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In multidimensional signal processing, such as image and 
video processing, superresolution (SR) imaging is a classi-
cal problem. Over the past 25 years, academia and indus-

try have been interested in reconstructing high-resolution 
(HR) images from their low-resolution (LR) counterparts. 
We review the development of SR technology in this tuto-
rial article based on the evolution of key insights associ-
ated with the prior knowledge or regularization method 
from analytical representations to data-driven deep models. 
The coevolution of SR with other technical fields, such as 
autoregressive modeling, sparse coding, and deep learning, 
will be highlighted in both model-based and learning-based 
approaches. Model-based SR includes geometry-driven, 
sparsity-based, and gradient-profile priors; learning-based 
SR covers three types of neural network (NN) architectures, 
namely residual networks (ResNet), generative adversarial 
networks (GANs), and pretrained models (PTMs). Both 
model-based and learning-based SR are united by high-
lighting their limitations from the perspective of model-
data mismatch. Our new perspective allows us to maintain a 
healthy skepticism about current practice and advocate for a 
hybrid approach that combines the strengths of model-based 
and learning-based SR. We will also discuss several open 
challenges, including arbitrary-ratio, reference-based, and 
domain-specific SR.

Introduction
In image processing, SR refers to techniques that increase 
image resolution. The use of SR imaging can be implemented 
on a hardware basis (e.g., optical solutions) or on a software 
basis (e.g., digital zooming or image scaling). Software-
based (as well as computational) SR imaging approaches 
can be classified in several ways according to the assump-
tions about the relationship between LR images and HR im-
ages: single image versus multiframe, nonblind versus blind, 
fixed versus arbitrary scaling ratios, etc. In the past quarter-
century, SR techniques have evolved into two categories: 
model based (1998 to present) [2], [7], [12], [20], [31], [37] 
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and learning based (2014 to present) [4], [6], [14], [18], [19], 
[22], [27], [32], [33], [39]. Model-based approaches rely on 
mathematical models to connect LR and HR data; the main 
difference is in how the LR observation and HR image prior 
are characterized. Learning nonlinear mapping between LR 
and HR image data can be greatly facilitated by the simple 
idea of skip connections (i.e., ResNet) in learning-based ap-
proaches. Recently, researchers have focused on developing 
novel network architectures [e.g., Generative Latent Bank 
(GLEAN) [3] and nonlocal blocks [25], [34]] and applying 
them to realistic scenarios (e.g., locally discriminative learn-
ing (LDL) [21]).

These four perspectives can be used to 
justify the importance of studying SR. SR 
imaging has a wide range of applications, 
ranging from nanometer- to light-year 
scale (for example, SR microscopy won the 
Nobel Prize in Chemistry in 2014). Wat-
son and Crick’s discovery about DNA’s 
double-helix structure could become triv-
ial if SR microscopy technology reveals DNA’s detailed 
structure on a nanometer scale. In terms of technology, SR 
imaging shows how expensive hardware (i.e., optical zoom) 
can be traded for more cost-effective software (i.e., SR algo-
rithms). Single-lens reflex cameras are phasing out as SR 
technology advances, resulting in smartphone photography. 
SR imaging has also been applied to a variety of engineer-
ing systems, including Mars Curiosity and NASA’s James 
Webb Space Telescope. Last but not least, SR image recon-
struction is a class of inverse problems that have been exten-
sively studied by mathematicians. SR image reconstruction 
solutions often have profound implications for inverse 
problems, such as blind image deconvolution and medical 
image reconstruction.

There are two main motivations behind this tutorial article. 
Instead of mathematically approximating LR and HR imag-
es with nonlinear mappings : ,f X XLR HR"  SR has evolved 
to data-driven or learning-based methods of determining 
surrogate models. During the past seven years, extensive 
research has been conducted along the following two lines. 
First, skip connections and squeeze and excitation modules 
have been introduced into ResNet-like NN architectures to 
alleviate the vanishing gradient problem. Second, model-
based approaches can be leveraged to provide new insights, 
such as the importance of exploiting higher order attention 
and nonlocal dependency [4]. Model-based SR can also 
be unfolded directly into deep NNs (DNNs) [27]. In con-
trast, learning-based SR has coevolved with other fields in 
computer vision and machine learning. Using a discrimi-
native model, SRGAN intelligently separates the truth of 
the ground (real HR) from the result of the SR reconstruc-
tion (fake HR) as a result of the invention of the GAN. The 
attention mechanism has sparked interest in transformer-
based models, which have been successfully applied to SR 
(e.g., [8]). Recent advances in blind image restoration have 
renewed interest in solving the blind real-world SR problem 

with an LDL approach [21]. By simultaneously estimating 
the blur kernel and HR image, a network is unfolded to solve 
the joint optimization problem.

