ishing step-size sequences (see, for example, [8], [36], and [56]); 
in such scenarios the distributed estimators end up achieving the 
optimal online-centralized error rates.

Both nonvanishing and vanishing weights algorithms can 
overcome a lack of knowledge of model parameters or noise 
statistics, for example, by replacing noise mean and covariance 
by empirical sample estimates, like distributed recursive least-
squares (RLS) [9], still guaranteeing the distributed algorithm’s 
stability and error mean and covariance asymptotic optimality. 
With vanishing weights, to guarantee optimal asymptotic MSE 
in the sense of Fisher information rate, algorithm (12) should 
be augmented by a recursion for the gain of the innovations or 
data term [56] so that the agents engage on distributed learning 
to asymptotically recover the optimal gains, while simultane-
ously carrying out their distributed task with negligible asymp-
totic information rate loss.

Linear gains in performance
If we consider symmetric-adjacency matrices ,A A= <  result-
ing in / ,p K1k =  and homogeneous data profiles ,k

2 2v v=  we 
note that for both constant (33) and diminishing step-sizes (34), 
the asymptotic ER scales with ./O K2nv^ h  The scaling by the 
network size K is referred to as linear gain. It is consistent with 
the performance gains that can be expected when fusing raw 
data in a centralized architecture (see, e.g., [22, Th. 5.1]) and 
provides motivation for agents to participate in the cooperative 
learning protocol. Analogous results have been obtained for 
primal-dual algorithms [57] as well as in the pursuit of second-
order stationary points [24] in nonconvex environments.

Penalty-based and primal-dual algorithms
A motivation for considering primal-dual algorithms for decen-
tralized optimization over penalty-based construction is the re-
moval of the bias induced by employing a finite regularization 
term (10) in place of (15). When exact gradients are employed 
and no noise is added due to the use of stochastic gradient 

Algorithms with vanishing 
step-sizes can converge 
asymptotically to the exact 
minimizer with zero error, 
albeit at a slower rate than 
when constant step-sizes 
are used.
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approximations, this results in a pronounced difference in  
performance as primal-dual algorithms are able to converge 
linearly and exactly, using a constant step-size, in strongly 
convex environments [15], [16], [44], [46], [50], while penalty 
algorithms require a diminishing step-size to ensure exact con-
vergence, resulting in a sublinear rate [12].

In the stochastic setting, however, iterates are subjected 
to additional perturbations induced by the utilization of data-
dependent, stochastic gradient approximations. This causes 
the difference in performance between penalty-based and 
primal-dual algorithms to be more nuanced. 
For example, it was shown in [45] that the 
primal-dual algorithm (16) and (17) exhib-
its strictly worse performance than penalty-
based approaches, such as consensus and 
diffusion algorithms, when constant step-
sizes and stochastic gradient approximations 
are employed. This is due to the fact that the 
penalty-based algorithms exhibit lower vari-
ance in steady state, which compensates for the additional bias. 
On the other hand, stochastic variants of exact diffusion [44] 
and gradient tracking [19] have been shown analytically and 
empirically to improve upon the performance of their penalty-
based counterparts. We illustrate this by reviewing the results 
in [57] as a case study. For the diffusion algorithms, as an exam-
ple of a penalty-based algorithm, the authors derived a refined 
version of the bound (33) of the form
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The mean square deviation (MSD) of the network 
is def ined as / .wK w1MSD E ,i k
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d -smooth and o-strongly convex (·),J  it holds that  
./ /2 2MSD ER MSDi i i# #o d^ ^h h  The f i rst term in the 

per​formance expression /K2nv  corresponds to the perfor-
mance deterioration from employing stochastic gradient approxi-
mations with variance 2v  and is proportional to the step-size μ. 
This term is consistent with (33). The other two terms scale with 

2n  and quantify the interplay between the mixing rate of the 
adjacency matrix 11/A K1m t= - <^ ^ h h and the bias term 

( ) ./b K J w1 k
o

k
K2

1

2
d=

=
/  The mixing rate m  measures the 

level of connectivity of the network and is close to one whenever 
the adjacency matrix is sparse. The bias term ,b2  on the other 
hand, measures the level of heterogeneity in the network. Both 

( )O 2n  terms become negligible as ," 3n  but can be significant 
for very sparse, heterogeneous networks and moderate step-sizes.

For exact diffusion, as an example of a stochastic primal-
dual algorithm, on the other hand, we have [44], [57]

	 .lim sup O
K 1

MSD
i

i

2 2 2 2nv

m

n m v
= +

-"3

c m � (36)

We note the removal of the term / ( ) .b 12 2 2 2n m m-  As a 
result, the performance no longer depends on the heterogeneity 
b2  and has an improved dependence on the mixing rate m  

(Figure 5). A similar improved dependence on network hetero-
geneity and connectivity has been observed in pursuing first-
order stationary points of nonconvex problems as well [48].

Stability gains via incremental constructions
As we saw throughout the algorithm derivations in the “Unifica-
tion Through Stochastic Optimization” section, the derivations 
of some decentralized algorithms rely on the use of incremental 
steps, such as the ATC diffusion algorithm [3], the exact diffusion 
algorithm [44], and the Aug-DGM algorithm [49]. These variants 

incorporate incremental steps in comparison 
to the “consensus + innovation” algorithm 
[8], [12], the EXTRA algorithm [15], and 
the DIGing algorithm [50]. It turns out that 
in many cases, the incremental steps endow 
the resulting algorithms with improved ro-
bustness and stability properties, particularly 
when employing constant and uncoordinated 
step-sizes and noisy gradient approximations. 

