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Twenty-five years ago, the field of computational imaging 
arguably did not exist, at least not as a standalone arena of 
research activity and technical development. Of course, the 

idea of using computation to form images had been around for 
several decades, largely thanks to the development of medical 
imaging—such as magnetic resonance imaging (MRI) and  
X-ray tomography—in the 1970s and synthetic-aperture radar 
(SAR) even earlier. Yet, a quarter of a century ago, such technol-
ogies would have been considered to be a subfocus of the wider 
field of image processing. This view started to change, however, 
in the late 1990s with a series of innovations that established 
computational imaging as a scientific and technical pursuit in 
its own right. 

Introduction
In this article, we provide a signal processing perspective on 
the area of computational imaging, focusing on its emergence 
and evolution within the signal processing community. First, in 
the “Historical Perspective” section, we present an overview of 
the technical development of computational imaging wherein 
we trace the historical development of the field from its origins 
through to the present day. Then, in the “Signal Processing So-
ciety Involvement” section, we provide a brief overview of the 
involvement of the IEEE Signal Processing Society (SPS) in 
the field. Finally, in the “Conclusions” section, we make sev-
eral concluding remarks.

Historical perspective
We begin our discourse by tracing the history of computation-
al image formation. We start this historical perspective with 
its origins in physics-dependent imaging and then proceed to 
model-based imaging, including the impact of priors and spar-
sity. We next progress to recent data-driven and learning-based 
image formations, finally coming full circle back to how phys-
ics-based models are being merged with big data and machine 
learning for improved outcomes.

Computational imaging can be defined in a number of 
ways, but for the purposes of the present article, we define 
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it as the creation of an image from measurements wherein 
computation plays an integral role in the image-formation 
process. In contrast to historical “standard” imaging in which 
optics play the central role in image formation, in computa-
tional imaging, it is computation, in the form of algorithms 
running on computers, that assumes the primary burden of 
producing images. Well-known examples 
would include X-ray-based tomography, 
SAR, and MRI. In such cases, the data 
produced by the sensing instrument are 
generally not images, and thus, require 
processing to produce the desired useful 
output in the form of an image. To fix ideas 
and notation, we denote the unknown 
but desired image by ,x RN!  such that 
x  contains N pixels. In our problems of 
interest, we cannot directly observe ,x  
but instead observe a set of data ,y RM!  
which has been measured through a process connected to 
a sensor .C  This relationship can be represented math-
ematically by

	 ( )y x nC= + � (1)

where n  is a noise signal. The goal of computational im-
aging is then to estimate the image x  from knowledge of 
both the data y  as well as the imaging system or measure-
ment process, ,C  i.e., it naturally involves solving an inverse 
problem. Several examples of computational imaging are 
depicted in Figure 1, illustrating their sensing process and 
resulting images.

For many common imaging problems, C  in (1) is (or can 
be well approximated by) a linear operator, i.e., a matrix, 
such that

	 ( ) , .C Cx x RC M N!= # � (2)

In this case, when C is invertible and well conditioned, the 
inverse problem is mathematically straightforward, although 
even in this case, it is often computationally challenging due 
to the size of the problem. For example, an image of modest 
size—say, , ,1 024 1 024-# corresponds to an x  with 1 mil-
lion variables and a C with 1012  elements. The inverse problem 
becomes even more difficult when C  is an ill-conditioned ma-
trix or a nonlinear operator or produces an observation y  with 
fewer samples than the number of unknowns in .x

In the sequel, we provide a roughly chronological road map 
of computational imaging from a signal processing perspec-
tive. Four broad domains, as illustrated in Figure 2, will be 
discussed in turn: physics-driven imaging, model-based image 
reconstruction (MBIR), data-driven models and learning, and 
learning-based filters and algorithms. Our discussion con-
cludes with current-day algorithmic methods that effectively 
join the right side of Figure 2 back up to the left, i.e., techniques 
that couple physical models with learned prior information 
through algorithms.