A systematic review of SR’s evolution over the last 
25 years is presented in this tutorial. The purpose of this 
article is not to provide a comprehensive review of image 
SR; interested readers are referred to three recent survey 
articles [1], [23], [36]. We aim to highlight the rich connec-
tions between image processing and other technical fields 
rather than focusing on a wide range of topics. SR has 
evolved with Wiener filtering, compressed sensing, and NN 

design since 1998 (the 50th anniversary of 
the IEEE Signal Processing Society). SR 
is a class of inverse problems extensively 
studied in the literature from a mathemat-
ical perspective. As a scientific concept, 
SR is related to the Rayleigh criterion, a 
limit for diffraction in optical imaging 
systems. Engineering applications of SR 
range from biomedical imaging to con-

sumer electronics. Smartphones, high-definition television 
(HDTV), remote sensing, and smart health are examples of 
SR technology in our daily lives. Following are the key new 
insights offered in this tutorial in addition to the scientific 
challenges and key milestones of SR:

■■ The first is a selective review of SR milestones in the past 
25 years with an emphasis on theoretical insights: i.e., how 
can missing high-frequency information be approximated 
or recovered?

■■ The second is a healthy skepticism toward well-cited 
SR algorithms. To illustrate progress in both model-
based and learning-based approaches, we will highlight 
failure examples.

■■ Three open challenges have been selected in the field 
of SR image reconstruction: arbitrary-ratio, refer-
ence-based, and domain-specific SR. We will discuss 
the current state of the art and future directions for 
each challenge.

Problem formulation

Observation model
Generally speaking, the problem of single-image SR (SISR) 
refers to the reconstruction of an HR image from its cor-
responding LR observation [refer to Figure 1(a)]. For a lay-
person, SISR is widely known as digital zoom, which is in 
contrast to optical zoom. Digital zoom and optical zoom 
represent software- and hardware-based approaches to en-
hance the resolution of digital images; the latter is often 
conceived as the upper bound for the former when optical 
imaging systems operate within the diffraction limit. From 
a computational imaging perspective, SISR or digital zoom 
represents a cost-effective approximation of optical zoom. 
Closing the gap between software-based and hardware-
based approaches has been the holy grail of SR technology 
in the past 25 years.

SR imaging has also been 
applied to a variety of 
engineering systems, 
including Mars Curiosity 
and NASA’s James Webb 
Space Telescope.



56 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2023   |

We note that the SISR problem formulation has made 
several simplified assumptions to make it technically more 
tractable. Depending on the assumption, with the LR obser-
vation model, we can formulate the SISR into image interpo-
lation where LR Y is simply a decimated version of HR X, as 
shown in Figure 1(b), or SR image reconstruction where LR 
is obtained from HR by several operators (e.g., warping, blur, 
and downsampling), as shown in Figure 1(c). When the deg-
radation is unknown (i.e., the so-called blind or real-world 
scenario), the problem of SISR is more 
challenging than its nonblind formulation 
(i.e., with complete knowledge of the LR 
observation model). Blind or real-world 
SISR [23] is one of the frontiers of SR 
research these days.

In the framework of Bayesian infer-
ence, a maximum a posteriori (MAP) 
estimation of an HR image X from its 
version of the LR observation Y can be formulated as 

( | ) ( | ) ( )argmax argmaxX Y Y X XP P P.  using the Bayesian 
formula. The LR observation model deals with the likelihood 
term ( | )Y XP  that characterizes the degradation process of 
the LR image acquisition. For example, one might start with a 
parametric observation model ,Y nDH= +X  where D and H 
denote downsampling/blurring operators, respectively, and n 
is additive noise. Note that the image interpolation problem is 
a special case with H, n being skipped; spatially invariant blur 
H is already an oversimplified abstraction of image degrada-
tion in the real world. In the meantime, the source of additive 
noise n can be sensor related (e.g., shot noise in a raw color 
filter array) or transmission related (e.g., image compression 
artifacts). In the formulation of blind problems, the blurring 

kernel H is unknown and even spatially varying; therefore, we 
have to address the problem of estimating the blurring kernel 
and reconstructing the HR image simultaneously.