Early evidence of this phenomenon appears in [20] and [22], 
where it was shown that diffusion strategies based on the ATC 
construction, which is incremental, enjoy a wider stability range 
than consensus-based constructions. In particular, the stability 
range for the ATC diffusion algorithm can be independent of 
the network connectivity (as long as agents are locally stable), 
while the stability range for the consensus algorithm, in general, 
depends on the mixing rate of the adjacency matrix [20], [22]. 
Analogous observations were made in [44] when comparing the 
stability range of the exact diffusion algorithm to EXTRA.

Asynchronous behavior
The stochastic gradient approximations framework described 
in the “Stochastic Gradient Approximations” section is gen-
eral enough to cover a large number of phenomena that may 
arise in the presence of asynchrony and imperfections, such 
as intermittent updates (6) or noisy links. The implications 
of these imperfections on performance follow from relations 
(33)–(36) after adjusting the gradient variance k

2v  according 
to Table 2. Another form of asynchrony, not directly covered 
within the gradient approximations framework, refers to time-
varying, intermittent communication graphs. Such asynchrony 
can be more challenging as exchanges that now occur so infre-
quently can, in principle, result in divergent behavior, particu-
larly for heterogeneous networks. Nevertheless, when properly 
designed, decentralized algorithms have been shown to be 
remarkably robust to asynchronous communication policies, 
including random [26] and deterministically time-varying pol-
icies [50]. The takeaway from these studies is that, as long as 
adjacency matrices are connected in expectation [26], or their 
union over time is connected [50], information can sufficiently 
diffuse, and agents can efficiently learn from each other.

Asymmetric combination policies
Most of our discussion thus far has focused on symmetric-
adjacency matrices .A A= <  Nevertheless, a decentralized 
algorithm for optimization and learning can also be deployed 

The mixing rate m 
measures the level of 
connectivity of the network 
and is close to one 
whenever the adjacency 
matrix is sparse.



103IEEE SIGNAL PROCESSING MAGAZINE   |   July 2023   |

with asymmetric matrices [3], [21], [22], [24], [44]. The effect 
of such constructions is that certain agents will be able to exert 
more or less influence over the behavior of the network. To be 
precise, we associate with the adjacency matrix its Perron ei-
genvector ,Ap p=  where pk  denotes the entry corresponding 
to agent k. It can then be shown that most decentralized algo-
rithms will converge to the minimizer of the weighted sum, 
i.e., ( ),w p J wo

kk

K
k1

_
=

/  where the weights pk  now modulate 
the relative influence of the cost ( )J wk  associated with agent 
k. For symmetric matrices ,A A= <  we have ,/p K1k =  and 
we recover (9). The ability of certain agents to be more or less 
influential within the network adds a degree of freedom to 
the design of a multiagent system. In heterogeneous envi-
ronments, where some agents may have access to data or gra-
dient approximations of higher quality, this can be exploited to 
improve performance or convergence rate [22]. On the other 
hand, there may be situations where such behavior is undesir-
able, and we may wish to minimize the unweighted cost (9) 

while employing asymmetric network topologies. This can be 
achieved by effectively rescaling the agent-specific step-sizes 
to compensate for the Perron weights pk  [44], [58], [59].

Federated learning
Federated learning has emerged in recent years as an umbrella 
term for architectures that involve a fusion center as well as high 
levels of asynchrony and heterogeneity. The federated setting 
can be viewed as a special case of the decentralized algorithms 
for an appropriately chosen network topologies and asynchrony 
models. As a result, many algorithms and performance guaran-
tees for federated learning can be recovered from their decen-
tralized counterparts by appropriately specializing the network 
topology. To illustrate this fact, let us consider the diffusion 
algorithm (13) and (14) with random adjacency matrix .A  The 
resulting behavior at any given agent corresponds precisely to a 
stochastic variant of the federated averaging algorithm, and the 
analysis of [26] applies. We may instead consider a deterministic 
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variant with time-varying ,Ai  where 11Ai = <  if i is a multiple 
of ,i 1o $  and A Ii =  otherwise. In this case, the arguments of 
[50] apply. This corresponds to a deterministic variant of fed-
erated averaging, where agents interlace multiple local updates 
with any round of communications. Of course, variants of these 
constructions are possible, and we refer the 
reader to [26] and [50] for details.

Conclusion
The ever-increasing need for processing sig-
nals and information available at dispersed 
locations has led to broad research efforts 
across a number of communities in the past 
two decades. In this article, we presented a 
unified view on algorithms for distributed inference and learning 
through the lens of stochastic primal and primal-dual optimiza-
tion, and surveyed some common themes in performance, such 
as the impact of learning rate, network topology, and the benefit 
of cooperation. The key takeaway from these studies is that in 
most cases, distributed solutions with appropriately designed co-
operation protocols are able to match the performance of central-
ized, fusion-center-based approaches, while offering scalability, 
robustness to node-and-link failure, communication efficiency, 
and no need for the exchange of raw data.
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