Physics-driven imaging: Explicit inversion
We first focus on physics-driven imaging, wherein images are 
created based on idealized imaging models. The idea here is 
to form images using the physical inversion operator with the 
key challenge being the design of efficient algorithms for the 
calculation of ( )x yC 1= -t  as an approximation to the desired 

image x  in (1). When data are plentiful and 
of high quality, and the system is designed 
to closely approximate certain simple class-
es of sensing operators, this direct-inversion 
approach can work reasonably well. Such 
image-formation methods often represent 
the first approach taken in the development 
of a new imaging modality and will often 
invoke very little (or very rudimentary) 
prior information, if at all. We discuss four 
example modalities in greater detail next.

Analog cameras
In a film camera, lenses are used to bend the light and focus it 
onto a film substrate, as depicted in Figure 3(a). Digital cam-
eras work largely the same way by simply placing a digitizer 
at the film plane. In terms of (1)–(2) then, this example has an 
ideal linear model with C I=  so that the final image is really 
just the observation, assuming negligible noise. Traditionally, 
the primary path to improving the image quality was through 
improvements to the optical path itself, that is, through the use 
of better lenses that bring the physical sensing process closer to 
the ideal identity .C I=

X-ray tomography
X-ray tomography is used in applications such as nondestructive 
evaluation, security, and medical imaging and is, in essence, an 
image of the attenuation produced by an object as X-rays pass 
through it, as illustrated in Figure 3(b). The negative log ratio of 
the attenuated output to the input incident energy is taken as the 
observation, with a simplified physical model being

	 ( ) ( )L s dsy x
L

= # � (3)

where L is a given ray path. Mathematically, the observation 
(or projection), ( ),Ly  is a line integral of the desired attenu-
ation image ( )sx  along the line L. The collection of all such 
projections for all lines L (i.e., in every direction) defines 
what is called the Radon transform of the image .x  The Ra-
don transform is a linear operation and, assuming no noise, 
can be represented by (1), with C  in this case being defined 
by the integral operator in (3). An explicit analytic inverse of 
the Radon transform (i.e., )C 1-  exists and forms the basis of 
the image-formation method used by commercial scanners. 
This inversion approach, called the filtered back-projection 
(FBP) algorithm, is very efficient in both computation and 
storage, requiring only simple filtering operations on the pro-
jections followed by an accumulation process wherein these 
filtered projections are summed back along their projection 
directions [4]; however, it assumes the existence of an infinite 
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FIGURE 1. Examples of computational-imaging modalities. (a) X-ray tomography. (b) Ultrasound imaging. (c) MRI. (d) Seismic imaging. (e) Radar imag-
ing. (f) Computational microscopy. (g) Light-field imaging. (h) Astronomical imaging. (i) Coded-aperture imaging. Sources: (a) Mart Production (left); 
MindwaysCT Software, CC BY-SA 3.0 (right). (b) Mart Production (left); Daniel Kondrashin (right). (c) Mart Production. (d) Adapted from [1] (right).  
(e) Wclxs11, CC BY-SA 3.0 (left); NASA/JPL (right). (f) Adapted with permission from [2]; ©The Optical Society. (g) Dcoetzee, CC0 (left); Doodybutch, 
CC BY-SA 4.0 (right). (h) Adapted from [3]. 
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continuum of projections, which is not 
possible in practice. Nevertheless, ex-
cellent reconstructed images are pos-
sible if the sampling of ( )Ly  is suf-
ficiently dense. Thus, higher quality 
images are obtained by making the 
X-ray machine better approximate the 
underlying assumptions of the Radon-
transform inversion.