Image prior
The key technical challenge of SISR lies in the construction of 
an image prior ( )XP  (as well as the regularization functional 
in the literature of image restoration and inverse problems) 
[28]. During the past 25 years, the effort devoted to image 

prior construction can be classified into 
two paradigms: model based (1998 to pres-
ent) and learning based (2014 to present). 
In the paradigm of model-based SR, the 
unifying theme is to construct mathemati-
cal models (e.g., geometry driven, sparsity 
based, or gradient domain) for the class of 
HR images. In the paradigm of learning-
based SR, the common objective is to learn 

a nonlinear mapping [e.g., NNs consisting of several building 
blocks such as convolution and max-pooling layers, rectified 
linear unit (ReLU), and batch normalization modules] from 
the space of LR images to that of HR images. The paradigm 
shift from model based to learning based is catalyzed by rapid 
advances in data science (e.g., the large-scale collection of 
training data such as ImageNet) and deep learning (i.e., the 
replacement of Moore’s law for CPU acceleration by Huang’s 
law for GPU acceleration). (Huang’s law is an observation in 
computer science and engineering that advancements in GPUs 
are growing at a rate much faster than with traditional CPUs.) 

Image prior/regularizer construction or learning repre-
sents the state of the art in developing analytical or numeri-
cal representations to explain intensity distributions in images, 

LR

LR

LR

SR

HR

HR

C
on

v

D

(b)

(c)
(a)

D*

C
on

v

C
on

vA
B

L

R
es

B
lo

ck

R
es

B
lo

ck

HR

FIGURE 1. The problem formulation of SISR. (a) The abstract relationship between LR and HR from the pinhole imaging model. (b) A simplified SISR 
formulation (model-based image interpolation), where LR is a decimated version of HR. (c) Degradation modeling for more accurate characterization of 
LR observation from HR (learning-based image SR). 

From a computational 
imaging perspective, 
SISR or digital zoom 
represents a cost-effective 
approximation of  
optical zoom. 
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regardless of the model- or learning-based paradigm. Wavelet, 
partial differential equations, Markov random fields, and NNs 
serve only as tools to communicate ideas abstracted from the 
physical properties of visual information. Such abstraction, 
generative or discriminative, allows us to handle a wide range 
of image data regardless of their semantic contents (e.g., bio-
metrics or surveillance), acquisition conditions (e.g., camera 
distance and illumination), or physical origins (e.g., optical 
sensors versus MRI scanners).

Model-based SR: From edge directed  
to sparsity based
In this section, we review model-based SR based on geom-
etry-driven, sparsity-based, and gradient-profile priors that 
were developed during the first decade of the new millen-
nium. They are constructed from varying 
insights about the prior knowledge of un-
known HR images.

Adaptive image interpolation via 
geometric invariance
In the simplified image interpolation situation, LR pixels cor-
respond directly to the decimated version of HR, as shown 
in Figure 2. For a scaling factor of two, the task of image 
interpolation boils down to guessing the missing pixels that 
occupy three-quarters of the spatial locations. The new 
edge-directed interpolation (NEDI) [20] extends the classic 
Wiener filtering [mathematically equivalent to least-square 
(LS) estimation] from prediction to interpolation. As shown 
in Figure 2, missing pixels as unknown HR sampling loca-
tions are denoted by yellow dots. Each yellow pixel (labeled 
“0”) must be predicted from the linear combination of its four 
surrounding black pixels (labeled as “1” to “4”). Wiener fil-
tering or LS-based estimation of weighting coefficients re-
quires the calculation of local covariance at the HR (marked 
by solid lines with different colors), which is infeasible due 
to the missing yellow pixels. Based on the observation that 
edge orientation is scale invariant, NEDI calculates the local 
covariances at the LR (marked by dashed lines with different 
colors) and uses them as the surrogate covariance to drive the 
derivation of LS-based estimation at the HR.

The effectiveness of NEDI can be interpreted from the 
following perspectives. First, local geometric information on 
the direction of the edge can be viewed as being implicitly 
embedded in the four linear weights in the LS formula. Such 
an implicit exploitation of the geometry-related prior (i.e., the 
scale-invariant property of edge orientation) makes the NEDI 
model a good fit for an arbitrarily oriented edge. Second, there 
is an elegant duality between step 1 and step 2 of NEDI imple-
mentation—they are geometrically isomorphic (up to a rota-
tion by 45° clockwise). Note that the pixels interpolated from 
step 1 will be treated the same as the given LR (i.e., yellow 
pixels in step 1 become black ones in step 2). Such geometric 
duality demonstrates the potential of quincunx sampling as 
an improved strategy to hierarchically organize visual infor-
mation compared to conventional raster sampling. (Quincunx 

is a geometric pattern consisting of five points arranged in a 
cross, with four of them forming a square or rectangle and a 
fifth at its center.)

