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Radar and communications (R&C) as key utilities of electro-
magnetic (EM) waves have fundamentally shaped human 
society and triggered the modern information age. Although 

R&C had been historically progressing separately, in recent de-
cades, they have been converging toward integration, forming 
integrated sensing and communication (ISAC) systems, giving 
rise to new highly desirable capabilities in next-generation wire-
less networks and future radars. To better understand the essence 
of ISAC, this article provides a systematic overview of the his-
torical development of R&C from a signal processing (SP) per-
spective. We first interpret the duality between R&C as signals 
and systems, followed by an introduction of their fundamental 
principles. We then elaborate on the two main trends in their 
technological evolution, namely, the increase of frequencies and 
bandwidths and the expansion of antenna arrays. We then show 
how the intertwined narratives of R&C evolved into ISAC and 
discuss the resultant SP framework. Finally, we overview future 
research directions in this field.

Introduction

Background and motivation
Since the 20th century, the development of human civilization 
has relied largely upon the exploitation of EM waves. Governed 
by Maxwell’s equations, EM waves are capable of traveling 
over large distances at the speed of light, which makes them a 
perfect information carrier. In general, one may leverage EM 
waves to acquire information on physical targets, including 
range, velocity, and angle, and to efficiently deliver artificial 
information, e.g., texts, voices, images, and videos, from one 
point to another. Among many applications, EM waves have 
enabled information acquisition and delivery, which form the 
foundation of our modern information era and have given rise 
to the proliferation of R&C technologies.

While the existence of EM waves was theoretically predict-
ed by Maxwell in 1865 and experimentally verified by Hertz 
in 1887, the waves’ capability of carrying information to travel 
long distances was not validated until Marconi’s transatlantic 
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wireless experiment in 1901 [1]. The successful reception of 
the first transatlantic radio signal marked the beginning of the 
great information era. From then on, communication technol-
ogy rapidly grew thanks to the heavy demand for intelligence, 
intercept, and cryptography technologies during the two world 
wars. It is generally difficult to identify a precise date for the 
birth of radar. Some of the early records show that the German 
inventor Christian Hülsmeyer was able to use radio signals to 
detect distant metallic objects as early as 1904. In 1915, the 
British radar pioneer Robert Watson Watt employed radio sig-
nals to detect thunderstorms and lightning. The R&D of mod-
ern radar systems was not carried out until the mid-1930s. The 
term radar was first used by the U.S. Navy as an acronym for 
“radio detection and ranging” in 1939.

Despite the fact that both technologies originated from the 
discoveries of Maxwell and Hertz, R&C have been largely 
treated as two separate research fields, due to different con-
straints in their respective applications, and were therefore 
independently investigated and developed for decades. His-
torically, the technological evolution of R&C follows two main 
trends: 1) from low frequencies to higher frequencies and larger 
bandwidths [2] and 2) from single-antenna to multiantenna and 
even massive antenna arrays [3], [4]. With recent developments, 
the combined use of large antenna arrays and millimeter-wave 
(mm-wave)/terahertz (THz) band signals results in striking 
similarities among R&C systems in terms of hardware archi-
tecture, channel characteristics, and SP methods. Hence, the 
boundary between R&C is becoming blurred, and hardware 
and spectrum convergence has led to a design paradigm shift, 
where the two systems can be codesigned for efficiently uti-
lizing resources, offering tunable tradeoffs and unprecedented 
synergies for mutual benefits. This line of research is typically 
referred to as ISAC, and is applicable in numerous emerg-
ing areas, including vehicular networks, Internet of Things 
(IoT) networks, and activity recognition [5], [6]. Over the past 
decade, ISAC has been well recognized as a key enabling tech-
nology for both next-generation wireless networks and radar 
systems [5]. Given the potential of ISAC, a deeper understand-
ing of the various connections and distinctions between R&C, 
and learning from how they evolved from separation to inte-
gration, is important for inspiring future research.

In Figure 1 we summarize key milestones achieved in 
R&C history, which are split into four categories with differ-
ent markers, namely, the individual R&C technologies, general 
technologies that are useful for both, and ISAC technologies. 
In the remainder of the article, we discuss how these key tech-
niques facilitate the development of R&C and ISAC systems.

Summary and organization of the article
In this article, we provide a systematic overview of the develop-
ment and key milestones achieved in the history of R&C from an 
SP perspective. We commence by introducing the fundamental 
principles and SP theories of both R&C. We then present the spec-
trum engineering of R&C, namely, from narrowband to wideband 
and from single-carrier to multicarrier systems. Furthermore, we 
elaborate on the expansion of R&C systems’ antenna arrays, i.e., FI
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from single-antenna systems to phased arrays and from multiple-
input, multiple-output (MIMO) to massive MIMO (mMIMO) 
and distributed antenna systems. Following the two technological 
trends, the paths of R&C eventually move from separation to inte-
gration and give rise to the ISAC technology, 
which motivates the detailed discussion on 
the SP framework of ISAC. Finally, we sum-
marize the article and identify future research 
directions.

Fundamentals of radar and 
communications

Basic principles: A signals and  
systems perspective
The basic system setting for both R&C 
consists of three parts: a transmitter (Tx), which produces EM 
waves; a channel, over which EM waves propagate; and a re-
ceiver (Rx), which receives EM waves distorted by the channel. 
While communication Txs and Rxs are usually well separated, 
radar Txs and Rxs may be either colocated or separately posi-
tioned, leading to monostatic and bistatic radar settings, respec-
tively. In more complicated scenarios, multiple Txs and Rxs may 
be involved in both applications, which correspond to multiuser 
communications and multistatic radar systems.

It is often convenient to represent EM waves by the electri-
cal field intensity as a complex signal as a function of time t. 
The core tasks for R&C can then be defined as

 ■ Information acquisition for radar: The aim here is to 
extract target information embedded in the received signal, 
given knowledge of the transmit signal.

 ■ Information delivery for communications: The aim here is to 
recover useful information contained in the transmit signal at the 
communication Rx, with knowledge of the channel response.
By denoting the signals at the Tx and Rx at time t as s t^ h 

and ,y t^ h  respectively, the propagation of the signal within 
the channel can be modeled as a mapping from its input s t^ h 
to the output .y t^ h  Ideally, if the noise and disturbance are 
not considered, such a mapping is linear due to the physical 
nature of EM fields and waves and, equivalently, owing to the 
linearity of Maxwell’s equations. Furthermore, if the chan-
nel characteristics remain unchanged within a certain time 
period, the mapping can be approximated as a linear time-
invariant system characterized by its impulse response .h t^ h  
Thus, the linear mapping is expressed as a convolution integral 

.y t s h t)=^ ^ ^h h h  While the signaling pulses may be of dif-
ferent forms for R&C, we suppose that a Nyquist pulse is lev-
eraged such that s t^ h is substantially time limited on a finite 
interval , .T T-6 @  Therefore, a signal can be sampled in a nearly 
lossless manner after passing through the pulse shaping filter 
at the Rx, expressed as a convolution sum y n s h n)=^ ^ ^h h h  
at the nth sampling point. Let , ,s N s Ns Tf= -^ ^h h6 @  be the 
Tx signal, with length ; , ,N h h P2 1 0 1h Tf+ = -^ ^h h6 @  
be the channel impulse response, with length P; and 

, ,y N y N P 1y Tf= - + -^ ^h h6 @  be the Rx signal, with length 
.N P2 +  Then, the convolution can be recast as ,y Hs=  where 

ToepH h C N P N2 2 1!= #+ +^ ^ ^h h h is a Toeplitz matrix, with the 
nth column being , , .0 h 0n

T T
N n

T T
1 2 1- - +6 @  Alternatively, one may 

express y as y Sh=  by the commutative property of the con-
volution sum, where .ToepS s C N P P2!= #+^ ^h h

The preceding duality between inter-
changeable signals and systems implies an 
interesting connection between R&C. From 
the communication perspective, the process 
of the Tx signal passing through a chan-
nel may be viewed as a linear transform H 
applied to s, with the communication task 
being to recover the information embedded 
in s by receiving y. From the radar perspec-
tive, the sensing task is to recover the target 
parameters embedded in h, which is viewed 
as an input “signal,” by observing y, which 

is viewed as an output signal linearly transformed from h 
through a “system” S. This reveals that the basic SP problems 
in R&C are mathematically similar.