MRI
As depicted in Figure 3(c), MRI images the anatomy of the 
body through radio-frequency excitation and strong magnetic 
fields—unlike X-ray imaging, no ionizing radiation is used. 
Classical MRI acquisition is usually modeled as producing ob-
servations according to the equation

	 f s e dsy x i sf2= r-^ ^h h# � (4)

where it can be seen that the observations fy^ h are values of 
the desired image in the Fourier domain. The basic MRI ac-
quisition acquires samples of these Fourier values line by line 
in the Fourier space, called the k-space, and once sufficient 
Fourier samples are obtained, an image is produced by the 
application of an inverse Fourier transform. As with X-ray 
tomography, the image formation follows from an analytic 
formula for the inverse of the Fourier-based sensing operator 
such that improved imagery is obtained through the denser 
and more complete sampling of the k-space [5].
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FIGURE 2. An overview of the historical evolution of computational imaging. 
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FIGURE 3. Four common forms of physics-driven imaging with explicit inversions. (a) Analog camera. (b) X-ray tomography. (c) MRI. (d) SAR. CCD: 
charge-coupled device. Sources: (b) Image from Nevit Dilmen, CC BY-SA 3.0. (c) MRI image from the IXI Dataset (https://brain-development.org/
ixi-dataset/), CC BY-SA 3.0. 
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Spotlight-mode SAR
Spotlight-mode SAR, as shown in Figure 3(d), is able to cre-
ate high-resolution images of an area day or night and in all 
types of weather and is thus widely used in remote sensing 
applications. SAR works by transmitting microwave chirp 
pulses toward the ground and has a resolution that is largely 
independent of the distance to the region of interest. SAR 
finds use in mapping and monitoring vegetation and sea 
ice and in NASA planetary missions as well as in military 
applications, just to name a few. The SAR data-acquisition 
process can be modeled as

	 ( ) ( )t q r e dry ( )j t r=i i
X-# � (5)

where ( )tX  is a time-dependent “chirped” frequency, and

	 ( ) ( )q r s dsx
( , )L r

=i
i
# � (6)

is the projection of the scattering field ( )sx  along the line L at 
angle i  and range r such that (5) is a 1D Fourier transform of the 
projection along the range direction. Thus, the observations for 
SAR are again related to the values of the desired image ( )sx  in 
the Fourier domain, similar to MRI. Combining (5) and (6), one 
can show that these observations are Fourier values of ( )sx  on 
a polar grid; consequently, the standard image-formation algo-
rithm for such SAR data is the polar-format algorithm [6], which 
resamples the acquired polar Fourier data onto a rectangular 
grid and then performs a standard inverse Fourier transform on 
the regridded data. As in our other examples, the image-forma-
tion process follows from an analytic formula for the inverse of 
the (Fourier-based) sensing operator, and improved imagery is 
obtained by extending the support region of the acquired Fourier 
samples, which are related to both the angular sector of SAR 
observation (related to the flight path of the sensor) as well as the 
bandwidth of the transmitted microwave chirp.

In all the examples that we have just discussed, image forma-
tion comprises analytic inversion following from the physics of 
the measurement operator [C  in (1)]. These inversion approaches 

operate on the observed data, but the 
algorithms themselves are not depen-
dent on the data; i.e., the structure of the 
algorithm, along with any parameters, is 
fixed at the time of the algorithm design 
based exclusively on the inversion of the 
measurement operator and is not learned 
from image data. These examples of the 
early period of computational imaging 
can be characterized in our taxonomy by 
(comparatively) low computation (e.g., 
Fourier transforms) and the presence 
of “small-data” algorithms (i.e., just the 
observations). When data are complete 
and of high quality and the system is 
designed to closely approximate the 

assumptions underlying the inversion operators, these approach-
es can work very well. Yet, the physical systems are constrained 
by the algorithmic assumptions on which the image formation is 
built, and if the quality or quantity of observed data is reduced, 
much of the corresponding imagery can exhibit confounding 
artifacts. An example would be standard medical tomography—
since the system will create an image using the FBP, the system 
needs to be such that a full 180° of projections are obtained at a 
sufficient sampling density.

MBIR: The rise of computational imaging
Computational imaging really flourished during the next 
phase we consider. This phase has been called MBIR and, 
in contrast to the situation discussed in the “Physics-Driven 
Imaging: Explicit Inversion” section, is characterized by the 
use of explicit models of both sensing physics as well as image 
features. The major conceptual shift was that image formation 
was cast as the solution to an optimization problem rather than 
as the output of a physically derived inversion algorithm. Next, 
we present the specifics of this optimization problem, consider 
the role of prior models in its formulation, and explore several 
algorithms for its solution.