The limitations of NEDI are summarized next. First, 
NEDI is a localized model that ignores the nonlocal depen-
dency within the natural images. Second, the geometry-relat-
ed prior exploited by NEDI matches only a certain class of 
image structures. For example, edge-directed insight is not 
applicable to irregular texture patterns whose local statis-
tics are more sophisticated and violate the scale-invariant 
assumption. Third, the two-step implementation of NEDI 
is open loop, ignoring the issue of possible inconsistency 
between adjacent windows. A closed-loop optimization of 
LS-based autoregressive models was later studied in the lit-
erature (e.g., [38]).

Image SR via sparse coding
The birth of compressed sensing theory 
around 2006 has inspired many novel ap-
plications of sparse representations, in-
cluding SISR. A key observation obtained 

from the theory of sparse coding or compressed sensing is 
that image patches can be decomposed into a sparse linear 
combination of elements from an overcomplete dictionary. 
Such observations suggest that the sparse representation can 
be faithfully recovered from the downsampled signals under 
mild conditions (the theoretical foundation for SR image re-
construction). In [37], a sparse coding-based approach to SR 
is developed by jointly training two dictionaries for the LR 
and HR image patches. Unlike geometry-driven NEDI, the 
new insight is to enforce the similarity of sparse representa-
tions between the LR and HR image patch pairs with respect 
to their own dictionaries. Along this line of reasoning, the 
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FIGURE 2. A geometric invariance property exploited by model-based SR, 
such as NEDI [20]. On the basis of the observation that edge orienta-
tion is scale invariant, we can replace the fine-scale correlation (marked 
by solid lines) with their coarse-scale counterparts (marked by dashed 
lines). In other words, a multiscale extension of classic Wiener filtering 
was at the core of NEDI to adapt the interpolation based on the local co-
variance estimates (implicitly conveying the information about local edge 
direction). Note that the correspondence between the LR and HR pixel 
pairs is marked by different colors, and step 2 is isomorphic to step 1 (up 
to the rotation of 45° clockwise). (a) Step 1 of NEDI. (b) Step 2 of NEDI.

Blind or real-world SISR is 
one of the frontiers of SR 
research these days.
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sparse representation of an LR image patch can be used as a 
surrogate model for the HR image patch dictionary to gener-
ate an HR image patch. As shown in Figure 3, the learned 
dictionary pair is a more compact representation of the image 
patch pairs, substantially reducing the computational cost. 
Further development along this line of research includes an 
adaptive selection of the sparse domain and nonlocal exten-
sion, as presented in [7].

The performance of SR via sparse rep-
resentations is tightly coupled with the 
quality of the training dataset used for dic-
tionary learning. The selection of the patch 
size and the optimal dictionary size for SR 
image reconstruction remain open issues 
to address. For example, a special diction-
ary was learned for face hallucination in 
[37]; can we generalize such a result to other specific appli-
cation domains? Algorithm 1 [Figure 3(b)] uses an initial 
SR X0  as the stepping stone; can a related reference image 
refine such an estimate? Furthermore, the observation model 
in problem formulation assumes a fixed scaling factor. A dif-
ferent dictionary needs to be trained for a different scaling 
factor. These weaknesses will be addressed in the three open 
problems later.

Image SR via gradient profile prior
Gradient-domain image processing, also known as Poisson 
image editing, deals with image gradients rather than original 
intensity values. The mathematical foundation of gradient-
domain image processing is the numerical solution to the 
Poisson equation. Conceptually, the horizontal and vertical 
gradient fields can be viewed as a redundant representation 

of the original image (each pixel is associated with a pair 
of gradients). Image reconstruction from gradient profiles 
can be interpreted as a nontrivial back-projection operation 
from the gradient space to the image space. In the context 
of gradient-domain image processing, we can address the 
problem of SISR by prioritizing gradient profiles instead of 
intensity values, as shown in Figure 4.

The key observation behind the gradi-
ent profile prior (GPP) is that the sharpness 
of natural images can be characterized by 
a parametric model such as a generalized 
exponential distribution. To impose such 
an image prior, it is possible to design a 
gradient-field transformation, as shown on 
the right of Figure 4. The role of the gra-
dient transform is to match the distribu-

tion of gradient fields between the target and the observed 
images. The transformed gradient field is then used to recon-
struct the enhanced images. In this way, the objective of the 
SR image reconstruction is achieved in the gradient domain. 
Similar to other geometry-driven priors (e.g., total-variation 
models), the performance of the GPP often degrades for the 
class of texture images.