Linear Gaussian models
Consider the more general linear Gaussian signal model by 
taking additive white Gaussian noise into account:

 Y H S Zh p= +^ ^h h  (1)

where Y and S are the sampled receive and transmit signals, 
which could be defined over multiple domains, e.g., the time–
space and time–frequency domains; H is the corresponding 
channel matrix (not necessarily Topelitz); and Z is the white 
Gaussian noise signal, with variance .2v  The channel H is a 
function of the physical parameters ,h  e.g., range, angle, and 
Doppler. The transmit signal S may be encoded/modulated 
with some information codewords .p  Model (1) represents 
many R&C systems, as elaborated in the following:

 ■ Radar signal model: Radar systems aim at extracting target 
parameters h  from Y. For both radar Txs and Rxs, S is typ-
ically a known deterministic signal, in which case p  can be 
omitted since the radar waveform contains no information. 
This can be expressed as

 .Y H S Zr r r rh= +^ h  (2)

 ■ Communication signal model: Communication systems 
aim at recovering codewords p  from Y. The channel H, 
which is sometimes regarded as an unstructured matrix, 
can be estimated a priori via pilots. Therefore, knowing h  
may not be the first priority. The resulting model is

 .Y H S Zc c c cp= +^ h  (3)

The subscripts r$^ h  and c$^ h  are to differentiate R&C sig-
nals, channels, and noises, respectively. We highlight that (2) 
and (3) describe a variety of R&C signal models. For example, 
(2) can be viewed as the target return of a MIMO radar in a 
given range-Doppler bin, where h represents angles of targets. 

R&C have been largely 
treated as two separate 
research fields, due to 
different constraints 
in their respective 
applications, and were 
therefore independently 
investigated and 
developed.
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Similarly, (3) may be considered a narrowband MIMO com-
munication signal. Alternatively, both (2) and (3) can be viewed 
as orthogonal frequency-division multiplexing (OFDM) sig-
nal models for R&C, respectively. In the following, we do not 
specify the signal domain but focus on generic models (2) and 
(3). More concrete signal models are discussed in the “Spec-
trum Engineering: The Road to Higher Frequency and Larger 
Bandwidth” and “Scaling Up the Antenna 
Array: The Road From Single Antenna to 
mMIMO” sections. In addition to individual 
R&C systems, (1) may also characterize the 
general ISAC signal model. That is, a uni-
fied ISAC signal serves dual purposes of 
information delivery and target sensing, 
whereas R&C channels may differ from one 
another. More details on ISAC systems will 
be discussed in the “ISAC: The Road From 
Separation to Integration” section.

Fundamental signal processing theories
In the following, we elaborate on the fundamental SP theories 
of R&C and, in particular, focus on (2) and (3).

Signal detection
Signal detection problems arise from many R&C applications. 
One essential task for radar is to determine whether a target 
exists by observing ,Yr  modeled as a binary hypothesis testing 
(BHT) problem:

 
:
:

Y Y H S Z
Y ZH

H1
r

0 r r

r r r rh
=

= +

=
^ h)  (4)

where H0  represents the null hypothesis, i.e., the radar receives 
nothing but noise, and H1  stands for the hypothesis where the 
radar receives both the target return and noise. To address the 
preceding BHT problem, one may need to design a detector 
T $^ h that maps the received signal Yr  to a real number and then 
compare the output with a preset threshold c  to determine which 
hypothesis to choose as true. A target detector may, for example, 
maximize the detection probability PrP H HD 1 1= ^ h while 
maintaining a low false alarm probability ,PrP H HFA 1 0= ^ h  
following the Neyman–Pearson (NP) criterion [7].

Signal detection also plays a critical role at the communication 
Rx. In (3), the communication Rx observes Y H S Zc c c cp= +^ h  
and seeks to yield an estimate pt  of the information symbol vector 

A, , , .N
T

1 2 f !p p p p= 6 @  This problem can be solved by lever-
aging the minimum error probability (MEP) criterion, that is, to 
minimize the error probability ,Pr PrP A

e i i i i1 !p p pR= =
t^ ^h h  

where A  is the cardinality of A. The MEP criterion can be 
translated to the maximum a posteriori criterion; i.e., the recov-
ered symbols should be the maximizer of the a posterior prob-
ability. Note that the decision region in the MEP criterion for 
communication symbols is determined by their a priori probabil-
ity, while the decision thresholds in the NP criterion for radar are 
determined by the required false alarm probability, resulting in 
different designs for R&C detectors.

Parameter estimation
Parameter estimation represents another category of basic SP 
techniques in R&C systems. For a radar system, once a tar-
get is confirmed to be present, the system needs to further 
extract the target’s parameters h  from Yr  by conceiving an 
estimator mapping Yr  from the signal space to an estimate 

,ht  defined as .YF rh =t ^ h  To measure how accurate an esti-
mator is, a possible performance metric is 
the mean square error (MSE), expressed as 

.E 2
h hf = - t^ h  The average may be over 

the noise and also over the parameters if 
they are assumed to be random. When the 
parameters are assumed to be deterministic, 
the MSE of any unbiased estimate is lower 
bounded by the Cramér–Rao bound (CRB), 
defined as the inverse of the Fisher informa-
tion matrix J [7]:

 
;ln p

J
Y

E EH 1
2

2
r

1

2

2
*h h h h

h

h
- - = --

-

t t^ ^ ^h h h6 =@ G) 3  (5)

where ;p Yr h^ h is the probability density function of Yr  pa-
rameterized by .h  While the maximum likelihood estimate 
(MLE) asymptotically achieves the CRB, attaining the MLE 
can be highly computationally expensive. To that end, low-
complexity parameter estimation algorithms, e.g., MUSIC and 
ESPRIT [8], [9], have been widely applied in practical situa-
tions, such as angle-of-arrival estimation.

In communication systems, the channel Hc  should be esti-
mated before delivering the useful information. For channel esti-
mation, the Tx sends pilots to the Rx, which are reference signals 
known to both. The Rx then estimates the channel based on both 
the received signals and pilots. Channel estimation is mathemat-
ically similar to the target estimation problem, where the to-be-
estimated parameters h are entries of ,Hc  which is regarded as 
an unstructured matrix. We elaborate on similarities and differ-
ences among estimation tasks for communication channels and 
radar targets in the “Scaling Up the Antenna Array: The Road 
From Single Antenna to Massive MIMO” section.