Image formation as optimization with explicit models
In general, in MBIR, the image-formation optimization prob-
lem can be taken to be of the form

	 , ( ) ( )argmin y x xx L C R
x

= +t ^ h � (7)

where xt  is the resulting output image (an approximation to the 
true image); L  is a loss function that penalizes any discrep-
ancy between the observed measurement y  and its prediction 

( );xC  and R  is a regularization term that penalizes solutions 
that are unlikely according to prior knowledge of the solution 
space. This optimization is depicted schematically in Figure 4. 
Arguably, the simplest example of this formulation is Tik-
honov regularization

	 ( ) ( )argminx y x xC 2
2

2
2

x
m C= - +t � (8)
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L(y, C(x))
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FIGURE 4. A general framework for MBIR. 
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where m  is a parameter controlling the amount of regulariza-
tion, and C  is a problem-specific operator [7], often chosen 
to be a derivative. This formulation also connects to proba-
bilistic models of the situation. In particular, the first term in 
(8) can be associated with a log-likelihood ,log p y x C;^ h and 
the second term with a log prior ( )log p x  under Gaussian as-
sumptions. With this association, (8) represents a maximum 
a posteriori (MAP) estimate of the image given a likelihood 
and a prior, i.e.,

, , ( ) .argmax argmaxlog logp p px y x xx y C C
xx

; ;= = +t ^ ^h h �(9)

There are a number of major advantages gained from the 
conceptual shift represented by viewing image formation as 
the solution of (7). One advantage is that this view separates 
out the components of the formulation from the algorithm 
used to solve it; i.e., the overall problem is partitioned into 
independent modeling and optimization tasks. Indeed, there 
are many approaches that can be used to 
solve (7), allowing discussion of the algo-
rithm to be decoupled from the debate 
about the problem formulation [although 
obviously some function choices in (7) 
correspond to easier problems, and thus, 
simpler algorithms].

Another advantage of this explicit focus on models is 
that one can consider a much richer set of sensing operators 
since we are no longer limited to operators possessing simple, 
explicit, and closed-form inverse formulations. For example, 
in X-ray tomography, the FBP algorithm is an appropriate 
inversion operator only when a complete (uniform and densely 
sampled) set of high-quality projection data is obtained—it is 
not an appropriate approach if data are obtained, for example, 
over only a limited set of angles. On the other hand, the formu-
lation (7) is agnostic to such issues, requiring only that the C  
operator accurately captures the actual physics of acquisition. 
Thus, model-based inversion approaches have been success-
fully applied in situations involving novel, nonstandard, and 
challenging imaging configurations that could not have been 
considered previously. Furthermore, one can now consider the 
joint design of sensing systems along with inversion, as occurs 
in computational photography.

A third advantage of model-based image formation is that 
(7) can be used to explicitly account for noise or uncertainty 
in the data—the connection to statistical methods and MAP 
estimation as alluded to previously [i.e., (9)] makes this 
connection obvious. For example, rather than using a loss 
function corresponding to a quadratic penalty arising from 
Gaussian statistics (as is common), one can consider instead 
a log-likelihood associated with Poisson-counting statistics, 
which arises naturally in photon-based imaging. The use of 
such models can provide superior noise reduction in low-
signal situations.

A final advantage of model-based inversion methods 
is the explicit use of prior-image-behavior information, as 

captured by the term ( ) .xR  We focus on the impact of prior 
models next.

Focus on prior models and the emergence of sparsity
The growth of model-based methods led to a rich exploration 
of choices for the prior term ( )xR  in (7). The simplest choice 
is perhaps a quadratic function of the unknown ,x  as illustrated 
in (8). Such quadratic functions can be viewed as correspond-
ing to a Gaussian assumption on the statistics of ( ) .xC  While 
simple and frequently leading to efficient solutions of the cor-
responding optimization problem, the resulting image esti-
mates can suffer from blurring and the loss of image structure 
as these types of priors correspond to aggressive global penal-
ties on image or edge energy.