Learning-based SR: Evolution of NN architectures
A rise in deep learning can be seen in 2015. SR via convolu-
tional NN (SRCNN) [5] represented a pioneering work in deep 
learning-based SR, as shown in Figure 5. Since then, there has 
been an explosion of literature related to learning-based SR. 
Due to space limitations, we have to selectively review the 
most representative work from the perspective of the evolution 
of network architectures.

LR
Sparse Coding

HR

Dictionary Learning

(b)

(a)

Training Data

Algorithm 1 (SR Via Sparse Representation).

1: Input: training dictionaries Dh and Dl, a
    low-resolution image Y.
2: For each 3 × 3 patch y of Y. taken starting from the

upper-left corner with 1 pixel overlap in each direction,
•  Compute the mean pixel value m of patch y.
•  Solve the optimization problem with D and y.

defined in (8): minαDα – y2

•  Generate the high-resolution patch x = Dhα*. Put
the patch x + m into a high-resolution image X0.

3: End
4: Using gradient descent, find the closest image to X0

which satisfies the reconstruction constraint

X * = arg minSHX – Y2 + cX – X02

5: Output: SR image X *.

~~

~~ + λα1.
2

X

2 2
.

FIGURE 3. (a) and (b) SISR via sparse representation [37]. The key idea is to enforce the similarity of sparse representations between the LR and HR  
image patches with respect to their own dictionaries. 

The birth of compressed 
sensing theory around 
2006 has inspired many 
novel applications of 
sparse representations, 
including SISR.
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SR image reconstruction via residue refinement
The first category is inspired by the celebrated ResNet ar-
chitecture. The simple yet elegant idea behind ResNet is to 
alleviate the notorious vanishing gradient problem via skip 
connections (mathematically equivalent to predictive cod-
ing). This idea is naturally consistent with the objective of SR 
image reconstruction because missing high-frequency infor-
mation can be interpreted as residue signals, the target of non-
linear mapping, as shown in Figure 5(a). If 
we make an analogy between traffic flow 
(from source to destination) and informa-
tion flow (from input to output), the con-
struction of the network architecture for 
SISR shares an objective similar to that of 
the transportation network. The common 
objective is to maximize the flow capacity of a transporta-
tion network or the amount of residue information in an image 
reconstruction network.

Many well-cited papers have been published under the 
framework mentioned previously, as shown in Figure 5(b). 
Early work such as the deep recursive 
convolutional network (DRCN) [17], 
the deep recursive residual network 
(DRRN) [32], the enhanced deep SR 
network (EDSR) [22], and the Lapla-
cian pyramid SR network (LapSRN) 
[18] focused on the construction of 
network architectures to facilitate the 
prediction of high-frequency residu-
als (e.g., via recurrent layers [17], [32] 
and multiscale decomposition [18], 
[22]). This line of research was fur-
ther enhanced by the introduction of 
the squeeze and excitation module 
in residual channel attention net-
works (RCANs) [39] and residual 
dense networks (RDNs) [40]. Other 
improvements include considering the 
error feedback mechanism in deep 
back-projection networks (DBPNs) [14] 
and higher order attention mechanisms 
such as the second-order attention net-
work (SAN) [4].

There are two open questions relat-
ed to the construction of ResNet-
inspired SR networks. First, what is 
the fundamental limit of this resid-
ual refinement strategy? An improved 
theoretical understanding of what can 
be learned (i.e., what missing high-
frequency information can be recov-
ered?) will offer valuable guidance to 
the design of a high-order attention 
mechanism in DNNs. The latest work 
on iterative refinement with denoising 
diffusion probabilistic models [15], 

[29] contains some promising results. The second is related 
to the interpretability of the network design. From a prac-
tical perspective, a transparent design is expected to help 
strike an improved tradeoff between cost and performance. 
In our recent work [27], we have presented a model-guided 
deep unfolding network (MoG-DUN) implementation, which 
achieves an improved tradeoff between the performance of 
the SR reconstruction [measured by the peak signal-to-noise 

ratio (PSNR) values] and the cost (mea-
sured by the number of parameters).