Information theory
Information theory serves as the foundation of communication 
SP. A remarkable result attained by Shannon in his landmark 
paper [10], published in 1948, states that, for any discrete mem-
oryless channel with input X and output Y, the channel capacity 
is ; ,maxC I X Y

p X
= ^

^
h

h  where the maximum is taken over all pos-
sible input distributions ,p X^ h  and ;I X Y^ h is the mutual in-
formation (MI) between X and Y. The channel coding theorem 
states that a coding rate R below C is achievable. Conversely, 
if ,R C2  an arbitrarily small decoding error is not possible. 
Information theory may also be adopted to measure radar per-
formance [11] and may reveal profound connections between 
R&C. Let us consider a generic real-valued Gaussian channel 
with an input X, which is assumed to be random, and output Y. 
In the communication case, X can be an information-carrying 
signal emitted by the Tx, and Y can be the signal received at the 

The boundary between  
R&C is becoming blurred, 
and hardware and 
spectrum convergence 
has led to a design 
paradigm shift, where 
the two systems can be 
codesigned.
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communication Rx. In the radar case, X can be some random 
target parameter/channel to be estimated, and Y can be the echo 
signal received at the radar Rx. In both R&C tasks, we may 
wish to accurately/approximately recover X by observing Y.

We denote the MI between X and Y as ;I X Y^ h and 
the minimum MSE (MMSE) of estimating X from Y as 

,X Y X X YMMSE E E; ; ; ;= - 2^ ^h h" ,  both of which may 
be expressed as functions of the signal-to-noise ratio (SNR), 
namely, I snr^ h and .MMSE snr^ h  We then have the following 
I-MMSE identity, which holds for Gaussian channels [12]:

 .
d

d I
snr

snr
2
1 MMSE snr=^ ^h h  (6)

The preceding relationship implies that the increasing rate 
(derivative) of the MI between X and Y with respect to the SNR 
is half of the MMSE for estimating X given Y. For a Gaussian 
channel, I snr^ h is maximized by inputting a Gaussian distrib-
uted X under a given SNR. More precisely, a Gaussian input 
always results in the most rapidly growing MI and, accordingly, 
yields the maximum MMSE, making it the most favorable for 
communication yet the least favorable for radar sensing. From 
a communication perspective, the channel input should be “as 
random as possible” to carry more information. From a radar 
perspective, estimation performance becomes more inaccurate 
if the target parameters change more randomly. The Gauss-
ian distribution has the highest entropy (randomness) under a 
second-order moment constraint (i.e., a fixed power budget), 
resulting in this interesting tradeoff.

Interplay between radar and communications
While communication happens between cooperative Txs and 
Rxs, radar sensing is essentially uncooperative, even if the ra-
dar Tx and Rx are colocated. This distinction results in inher-
ently different R&C SP frameworks. First, R&C SP aims at 
recovering useful information contained in the received signal, 
with minimum distortion. The communication system, how-
ever, needs another level of performance guarantee, i.e., to 
transmit, receive, and actively control as much information as 
possible. This requires sophisticatedly tailored encoding and 
decoding and modulation and demodulation strategies at the 
Tx and Rx, respectively, which motivates the development of 
information theory, whose spirit forms the foundation of the 
modern communication SP framework. Moreover, as the com-
munication Tx and Rx are highly cooperative, they are able to 
share the SP complexities in a rather flexible manner, depend-
ing on the specific scenarios. For instance, in a downlink com-
munication setup where a powerful base station (BS) sends 
information to the user, most of the complicated SP is done at 
the Tx’s side, e.g., precoding, to ease the computational burden 
at the user’s side. In a radar system, however, the complexity 
of the Rx SP always dominates its Tx counterpart, yet they are 
typically unable to share design complexities.

In what follows, we elaborate on the evolution of R&C in 
terms of both spectrum engineering and antenna array technolo-
gies and further reveal their interplay in spectral and spatial SP.

Spectrum engineering: The road to higher  
frequency and larger bandwidth

Spectrum characteristics and management
The radio frequency (RF) EM spectrum, extending from be-
low 1 MHz to above 100 GHz, has been used for a wide range 
of applications, including communications, radio and televi-
sion broadcasting, radio navigation, and sensing [13]. Figure 2 
displays the frequency bands where R&C systems operate and 
highlights the modes and usage that are performed in each band. 
For radar sensing, the lower bands offer some unique capabili-
ties, such as long-range surveillance and weather monitoring 
[13]. For communications, lower bands exhibit low signal at-
tenuation, making them suitable for long-distance transmission.

The higher-frequency bands provide some advantages to 
R&C. For a fixed fractional bandwidth, increasing the operat-
ing frequency subsequently increases the achievable bandwidth, 
thus providing finer range resolution for radar and higher data 
rates for communications. However, in these higher bands, long-
range operation becomes more strongly affected by attenuation 
due to the atmosphere. Moreover, the diffraction effect of high-
frequency EM wave signals decreases, which leads to a reduc-
tion in the number of paths propagated. Thus, radar sensing and 
wireless communication via these bands are limited to short-
range applications. For example, radars from X to W-bands are 
used for automotive collision avoidance, police radar, airport 
surveillance, and scientific remote sensing. As for communica-
tion, the mm-wave band is soon to be finalized as part of the 5G 
New Radio standards and has been exploited by the 802.11ad/ay 
wireless local area network (WLAN) protocols. More advanced 
radar SP tasks, such as real-time range-Doppler imaging and 
target recognition, typically rely on sparse recovery methods, as 
sparse channels are usually required in radar applications. For 
communication with high frequency and wideband, algorithms 
are required to be specifically conceived for channel estimation 
and demodulation to achieve higher data rates.

As a representative wideband signaling strategy, multicar-
rier technologies have been extensively applied in both R&C 
systems, which we overview in the following.

Signal models and processing techniques

Multicarrier radar signal processing
Let us consider a pulsed radar with a nonzero support [ , ]0 x  for 
each pulse. The radar works by transmitting a short burst of en-
ergy, or pulse, toward the target and then listening for the echo 
that bounces back. The pulse repetition interval (PRI) is ,TPRI  
and the total transmit bandwidth available at the baseband is 

,Br  resulting in a duty cycle of / .TPRIx  The carrier frequency 
fn  of the nth pulse is chosen from [ / , / ]f B f B B2 2c c rD D- + -  

for the multicarrier radar system, where fc  is the lowest car-
rier frequency within the band and BD  is the bandwidth of 
each subpulse. Specifically, for single-carrier systems, we have 
f fn c=  for all n with .f Bc r&  The nth transmit pulse is

 ( ) ( )s t P x t nT e,
( )

n
j f t nT

PRI
2

r r r
n PRI= - r -  (7)
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where Pr  is the radar transmit power. For the linear fre-
quency-modulated (LFM) waveform, we have ( )x tr =

/ ,e trect/j B t2
r xr x ^ h  where /trect x^ h is one for t0 # # x  

and zero elsewhere. The target response is

 ( ) ( )h t e tl
l

L
j t

l
0

1
2 la d x= -ro

=

-
r/  (8)

where (·)dr  is the Dirac delta function, la  is the reflec-
tion coefficient, and lx  and lo  are the delay and Doppler 
of the lth target, corresponding to its range and velocity. 
The time delay between the transmitted and received 
signals is used to calculate the distance to the target. 
In general, the radar cannot separate the two targets in 
range if / .B1l l r1 2 1; ;x x-  In many sensing problems, 
obtaining information at high range resolution is crucial 
to distinguish closely spaced targets [14], which incurs 
larger bandwidth needs.

In 1968, Ruttenburg and Ghanzi proposed the stepped 
frequency waveform (SFW), which can be viewed as a 
form of interpulse phase coding [15]. It transmits a series 
of linearly increasing or decreasing frequency signals, or 
steps, toward the target. The frequency of the received 
signal is compared to the frequency of the transmitted 
signal to calculate the distance to the target. By sweep-
ing through a range of frequencies, the radar can also 
measure the target’s speed. The SFW was later used in 
sets of radars, in which coherent integration of a burst of 
pulses yields high range resolution. Conventional SFW 
sets the carrier frequency sequence as f f n fn c D= +  for 
all n. To improve the data rate and avoid interference, 
more recent approaches randomly draw frequencies 
from the set ,f f f d fF n n c n; D= = +" ,  where fD  is a 
step size and d Zn !  is chosen from a subset of [ , ]D0  so 
that D f B2D  is the synthesized bandwidth.