Such limitations led to a surge in the development and use 
in the late 1980s and 1990s of nonquadratic functions that 
share the property that they penalize large values less than 
the quadratic penalty does. Additionally, when applied to 
image derivatives, they promote edge formation. In Table 1, 

we present a number of the nonquadratic 
penalty functions that arose during this 
period, separated into those that are con-
vex and those that are not. (The penalties 
tabulated in Table 1 are functions on sca-
lars. To form ( ),xR  these scalar penalties 
could be applied element by element to 

,x x xx N
T

1 2 g= 6 @  e.g., ( ) ( ) .xxR ii{R=  Alternatively, 
referring to (8), they could likewise be applied to elements 
of ( ) .)xC   In general, convex functions result in easier opti-
mization problems, while nonconvex functions possess more 
aggressive feature preservation at the expense of more chal-
lenging solution computation.

A key property that these nonquadratic penalties promoted 
was the sparsity of the corresponding quantity. In particu-
lar, when applied to x  itself, the resulting solution becomes 
sparse, or when applied to ( ),xC  the quantity ( )xC  becomes 
sparse. A common example is to cast C  as an approximation 
to the gradient operator such that the edge field then becomes 
sparse, resulting in piecewise constant (mainly flat) solutions 
[16]. Eventually, interest nucleated around this concept of 
sparsity and, in particular, on the use of the 0,  and 1,  norms 
as choices in defining ( )xR  (the 1,  norm corresponds to the 
last row in Table 1) [17].

Table 1. A selection of nonquadratic prior penalties {(t).

Convex Penalties Nonconvex Penalties

t  [8] 
t

t
1 2

2

+
 [9], [10] 

log cosh t  [11] ,min t 12" ,  [12] 

,min t t2 1
2

-# -  [10], [13] log t1 2+^ h  [14] 

t

t

1+
 [15] 

,t
p  p 1$  [16] ,t

p  p0 11 1  

One of the more visible 
applications of sparsity in 
model-based reconstruction 
is compressed sensing.
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One of the more visible applications of sparsity in model-
based reconstruction is compressed sensing (CS) [18], [19]. In 
brief, under certain conditions, CS permits the recovery of 
signals from their linear projections into a much lower dimen-
sional space. That is, we recover x  from ,Cy x=  where x  has 
length N, y  has length M, and C is an M N#  measurement 
matrix with the subsampling rate (or subrate) being /S M N=  
with .M N%  Because the number of unknowns is much larger 
than the number of observations, recovering every x RN!  
from its corresponding y RM!  is impossible in general. The 
foundation of CS, however, is that, if x  is known to be suf-
ficiently sparse in some domain, then exact recovery of x  
is possible. Such sparsity can be with respect to some trans-
form T such that, when the transform is applied to ,x  only 
K M N1 %  coefficients in the set of transform coefficients 

TX x/  are nonzero. Relating this situation back to (8), we can 
formulate the CS recovery problem as

	 argmin CTX y X X p
1

2

2

X
m= - +-t � (10)

with the final reconstruction being .Tx X1= -t t  Ideally, for 
a T-domain sparse solution, we set p 0=  in (10), invoking 
the 0,  pseudonorm, which counts nonzero entries. Since this 
choice results in an NP-hard optimization, 
however, it is common to use ,p 1=  there-
by applying a convex relaxation of the 0,  
problem. Interestingly, if the underlying 
solution is sufficiently sparse, it can be 
shown that the two formulations yield the 
same final result [18], [19], [20]. Addition-
ally, for exact recovery, it is sufficient that 
the image transform T and the measurement matrix C be 
“mutually incoherent” in the sense that C cannot sparsely 
represent the columns of the transform matrix T. Accord-
ingly, an extensive number of image transforms T have 
been explored; additionally, large-scale images can be re-
constructed by applying the formulation in a block-by-block 
fashion (e.g., [21]). CS has garnered a great deal of interest 
in the computational-imaging community in particular due 
to the demonstration of devices (e.g., [22]) that conduct the 
compressed signal-sensing process Cy x=  entirely within 
optics, thereby acquiring the signal and reducing its dimen-
sionality simultaneously with little to no computation.