Perceptual optimization  
via adversarial learning
The second category is inspired by the 
influential GAN architecture. In the pio-

neering work of SRGAN [19], the objective of perceptual op-
timization was achieved by introducing an adversarial loss, 
which pushes the superresolved image closer to the manifold 
of natural images. In SRGAN, as shown in Figure  6(a), a 
dedicated discriminator network is trained to differentiate 
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SR via convolutional NN 
represented a pioneering 
work in deep learning-
based SR. 
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between superresolved images (the fake sample) and origi-
nal photorealistic images (the real sample). Note that ideas 
inspired by ResNet, such as residual-in-residual dense block, 
have also been incorporated into SRGAN, further improving 
the performance of adversarial learning. Other ideas, such 
as relativistic GAN and improved perceptual loss, have also 
shown impressive performance improvements in enhanced 
SRGAN (ESRGAN) [35]).

In the context of perceptual optimization, the most con-
troversial issue will be the compromise between improving 
the details of the image and avoiding the generation of arti-
facts [21]. Differentiating between texture-like signals and 
artifact-like noise requires the sophisticated modeling of 
visual perception by a human vision system. LDL [21] rep-
resents the first step toward explicitly discriminating visual 
artifacts from realistic details. However, LDL requires an 

HR image as a reference during the discrimination pro-
cess; how to relax such a requirement (e.g., using a related 
HR image as a reference) is an interesting topic worthy of 
further study.

Large-factor SISR via PTMs
More recently, PTMs such as StyleGAN have been proposed 
as a latent bank to improve the restoration quality of large-
factor image SR (e.g., PULSE [26]). Unlike existing SISR ap-
proaches that attempt to generate realistic textures through 
adversarial learning, Generative Latent Bank (GLEAN) [3] 
made a significant departure by directly leveraging rich and 
diverse priors encapsulated in a PTM. GLEAN also differs 
from the prevalent GAN inversion methods that require ex-
pensive image-specific optimization at runtime because it 
needs only a single forward pass to generate the SR image. 
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FIGURE 5. Learning-based SR. (a) An early attempt, such as SRCNN [5], learns a nonlinear mapping from the space of LR images to HR images.  
(b) The latest advances achieve SR via U-Net-based iterative residue refinement using denoising diffusion probabilistic models [29].  
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As shown in Figure 7, GLEAN can be easily incorporated 
into a simple encoder-bank-decoder architecture with multi-
resolution skip connections, making it versatile with images 
from various categories.

Despite the impressive performance achieved by GLEAN 
(e.g., as much as 5 dB of PSNR improvement over PULSE on 
certain classes of images), it still suffers from two fundamental 

limitations. First, the performance of GLEAN on real-world 
LR images has remained poor due to a strong assumption with 
paired training data. In a real-world scenario, SISR is blind 
because only unpaired LR and HR images are available for 
training. Degradation learning plays an equally important 
role in prior learning. How to jointly optimize the interacting 
components of degradation and prior learning in a Bayesian 
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framework is the key to the next milestone in realistic SR. 
Recent work has reported some initial success along this line 
of research [23]. Second, the generality of the GLEAN model 
made it suboptimal for a specific class of images (e.g., human 
faces). It is possible to design a more powerful and optimized 
generative prior for face images alone (e.g., generative face 
prior GFP-GAN).

Most recently, denoising diffusion probabilistic models 
[15] have been successfully applied to perform SR through 
a stochastic iterative denoising process in SR3 [29]. The key 
idea behind SR3 is to iteratively refine the reconstructed HR 
images by a U-Net architecture trained on denoising at vari-
ous noise levels and conditioned on the LR input image. SR3 
has demonstrated strong SR performance at varying magni-
fication factors and diverse image contents. Additional latest 
advances are the extension of SISR to blind SR through a joint 
MAP formulation in KULNet [9] and deep constrained least 
squares (DCLS) [24]. To estimate the unknown kernel and 
HR image simultaneously, KULNet introduces uncertainty 
learning in the latent space to facilitate the estimation of the 
blur kernel. The joint MAP estimator was unfolded into a 
deep CNN-based implementation with a learned Laplacian 
scale mixture prior and the estimated kernel. DCLS reformu-
lates the degradation model so that the deblurring kernel esti-
mation can be transferred into the space of LR images. The 
reconstructed feature and the LR image feature are jointly 
fed into a dual-path structured SR network and restore the 
final HR image.

Open problems: Arbitrary-ratio SR, reference-based 
SR, and domain-specific SR
Despite the rapid progress of SR in the last 25 years, there 
are still many open problems in the field. From the signal 
processing perspective, we have handpicked the three most 
significant challenges based on their potential impact in 

real-world applications. In this section, we will discuss why 
they are important and what the promising attacks are.