Conventional SFW SP follows the matched filtering 
(MF) process, in which , ,Y Sr r  and Hr h^ h are the Rx 
signal, Tx signal, and target response in the frequen-
cy domain, respectively. With this, we may represent 
the discretized signal as ,y Sh z= +  with h  being the 
time-domain target response and S being the Toeplitz 
matrix composed of the transmitted signal. For sparse 
SFW, MF may lead to high sidelobes due to the vacancy 
in frequency bands. To mitigate the effects of sidelobes, 
radar designers can use a variety of techniques, such as 
antenna designs that minimize sidelobes, SP algorithms 
that filter out sidelobes, and adjusting the radar’s oper-
ating parameters to avoid sidelobe interference. More 
recent approaches consider the sparse nature of radar 
signals and estimate the target parameters by using 
sparse recovery algorithms. Assuming that the targets 
are composed of very few scatterers compared with the 
number of measurements, h  can be estimated by solv-
ing the optimization problem

  min s.t.h y Sh0 2h
# g-  (9)
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where g  is a positive constant dependent on the noise variance. 
This problem can be solved using compressed sensing algo-
rithms, e.g., norm-1,  minimization, and greedy algorithms, 
such as orthogonal matching pursuit [16], [17].

Multicarrier communication SP
As for the communication system, we assume it occupies a 
frequency band of .Bc  Setting / ,T B1c c=  the radiated signal 
is given by

 ( ) ( ) ( )s t P x n t nT e
n

N

c
j f t

0

1
2

c c c c

s
c}= - r

=

-

/  (10)

where Pc  is the transmit power, ( )x nc  for all n is the symbol 
sequence to be transmitted with length ,Ns  and (·)c}  satisfies 
the Nyquist criterion with respect to .Tc  Classic amplitude shift 
keying (ASK), frequency shift keying (FSK), and phase shift 
keying (PSK) could be applied for generating ( ).x nc

The model in (10) is a single-carrier system, which has limi-
tations in bandwidth and data rates. Following a 1965 article, 
Zimmerman and Kirsch designed a high-frequency radio multi-
carrier transceiver [18]. When the structure in signal space relies 
on multiple subcarriers, it corresponds to a multicarrier scheme 
represented by letting ( ) ( ) ( ).x n x n t nT, ,m

N
m m0

1
c c c c

c }R= -=
-  

Here ( )x n,mc  is the symbol sequence being transmitted, Nc  
is the number of subcarriers, and ( )t,mc}  is the synthesis 
function that satisfies the Nyquist criterion with respect to 

/B1 c  and maps ( )x n,mc  into the signal space. The family of 
( ) ( )t t e,m

j m ft2
c c} ~= r D  is referred to as a Gabor system, where 
( )tc~  is the prototype filter and fD  is the subcarrier spacing. It 

is easy to show that an N -pointc  inverse discrete Fourier trans-
form operating on the data generates samples of the OFDM 
signal, which can be accelerated by the fast Fourier transform 
(FFT) algorithm proposed by Cooley et al. [19]. At the com-
munication Rx, we remove the cyclic prefix and take the signal 
samples for , , , ,n N0 1 1sf= -  yielding

 ( ) ( )S F X b cN
H T

cc 9 x o= l^ h (11)

where FN  is an N-dimensional discrete Fourier transform  
matrix; 9  is the Hadamard product; [ ( ), ( ), ,0 1X x xc c c f=   

( )],N 1x sc -  with ( ) [ ( ), ( ), , ( )] ;n x n x n x px , , ,N
T

0 1 1c c c c cf= -

( ) [ , , , ] ,e e1b ( )j f j N f T2 2 1cfx = r x r xD D- - -l l l  with xl being the time 
delay; and ( ) [ , , , ] ,e e1c ( )j f T j f N T T2 2 1c c sc cfo = r o r o- - -  with fco  
being the Doppler shift. Then, the FFT could be applied before 
the detection of symbols ( )x n,mc  for , , , .m N0 1 1cf= -

In most practical scenarios, the radio channel is both 
time and frequency dispersive such that the channel output 
spreads over time and frequency domains. Such channel dis-
tortion results in so-called intersymbol interference (ISI) and 
interchannel interference (ICI) onto the received signals. By 
defining the time–frequency lattice based on symbol duration 
and subcarrier bandwidth, namely, the time–frequency plane, 
ISI and ICI can be reduced via well-localized 2D pulse shap-
ing filters. Unfortunately, simultaneously sharply localizing 
a time- and frequency-limited signal on the time–frequency 

plane to well concentrate its energy is impossible, as stated by 
the Heisenberg uncertainty principle.

Interplay between radar and communications

Pulse shaping for radar and communications
Pulse shaping is essential for both R&C to shape the waveform 
of the transmitted signal. Although signaling pulses serve a 
similar purpose in both cases, there are some key differences 
in their design and implementation. In communication sys-
tems, pulse shaping is used primarily to minimize ISI and 
control the bandwidth of the transmitted signal. This helps op-
timize the data rate, signal quality, and spectral efficiency. In 
radar systems, in addition to bandwidth control, pulse shaping 
is applied to control the sidelobes of the transmitted waveform. 
This helps to improve the range resolution and target detection 
capability. Furthermore, in communication systems, common 
pulse shaping filters include the raised cosine filter, root raised 
cosine filter, Gaussian filter, and various others. These filters 
are chosen based on the specific modulation scheme, chan-
nel conditions, and system requirements. In radar systems, 
common pulse shaping filters include the Hamming window, 
Blackman window, Chebyshev window, and Taylor window, 
among others. These filters are chosen based on the radar’s 
specific requirements, such as the desired peak sidelobe level 
and range resolution.

OFDM-based radar versus delay-Doppler  
communications
Multicarrier techniques have been extensively used over the 
past decade for wideband systems. Examples include the SFW 
for radars and OFDM for communications. It is worth not-
ing that the OFDM signal can also be used for radar sensing, 
which is known as the communication-centric ISAC waveform, 
which is elaborated later. In such a system, the ISAC Tx trans-
mits signals jointly for radar sensing and communicating with 
other communication systems by using the same OFDM signal, 
where each symbol is individually modulated with data belong-
ing to a constellation. Accordingly, the OFDM blocks are in-
dividually processed at the Rx of the ISAC system. While the 
communication processing consists of extracting modulated 
data from each block, the radar processing consists of estimat-
ing the range-Doppler profile through the 2D FFT operation 
[20]. As discussed in the previous section, ISI and ICI cannot 
be fully eliminated in OFDM systems. To ease such issues, the 
recently developed orthogonal time–frequency space (OTFS) 
modulation proposed to use the delay-Doppler (DD)-based 
signal representation to convert the time–frequency channel 
responses into simple 2D time-invariant channel response [21], 
thus alleviating the time–frequency selective effects. In such a 
case, the available signal propagation paths become physically 
explainable, observable, and probably predictable by, for exam-
ple, moving object tracking strategies [22]. These key observa-
tions mandate that the OTFS be a novel ISAC SP paradigm that 
goes beyond separately performing R&C SP on the DD and 
time–frequency domains.
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Scaling up the antenna array: The road from  
single antenna to massive MIMO
In the past decade, the evolution of R&C systems has gained 
considerable spatial efficiency by scaling up antenna arrays. 
The more antennas equipped at the Tx/Rx, the more degrees 
of freedom (DoFs) signaling strategies can exploit from the 
propagation channel, and better reliability can be achieved in 
the transmission. In this section, we investigate the evolution 
path of the array structure.