Arbitrary-ratio SR: Beyond integer factors
Most articles published in the literature on SISR have con-
sidered only integer factors (e.g., , ,2 3 4# # # ). Such integer-
factor constraints are simplified situations that make it easier 
to develop SISR algorithms. In practice, digital zooming of-
ten requires noninteger scenarios, e.g., upsampling a 640 # 
480 image to 1,024 # 768 will require a fractional factor of 

/ .8 5  Meta-SR [16] is one of few methods that can deal with an 
arbitrary scaling ratio r (Figure 8). In this method, local pro-
jection, weighted prediction, and feature mapping are jointly 
exploited to implement the noninteger meta-upscale module 
r. Note that such meta-upscale modules with fractional ratios 
offer an intellectually appealing alternative to integer-factor 
upscaling, e.g., / / / / .2 8 7 7 6 6 5 5 4# # #=  Therefore, a par-
ticularly promising direction to work with small fractional 
factors r 2 1 is the exploitation of local self-similarity (LSS), 
as advocated in [11].

There are several open questions related to the develop-
ment of meta-upscale modules. First, the training dataset is 
obtained by bicubic resampling of popular DIV2K images 
(available at https://data.vision.ee.ethz.ch/cvl/DIV2K/). It 
is desirable to collect a more realistic training dataset by 
varying the focal length of a digital camera. We believe 
that the ultimate objective of arbitrary-ratio SR is to pro-
vide a cost-effective solution to optical zoom. Second, the 
design of local projection, weighted prediction, and feature 
mapping can be optimized end to end. For example, if we 
consider the dual operator of meta-upscale ( / ),f m n  name-
ly meta-downscale ( / ),g f n m=  the concatenation of f and 
g should become an identity operator [16]. Third, natural 
images are characterized by LSS, as shown in [11]. Such an 
LSS is best preserved for factors close to unity (( / )m n 1" ). 
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The question of how to exploit LSS using nonlocal NNs [34] 
is a fascinating topic.

Reference-based SR via knowledge distillation
Since SISR is an ill-posed inverse problem, it is generally 
challenging to accurately reconstruct the missing high-
frequency details of the unknown HR images from LR 
observation. A more plausible approach to recover missing 
high-frequency details is to “borrow” them from a reference 
HR image with similar content. With additional help from 
the reference image, this class of reference-based SR (Ref-
SR), as well as guided image SR [42], has the potential to 

overcome the fundamental limitations of SISR. A different 
perspective is to view RefSR as a constrained formulation of 
example-based SR; instead of working with a whole dataset, 
we aim at utilizing the most relevant reference (containing 
similar content) to generate rich textures. The key techni-
cal challenge is how to pass on the missing high-frequency 
details from the teacher (reference HR image) to the student 
(reconstructed SR image).

Similarity Search and Extraction Network (SSEN) [30] 
represents an example solution to RefSR based on knowl-
edge distillation. As shown in Figure 9, SSEN uses a Sia-
mese network with shared parameters as the backbone of the 

X2.0
X1.5

LR

X2.5
X3.0

X3.5

X4.0

X2.0
X1.5

LR

X2.5
X3.0

X3.5

X4 0

FIGURE 8. SISR with an arbitrary scaling ratio [16]. Note that in real-world applications, the magnification ratio is often not an integer but some 
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teacher-student network. Inspired by the feature alignment 
capability of deformable convolution, RefSR can be formu-
lated as an integrative reconstruction process of matching 
similar contents between input and reference features and 
extracting the reference features (distilled knowledge) in 
aligned form. Since similar patches can occur at different 
scales, a multiscale search with a progressively larger recep-
tive field can be achieved by stacking deformable convolu-
tion layers. The combination of a multiscale structure with 
nonlocal blocks makes it convenient to estimate the offsets 
for deformable convolution kernels. Note that SSEN can also 
take the input LR image as a self-reference, which is concep-
tually similar to the idea of self-similarity-
based SISR [13].

One of the open challenges in RefSR is 
the selection of a suitable reference image. 
Dual-camera zoom in modern smartphone 
design offers a natural choice in that a pair 
of images, with different zoomed observa-
tions, can be acquired simultaneously. The one with more 
zoom (telephoto) can serve as a reference for the other with 
less zoom (short focus). Such a problem formulation of RefSR 
admits a self-supervised learning-based solution because 
telephoto, with proper alignment, serves as a self-supervi-
sion reference for a digital zoom of short focus. Another 
closely related extension of RefSR is from image based to 
video based. With adjacent frames available, video-based 
SR faces the challenge of fusing relevant information from 
multiple reference images. How to jointly optimize the inter-
action between image alignment and SR reconstruction has 
remained an under-researched topic.