Array structure evolution and signal models
In general, an antenna array can be described by its response 
(also known as a steering vector), which is a vector function of 
angle parameters ,i  denoted as .a i^ h  For an N-antenna uni-
form linear array with antenna spacing d and wavelength ,m  
the steering vector is expressed as

 , , , ,e e e1a sin sin sinj d j d j N d2 4 1fi = r
m

i r
m

i r
m

i- - - -^ ^ ^ ^ ^h h h h h8 B (12)

where ,!i r r-6 @ and d is typically set as / .2m  Suppose that 
the radar or communication system is equipped with Nt  and 
Nr  antennas at its Tx and Rx and that the signal arrives from 
L resolvable paths. The general channel matrix for both R&C 
can be modeled as

 H b al l
T

ll
L

1
a i z=

=
^ ^h h/  (13)

where ,la  ,lz  and li  are the channel coefficient, direction of 
departure, and direction of arrival (DOA) for the lth signal 
path; a CN 1t!z #^ h  and b CN 1r!i #^ h  are Tx and Rx steering 
vectors, respectively. The channel model (13) may represent L 
resolvable point targets for radar or L propagation paths for 
communication. In the communication case, la  is contributed 
by both the path loss and small-scale fading effect. In the radar 
case, la  may also be contributed by the radar cross section 
(RCS) of the targets in addition to the round-trip path loss, 
which follows Swerling’s target models [23].

Phased array
Having the capability of generating a highly directive beam 
through rapid electronic phase control, phased-array tech-
niques triggered various R&C innovations. The phased-array 

system, in its simplest form, consists of a single RF chain 
connected with multiple antennas through phase shifters 
(Figure 3). In other words, the signal transmitted over each 
antenna is a phase-shifted counterpart of the signal generated 
in the RF chain. If both the Tx and Rx are equipped with 
phased arrays, the discrete receive signal at time instant n can 
be expressed as

 ,y s z nw Hfn
H

n n 6= +  (14)

where sn  is the signal transmitted within the Tx’s RF chain 
and f CN 1t! #  and w CN 1r! #  consist of the phase shifters 
at the Tx and Rx, with each of their entries being constant 
modulus, which are also known as the transmit beamformer 
and receive combiner, respectively, and are referred to as RF/
analog beamforming.

MIMO (digital) array
In contrast to the phased array, the MIMO system is equipped 
with multiple RF chains, where each RF chain is connected to 
a single antenna port. The receive signal for a MIMO system 
can be modeled as

 , ny HFs zn n n 6= +  (15)

where s Cn
K 1! #  and y Cn

N 1r! #  are transmit and receive 
signal vectors at the Tx and Rx, respectively, with K being 
the number of independent signals and F CN Kt! #  a digital 
precoder. In MIMO radar applications, , nsn 6  are spatially 
orthogonal waveforms, and F may be designed to steer the 
signals to multiple directions simultaneously and to keep the 
orthogonality for omnidirectional searching. In MIMO com-
munication applications, F may be designed to equalize and 
exploit the multipath effect by using various precoding tech-
niques, e.g., zero forcing and MF precoding. MIMO commu-
nication technology was first patented in 1994 [24], which in-
spired the invention of the MIMO radar concept, in 2003 [25].

mMIMO array
When the antenna number grows extremely large, e.g., above 
100, the MIMO system becomes an mMIMO system, or a 
large-scale antenna system. In this case, the steering vectors are  

yn = wHHfsn + zn yn = Hfsn + zn yn = HFRFFBBsn + zn H = αlb(ql) aT(ql)
l = 1
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FIGURE 3. The antenna array evolution and signal models: the (a) phased array, (b) MIMO/mMIMO array, (c) hybrid array, and (d) distributed array.
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asymptotically orthogonal to one another. Moreover, in a richly 
scattering environment with a large L, for , ,N N Nt t r" 3 &  we 
have , i0var h hEk k

2 2 " 6< < < <^ ^h h  and ,N1 HH It
H

Nr.^ h  
which are known as the channel hardening effect and favor-
able propagation effect. While the basic signal model for 
mMIMO remains the same as (15), it has additional superi-
orities over small-scale MIMO [4]. First, one may attain even 
more DoFs if equipping both the Tx and Rx with mMIMO ar-
rays. More importantly, the channel hardening effect improves 
the communication reliability by generating a nearly determin-
istic channel, which considerably simplifies the SP. Recent re-
search has also shown the superiority of applying the mMIMO 
technology to the radar system, which is able to detect a target 
via a single snapshot in the presence of a disturbance with un-
known statistics [26].

Hybrid array
Massive MIMO achieves dramatic gains at the price of a grow-
ing number of antennas and RF chains, incurring larger hard-
ware costs. To that end, the hybrid analog–digital array was 
proposed as a promising solution [27]. The hybrid array can 
be viewed as a tradeoff between the phased-array and fully 
digital MIMO array, as it connects fewer RF chains with mas-
sive antennas through phase shifters and switches. Consider a 
hybrid array with NRF  RF chains and Nt  antennas. The phase 
shifter-based design has the following signal model:

 , ny HF F s zn n nRF BB 6= +  (16)

where F CN N
RF

t RF! #  is the analog beamforming matrix con-
taining constant-modulus entries representing phase shifters 
and F CN K

BB
RF! #  is a digital precoder multiplexing K data 

streams. The hybrid array is also known as the phased-MIMO 
structure in the radar community [28]. In addition to reducing 
the cost for implementing MIMO radar, it achieves a balance 
between phased-array and MIMO radars via harvesting per-
formance gains from both. By partitioning the antenna array 
into different subarrays, phased-MIMO radar may formulate 
highly directional beams toward targets at each subarray, im-
proving the SNR of the echoes. In the meantime, it may also 
transmit orthogonal waveforms over different subarrays, thus 
reaping the gain of waveform diversity.

Distributed array
The continually growing demands for connectivity, coverage, 
and high-resolution sensing necessitate research of the distrib-
uted antenna array system for both R&C. Instead of colocating 
the antennas in a compact space, distributed antennas are spread 
over a large area while connecting to a central processing unit 
(CPU), providing a much higher probability of coverage and an 
improved diversity gain. Distributed antenna systems have been 
extensively studied from the communication viewpoint under 
different names, including networked MIMO, coordinated mul-
tipoint and cell-free mMIMO [29]. Their radar counterparts, on 
the other hand, are known as multistatic radar and MIMO radar 
with widely separated antennas [30]. The distributed array may 

also be described by its response, which, however, is no longer 
a function of the angle; rather, it is a function of the coordinates 
of the targets and scatterers in each signal path. By denoting the 
coordinates of the lth target/scatterer as , ,x yql l l= ^ h  the distrib-
uted channel matrix can be expressed as

 .H b q a ql l
T

ll
L

1
a=

=
^ ^h h/  (17)

Note that the specific array geometry relies upon the overall 
deployment of the distributed system.

Signal processing for MIMO radar and communications

Colocated MIMO radar
With colocated antennas, MIMO radars can mimic beamform-
ers utilizing low-probability-of-intercept waveforms. Rather 
than focusing energy on a target, the transmitted energy is evenly 
distributed in space [3], [30]. Compared to conventional phased-
array beamforming, the loss of processing gain due to the uni-
form illumination is compensated by the gain in time since there 
is no need to scan a narrow beam [3], [30]. The beamforming 
of classic colocated MIMO computes the correlations between 
the observation vectors from the previous step and the steering 
vectors corresponding to each azimuth/elevation on the grid de-
fined by the array aperture. Then, the targets can be detected in 
the angular domain. It is worth noting that a heuristic detection 
process, in which there is knowledge of the number of targets, 
clutter location, and so on, may help in discovering targets’ posi-
tions [31]. For example, if we know there are M targets, then we 
can choose the M strongest points in the targets profile. Alter-
natively, constant false alarm rate detectors determine a power 
threshold, above which a peak is considered to originate from a 
target so that a required false alarm probability is achieved.

Distributed MIMO radar
Widely separated transmit/receive antennas capture the spatial 
diversity of the target’s RCS [30]. Practical realization of phase 
coherency may be difficult, thus often necessitating noncoher-
ent combining to perform target detection using the distributed 
apertures [30]. It is shown that with noncoherent processing, 
a target’s RCS spatial variations can be exploited to obtain a 
diversity gain for target detection and for estimation of various 
parameters, such as the DOA and Doppler. Again, Swerling 
models [23] can be used to represent the statistical RCS fluctu-
ations as a function of the target decorrelation time. In distrib-
uted MIMO radars, a multidimensional signal space is created 
when the returns from multiple scatterers and targets combine 
to generate a rich backscatter. By exploiting the spatial dimen-
sion, MIMO radar with widely separated antennas may over-
come bandwidth limitations and support high-resolution target 
localization [30].

MIMO communications
MIMO communication has been playing a critical role in cellular 
and Wi-Fi systems since the 2010s, the beginning of the 4G era. 
Early SP methods focused on single-user MIMO (SU-MIMO)  
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communication, where a multiantenna BS serves a single or 
multiantenna user, which is also known as the point-to-point 
MIMO channel. In addition to multiplexing more data streams, 
the MIMO array is able to serve multiple us-
ers over the same time–frequency resource 
block, which is known as multiuser MIMO 
(MU-MIMO) communications technology. 
Compared to SU-MIMO, the MU-MIMO 
configuration offers significant complexity 
reduction at the users’ side. For MU-MIMO 
systems, the coordinated signal detection at 
the Rx’s side is not as straightforward as in 
SU-MIMO since cooperation among users is difficult. There-
fore, the BS needs to precancel the interference by employing 
various precoding methods, which also simplifies the SP at the 
users’ side. While dirty paper coding is capacity achieving, it 
suffers from high complexity [32]. Therefore, suboptimal linear 
precoders are more commonly employed in practical systems.

Interplay between radar and communications

Multiplexing versus diversity
The expansion of the antenna array brings diversity and multi-
plexing gains, which are cornerstones of MIMO communica-
tion theory. Transmit or receive diversity is a means to combat 
deep fading by creating different propagation paths through 
the Tx–Rx antenna pairs. Multiplexing, on the other hand,  
exploits the DoFs provided by the multipath propagation  
environment through sending different data streams over in-
dependent subchannels. In 2003, Zheng and Tse revealed that 
there is an inherent tradeoff between the two gains, namely, 
the diversity–multiplexing tradeoff (DMT) [33]. For an in-
dependent identically distributed Rayleigh MIMO channel 

,H CN N
c

r t! #  the maximum diversity gain and multiplex-
ing gain are N Nt r  and , ,min N Nt r" ,  respectively. From a 
broader viewpoint, the DMT is essentially a tradeoff between 
reliability and efficiency.

The spirit of MIMO radar SP can be interpreted in a simi-
lar manner. On the one hand, colocated MIMO radar pos-
sesses the superior attribute of waveform diversity, which 
means that diverse waveforms are flexibly emitted through 
different antennas. Waveform diversity may be implemented 
in either the baseband or RF band, e.g., through phase cod-
ing or frequency coding. It significantly improves parameter 
identifiability compared to its phased-array counterpart. That 
is, the colocated MIMO radar is able to uniquely identify up 
to N NO t r^ h targets, which is Nt  times of that of phased-array 
radar [3]. This connects more closely to the multiplexing gain 
in communications. On the other hand, distributed MIMO 
radar provides target RCS diversity. By widely spreading the 
antennas, distributed MIMO radar is able to observe a target 
from different directions, thus providing stable sensing perfor-
mance by overcoming the drastic RCS fluctuations in high-
mobility targets [30].

The preceding discussion again reflects the signals and 
systems duality. Since the signals and systems are interchange-

able, we may view radar target channels as “signals” and radar 
waveforms as “systems.” While the basic model for MIMO 
communications is that multiple data streams (signals) are 

transmitted through multiple spatial chan-
nels (systems), the model for MIMO radar 
is, conversely, that multiple target channels 
(signals) pass through diverse waveforms 
(systems). This duality creates the interest-
ing interplay between R&C, and may imply 
more essential connections and tradeoffs in 
ISAC systems.

Statistical versus geometrical channel representations
Most of the MIMO radar channels are geometrically modeled, 
as the ultimate goal of the radar is to extract the physical pa-
rameters of targets. The MIMO communication channel, on 
the other hand, can be modeled either statistically or geometri-
cally, depending on the specific scenarios and systems. The 
distinct models of the same channel are representations in dif-
ferent coordinate systems. For instance, an N Nr t#  commu-
nication channel matrix Hc  may be generally seen as a point 
in the Euclidean space .CN Nr t#  If it is geometrically modeled, 
then it may be viewed as a point in a subspace spanned by 
steering vectors a lz^ h and .b li^ h  In sub-6-GHz bands with 
richly scattering environments, the small-scale MIMO chan-
nel is modeled as an unstructured matrix subject to certain 
distributions, e.g., Rayleigh and Rician distributions, since the 
number of propagation paths could be far greater than that of 
the channel entries. In such a case, the communication channel 
estimation task is to recover all the entries in .Hc  In mm-wave 
and THz bands with much fewer propagation paths than an-
tennas, the mMIMO channel is well characterized by a geo-
metrical clustered model, such as the Saleh–Valenzuela model, 
which enables beam space SP for mm-wave and THz commu-
nications that mimics MIMO radar SP. In fact, beam training 
and tracking in mm-wave and THz communications may be 
analogously viewed as target searching and tracking, all of 
which can be operated on a hybrid array-based RF platform. 
This also builds a solid foundation to merge R&C into a single 
system by ISAC technologies.

ISAC: The road from separation to integration

ISAC: From competitive coexistence to codesign
The ubiquitous deployment of R&C systems leads to severe 
competition over various resource domains. To date, both tech-
nologies exhibit explosively growing demands for spectral and 
spatial resources and are thus evolving toward higher frequen-
cies and larger antenna arrays. As exemplified in the “Spec-
trum Characteristics and Management” section, a variety of 
R&C systems have to cohabitate within multiple frequency 
bands, which, inevitably, incurs significant mutual interference 
between the two functionalities [31], [34]. To ensure harmoni-
ous coexistence between R&C, orthogonal resource allocation 
became a viable approach. Nevertheless, orthogonal allocation 
results in low resource efficiency for both R&C. Aiming for 
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view radar target channels 
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fully maximizing the potential of limited wireless resources, 
e.g., bandwidth, and to enable the codesign of the R&C func-
tionalities, ISAC was proposed as a key technology for both 
next-generation wireless networks and radar systems.

The technological vision of ISAC can be divided into four 
levels, as shown in Figure 4. The first level is to share spectral 
resources between individual R&C systems, 
without interfering with each other. At the 
second level, the R&C functionalities may 
be deployed on the same hardware platform. 
At the third level, wireless resources may 
be fully reused between R&C via a com-
mon waveform, a single transmitting device, 
and a unified SP framework. Finally, at the 
fourth level, both R&C can share a common 
networking infrastructure, constructing a 
perceptive network to serve both sensing and communications 
functionalities. This underpins a large number of emerging IoT, 
5G Advanced, and 6G applications that require high-quality 
communication, sensing, and localization services [5].