Domain-specific SR: Connecting domain  
knowledge with network architecture
The last category for which SR is likely to attract increasing 
attention is computational imaging in physical and biological 
sciences. SR imaging is the key to enhancing mankind’s vision 
capability at extreme scales (e.g., nanometers and light years) 
by breaking the barrier in the physical world. From micros-
copy to astronomical imaging, domain-specific SR includes a 
class of customized design challenges where SR imaging has 

to be jointly optimized with the imaging modality and for spe-
cific applications. The central question is how to incorporate 
domain knowledge (related to the object of interest or the im-
aging modality itself) into domain-specific SR algorithms.

SR microscopy is best known for winning the 2014 Nobel 
Prize in Chemistry. The development of superresolved fluo-
rescence microscopy overcomes the barrier of diffraction 
limits and brings optical microscopy into the nanodimen-
sion. SR microscopy has become an indispensable tool for 
understanding biological functions at the molecular level in 
the biomedical research community. One can imagine that the 
great discovery (the double-helix structure of DNA) made by 

Watson and Crick indirectly using an XRD 
image would have been almost straightfor-
ward if we could directly observe the DNA 
structure at nanometer scales. From the 
signal processing perspective, one of the 
emerging opportunities is multiframe SR 
image reconstruction [10]. To break the dif-

fraction limit, one can utilize fluorescent probes that switch 
between active and inactive states so that only a small optical-
ly resolvable fraction of the fluorophores is detected in every 
snapshot. Such a stochastic excitation strategy ensures that the 
positions of the active sites can be determined with high pre-
cision from the center positions of the fluorescent spots. With 
multiple snapshots of the sample, each capturing a random 
subset of the object, a final SR image can be reconstructed 
from the accumulated positions.

Astronomical imaging is another promising domain on the 
other scale of physics (distances measured by light years) where 
SR has great potential in practice. In 2019, for the first time, 
mankind obtained a photo of a black hole [see Figure 10(a)] 
that was captured by the Event Horizon Telescope. Due to the 
far distance, it is not trivial to peek at the supermassive black 
hole in the M87 galaxy, which is 6.5 billion times larger than 
our sun. The new launch of the James Webb Telescope has 
equipped humans with unprecedented capabilities to probe 
deep space. However, SR techniques, if cleverly combined with 
optical hardware, can further break the fundamental limit of 
physical laws (conceptually similar to the microscopic world). 
Computational imaging techniques such as SR still have much 

LR Image

(b)(a)

Superresolved Image

FIGURE 10. Domain-specific SR for astronomical imaging. (a) The first photo of a black hole captured by the Event Horizon Telescope. (b) SR image 
reconstruction from burst imaging (joint optimization of registration and reconstruction will be needed to suppress undesirable artifacts). 
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to offer to transform the practice of observing deep space from 
Earth. Figure 10(b) illustrates an emerging concept called 
burst imaging. By trading space with time, one can improve 
the spatial resolution of an image by combining the informa-
tion acquired from multiple timings.

Conclusion
In this article, we review the evolution of SR technology in 
the last 25 years from model-based to learning-based SISR. 
A priori knowledge about HR images, representing the ab-
straction of 2D data, can be incorporated into the regular-
ization functional in analytical models or loss functions in 
NNs. Model-based approaches enjoy the benefit of excellent 
interpretability but suffer from the limitation of a potential 
mismatch with real-world data. As G. Box once said, “All 
models are wrong; some of them are useful.” On the contrary, 
learning-based approaches are conceptually closer to the data 
(but there is still a potential mismatch between training and 
test data) at the sacrifice of transparency. Perhaps a hybrid 
approach, combining the strengths of model-based and learn-
ing-based paradigms (e.g., [41]), can achieve both good gener-
alization and interpretability.

Looking ahead, what will we see in the next 25 years? 
Bayesian deep learning provides a new theoretical framework 
for quantifying various uncertainty factors in deep learning 
models. By unfolding Bayesian iterative optimization into 
a DNN-based implementation, we can achieve a principled 
approach to model and estimate uncertainty for learning-based 
SR. On the application end, we can foresee that SR technology 
will reach a higher impact in computational imaging by find-
ing novel applications from the two extreme scales, nanometers 
and light years. Because most of the information processed by 
the human brain is visual, we expect that SR imaging will con-
tinue to be a key enabling technology in human adventures to 
the unexplored territories in biological and physical sciences.
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