During the past three decades, the development of ISAC 
has been supported by a number of governmental projects 
worldwide, among which the most influential ones were 
the “Advanced Multifunction Radio Frequency Concept 
(AMRFC)” program initiated by the U.S. Office of Naval 
Research in the 1990s and the “Shared Spectrum Access 
for Radar and Communications (SSPARC)” project funded 
by DARPA in the 2010s [6]. While both projects were moti-
vated by the need for sharing resources between R&C, the 
AMRFC mainly focused on colocating multifunctional 
modules (radar, communications, and electronic warfare) on 
the same RF front ends, and the SSPARC aimed for releas-
ing part of the sub-6-GHz spectrum from the radar bands 
for shared use between R&C. Most of the technical outcome 
of these projects was used in formulating the level 1 to level 3  
ISAC approaches. In the 2020s, networked sensing (level 4  
ISAC) was recognized by major enterprises in the communica-
tions industry (Huawei, Ericsson, ZTE, Intel, and Nokia) as one 
of the core air interface technologies for Wi-Fi 7, 5G Advanced, 
and 6G [5]. In 2020, IEEE 802.11 formed the 802.11bf task 

group to realize WLAN sensing in Wi-Fi 7, which is expected 
to be commercialized in 2024 [35]. In 2022, the 3rd Generation 
Partnership Project (3GPP) established the first study item on 
ISAC toward Release 19 standards for 5G Advanced [36].

To fully realize the promise of the ISAC technology, 
advanced SP techniques are indispensable. In this section, we 

briefly review the recent research progress 
on the SP for ISAC. In particular, we focus 
on levels 3 and 4, where a unified signaling 
strategy is designed to serve the dual pur-
poses of R&C.

ISAC signal processing
We investigate the linear Gaussian models 
considered in the “Fundamentals of Radar 
and Communications” section. The only 

difference is that a unified ISAC signal S is employed for both 
R&C, leading to

 
;Radar signal model:  

communcation signal model:  

Y H S Z

Y H S Z
r r r

c c c

h= +

= +

^ h
 (18)

where S is a discrete representation of the ISAC signal. We high-
light that (18) consists of abstractions for many existing ISAC 
models. That is, an ISAC Tx transmits a signal S to communi-
cate information while detecting targets. For radar sensing ap-
plications, the radar Rx observes Yr  and wishes to extract an 
estimate of h with the knowledge of the reference waveform S, 
which is known to both the ISAC Tx and radar Rx. For commu-
nication applications, on the other hand, the communication Rx 
observes Yc  and wishes to recover S, which is unknown to the 
communication Rx.

A generic ISAC SP framework is presented in Figure 5, 
where the R&C functionalities are jointly coordinated at 
the ISAC Tx to form a baseband ISAC signal. After being 
upconverted to the RF band, the signal propagates through 
the R&C channels and arrives at the Rx. The received sig-
nal, which may consist of both target and communication 
information, first goes through a preprocessing procedure, 

including synchronization, separa-
tion, filtering, and transformation, 
and is then processed following the 
regular R&C SP pipelines. ISAC SP 
is rather different from individual 
R&C SP. That is, when the wireless 
resources are shared between R&C, 
there exists an intrinsic performance 
tradeoff, as their design objectives are 
distinct and even contradictory. As 
illustrated in Figure 6, such a tradeoff 
can be framed as the Pareto frontier 
in terms of different R&C perfor-
mance metrics, e.g., the radar’s CRB 
and communication rate. The com-
plete characterization of such a Pareto 
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Joint Signaling
and Processing

Spectral Coexistence

Multifunctional
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Radar and
Communications

CoexistenceLevel 1

Level 2

Level 3

Level 4 Perceptive
Network

FIGURE 4. The evolution path for ISAC technologies.
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frontier still remains wide open. The two corner points, 
PCS  and ,PSC  represent the communication-optimal and 
radar-optimal performance, with the corresponding achiev-
able rate–CRB pairs denoted by ,CCS CSe^ h and , ,CSC SCe^ h  
respectively. This results in three categories of ISAC SP 
designs, i.e., communication-centric, radar-centric, and joint 
design, which target approaching the points PCS, PSC  and the 
Pareto frontier in between, respectively.

Communication-centric design
Communication-centric design (CCD) simply implements the 
radar sensing functionality over an existing and even com-
mercialized communication waveform, in which case the 
communication functionality has priority. The most represen-
tative CCD approach is OFDM-based ISAC signaling, which 
directly exploits the OFDM communication waveform to si-
multaneously accomplish R&C tasks [20], [37]. Assume that 
the ISAC Tx emits the OFDM signal to communicate with a 
user while sensing a point target with delay x  and Doppler .o  
After receiving the echo signal reflected from the target, the 
radar Rx, which is colocated with the ISAC Tx, samples at 
each OFDM symbol, followed by block-wise FFT processing. 
The resultant discrete signal can be arranged into a matrix, 
with its (n, m)th entry associating with the nth symbol at the 
mth subcarrier, given as

 y x e e z, , , ,n m n m n m
j m f j n T

n m
2 1 2 1 ca= +r x roD- - -^ ^h h  (19)

where ,n ma  and z ,n m  are the channel coefficient and noise. The 
random communication data x ,n m  impose a negative impact 
on radar sensing, which can be simply mitigated by element-
wise division:

 
.

y
x
y
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x
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n m
n m

n m

n m
j m f j n T

n m

n m2 1 2 1 ca

=

= +r x roD- - -

u

^ ^h h
 

(20)

Then, a 2D FFT can be applied to (20) to get the DD profile 
of the target.

Radar-centric design
In contrast to CCD schemes, radar-centric design (RCD) 
aims at implementing communication capability over exist-
ing radar infrastructures, targeting approaching the perfor-
mance at .PSC  Since the classical radar waveform contains 
no information, RCD schemes are also referred to as infor-
mation embedding approaches in the literature; namely, the 
communication data are embedded into the radar waveform 
in a way that will not unduly degrade the sensing perfor-
mance. Early RCD schemes mainly focused on exploiting 
the LFM signal as an information carrier [38]. In addition 
to the conventional modulation formats, including amplitude, 
phase, and FSKs, LFM signals have another design DoF, i.e., 
the slope that the frequency increases with the time, which 
may also be utilized for data embedding. To fully guarantee 
the radar performance, recent research proposed to realize 
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ISAC by index modulation (IM), which was first proposed 
in [39] for MIMO radar transmitting orthogonal waveforms. 
In such a case, the communication information is conveyed 
by shuffling the waveforms across multiple antennas, which 
does not break the orthogonality. As a step forward, more 
recent RCD schemes implement IM-based ISAC signaling 
on carrier-agile phased-array radar, namely, the multicarrier-
agile joint radar–communication (MAJoRCom) system [40]. 
During each PRI, the MAJoRCom randomly selects the car-
rier frequencies from a frequency set and randomly allocates 
these frequencies to each antenna, which again keeps the or-
thogonality unaffected.

Joint design
As discussed in the preceding, CCD and RCD schemes at-
tempt to approach the performance of PCS  and ,PSC  which 
may be implemented in existing communication and radar 
systems, respectively. However, they lack the flexibility to 
formulate a scalable tradeoff between R&C and, equivalently, 
to approach the performance of an arbitrary point on the Pa-
reto frontier in Figure 6. To resolve this issue, JD-based ISAC 
signaling becomes a promising strategy, which is often con-
ceived through convex optimization techniques [41]. Consider 
a MIMO ISAC BS that serves Ku  single-antenna users while 
detecting a point target locating at an angle .i  An ISAC signal 
S constrained by the energy ET  can be obtained by solving 
the following angle CRB minimization problem under the 
sum–rate constraint:

 , ,min R R k ECRB s.t. Skk

K
F T1 0
2

S

u
6$ #i

=
^ h /  (21)

where Rk  is the achievable rate for the kth user and R0  is a pre-
defined sum–rate threshold. The Pareto frontier between R&C 
can be obtained by increasing ,R0  which leads to an increased 
objective CRB.

Interplay between radar and communications
From the preceding ISAC SP strategies, it is interesting to 
note that there is a twofold tradeoff between R&C, namely, 
the deterministic versus random tradeoff (DRT) and subspace 
tradeoff (ST).

Deterministic-random tradeoff
Communication systems require random signals to convey 
as much information as possible, whereas radar systems pre-
fer deterministic signals for achieving stable sensing perfor-
mance. This has been an intuitive insight consistent with both 
engineers’ experience and R&C SP theory. For instance, con-
stellation shaping for communications always targets approxi-
mating a Gaussian distribution, thus approaching the Shannon 
capacity. Radar systems, on the other hand, prefer to transmit 
constant-modulus waveforms at the maximum available power 
budget, which motivates the use of phase-coded signals. For 
clarity, this concept is shown in Figure 6.

The DRT has also been reflected in the preceding CCD 
and RCD approaches. For OFDM-based CCD signaling, the 
element-wise division of the random data changes the sta-
tistical characteristics of the noise across the symbols and 
subcarriers, imposing performance loss on the threshold-
ing and peak detection in the 2D FFT processing. To tackle 
this issue, a natural idea is to transmit PSK-modulated data, 
which rotates the phase of the circularly symmetric Gauss-
ian noise without changing its distribution. For the IM-based 
RCD scheme, the radar transmits communication data by the 
random selections of waveforms across the antennas, i.e., the 
information is carried by permutation and selection matrices, 
while keeping the radar waveform orthogonality unchanged. 
In both cases, the communication rate can be increased by 
embedding more random data (exploiting more DoFs) into 
the ISAC signal, which is, however, at the price of deterio-
rated radar sensing performance.

Subspace tradeoff
Another fundamental tradeoff in ISAC is the ST. The column 
vectors of R&C channel matrices and H Hr c  span the sensing 
and communication subspaces. To fully radiate the transmit 
power toward targets/users, radar-optimal and communica-
tion-optimal signals should align to the two subspaces, respec-
tively. Consequently, the R&C performance can be balanced in 
an ISAC system by allocating resources into the two subspaces. 
Apparently, if two subspaces are partially overlapped, then re-
sources allocated to the intersection are shared between R&C, 
improving the efficiency. On the contrary, if two subspaces are 
orthogonal to each other, no resources can be reused, leading 

to zero performance gain. Based on the 
overlapped degree of two subspaces, 
one may categorize R&C channels as 
weakly coupled, moderately coupled, 
and strongly coupled scenarios, which 
are intuitively illustrated in Figure  7. 
The higher coupling degree between 
two subspaces results in better tradeoff 
performance, as more resources are re-
used between R&C.

The ST can be observed in the JD 
signaling scheme discussed in (21). 
That is, by increasing the communi-
cation sum–rate threshold ,R0  more 
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FIGURE 6. The performance tradeoff between R&C.
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signal power is transmitted toward the directions of commu-
nication users, while less power is radiated to sense the tar-
get, resulting in a higher CRB. To illustrate this, we provide 
a numerical example of solving problem (21) in Figure 8 for 
a single-target, single-user scenario. In particular, we con-
sider the correlation coefficient between the communication 
channel hc  and the target steering vector ,a i^ h  defined as 

.h a h ac
H

c; ; < << <t i i= ^ ^^ ^h hh h  By varying the signal-to-
interference-plus-noise constraint of the user, we observe that 
the resultant ISAC signal indeed formulates a scalable tradeoff 
between the radar CRB and the communication achievable 
rate, where the ISAC signal rotates from the communica-
tion subspace to the sensing subspace. More interestingly, by 
increasing the correlation coefficient t  from zero to one, the 
ISAC tradeoff performance becomes better, which is consis-
tent with our analysis on weakly, moderately, and strongly 
correlated subspaces. That is, higher correlation between two 
subspaces indicates that more resources can be shared between 
R&C. In the extreme case of ,1t =  the performance of both 
R&C reaches its optimum without jeopardizing one another. 
This is because the two subspaces are fully aligned to each 
other, and the signal resources can be fully reused between 
R&C, leading to the maximum gain.

Open challenges and future research directions
Although ISAC has been well investigated from various di-
rection in recent years, there are still many open challenges 
that remain widely unexplored. Here, we overview some of the 
open problems in fundamental tradeoff, SP, and networking 
aspects, where tremendous research efforts are needed.

Full characterization of the ISAC performance tradeoff
Characterizing the ISAC performance tradeoff is a multiobjec-
tive functional optimization problem by its nature. Neverthe-
less, the current results are able to depict only the performance 
at the two corner points [42]. It is unclear where the exact Pa-
reto frontier lies in Figure 6 and what the optimal signaling 
strategies are to achieve that boundary. Moreover, the research 
on the fundamental ISAC tradeoff in more practical scenarios, 
e.g., the multiuser multitarget regime, is still at its early stage, 

where tighter estimation-theoretical bounds and the multiuser 
capacity region need to be jointly considered.

Practical ISAC signal processing
Most of the current ISAC signaling schemes were proposed 
under ideal assumptions. However, there is a large number of 
practical constraints that prevent the implementation of these 
ISAC designs. For instance, CCD approaches that adopt a stan-
dardized communication waveform, e.g., 5G New Radio, face 
the challenges of insufficient bandwidth and a high peak-to-
average-power ratio, which leads to severe performance loss of 
radar sensing. In addition to that, the imperfection of hardware 
components, e.g., quantized phase shifters and uncalibrated 
antenna arrays, also needs to be taken into account in design-
ing practical ISAC SP pipelines.

Networked ISAC
Current state-of-the-art research mainly concentrates on the SP 
for single-node ISAC systems. To realize networked ISAC us-
ing commercialized networking infrastructures, which are not 
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 originally tailored for radar sensing, a series of SP challenges 
need to be carefully coped with. For instance, clock-level net-
work synchronization is needed to achieve high sensing accu-
racy. Moreover, to detect short-range targets, e.g., humans and 
vehicles, the future ISAC BS should operate in full-duplex mode 
to avoid self-interference between the transmit signal and target 
return. Equipping the network with ubiquitous sensing capa-
bilities has also raised concerns on security and privacy issues, 
which needs to be addressed in future ISAC systems.

Conclusions
In this article, we overviewed the technological evolution of 
R&C from an SP viewpoint. We first focused our discussion on 
the general principles and fundamental SP techniques for both 
R&C. We then introduced two main trends and the resulting 
SP schemes in the historical development of R&C, namely, the 
increase of frequencies and bandwidths and the expansion of 
the antenna arrays. Following these two trends, we provided a 
detailed discussion on the recent progress of SP techniques for 
ISAC systems. Finally, we identified a number of major open 
challenges in ISAC technologies.

Although concerning two long-established disciplines, the 
story of R&C will continue in the foreseeable future. In par-
ticular, ISAC, the marriage between R&C, will have a large 
impact on modern society.
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