Optimization algorithms
One of the challenges with MBIR-based approaches is that 
the resulting optimization problems represented by (7) must 
be solved. Fortunately, solutions of such optimization prob-
lems have been well studied, and a variety of methods ex-
ist, including the projected gradient-descent algorithm, the 
Chambolle-Pock primal-dual algorithm, and the alternating 
direction method of multipliers (ADMM) algorithm as well 
as others. These methods are, in general, iterative algorithms 
composed of a sequence of steps that are repeated until a 
stopping condition is reached. Of particular interest is the 

ADMM algorithm as well as other similar methods exploit-
ing proximal operators [23], [24], [25]. Such methods split the 
original problem into a series of pieces by way of associated 
proximal operators. Specifically, the ADMM algorithm for 
solving (7) recasts (7) with an additional variable z  and an 
equality constraint

	 , ( ) ( ),argmin such thatx y z x x zL C R
,x z

= + =t ^ h � (11)

which is solved via the iterations

	
( )argmin

2

prox

x x z u x

z u

R

/

( ) ( ) ( )

,
( ) ( )

k k k

k k

1
2

2

2

x

R

!
t
- + +

= -t

+

^ h
�

(12)

	 , ( )argmin
2
1

2
z y z x z uL C( ) ( ) ( )k k k1 1

2

2

z
!

t
+ - ++ +^ h � (13)

	u u x z( ) ( ) ( ) ( )k k k k1 1 1! + -+ + + � (14)

where u  is the scaled dual variable, and t  is a penalty pa-
rameter. We have indicated previously that (12) is a proximal 
operator, effectively performing smoothing or denoising to its 
argument. We will return to this insight later as we consider 

the incorporation of learned information 
into computational imaging. Note that the 
ADMM algorithm comprises an image-
smoothing step (12), a data- or observation-
integration step (13), and a simple reconcili-
ation step (14).

In the model-based approach to image 
reconstruction discussed in this section, 

image formation is accomplished through the solution of an 
optimization problem, and underlying models of acquisition 
and image are made explicit. The prior-image models can 
serve to stabilize situations with poor data, and conversely, 
the observed data can compensate for overly simplistic prior-
image models. These MBIR methods, including the use of 
nonquadratic models and the development of CS, have had a 
profound impact on the computational-imaging field. They 
have allowed the coupled design of sensing systems and 
inversion methods wherein sensor design can be integrated 
with algorithm development in ways not previously possible. 
The impact has been felt in fields as disparate as SAR, com-
puted tomography, MRI, microscopy, and astronomical sci-
ence. These methods are characterized in our taxonomy by 
relatively high computation (resulting from the need to solve 
relatively large optimization problems iteratively) and the use 
of “small-data” algorithms (again, just the observations).

Data-driven models and learning: Dictionaries
The next phase we consider is that in which data start to take 
on an important role in modeling, with approaches charac-
terized by the increasing use of models derived from data 
rather than physics or statistics. This increased focus on data 
in modeling rather than on analytic models provides the 

Perhaps the simplest 
data-driven extension of 
the MBIR paradigm can be 
found in the development 
of dictionary learning.
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opportunity for an increase in explanatory richness. Perhaps 
the simplest data-driven extension of the MBIR paradigm can 
be found in the development of dictionary learning [17], [26], 
[27], [28]. The idea behind dictionary learning is that a noisy 
version of a signal x  can be approximated by a sparse linear 
combination of a few elements of an overcomplete dictionary 
D. This problem can be cast as an MBIR-type formulation as

	 argmin Dx 2
2

0a aa m= - +
a

t � (15)

wherein the dictionary D has, in general, many more columns 
than rows, and thus, enforcing sparsity selects the most impor-
tant columns. The final estimate is obtained as .Dx a=t t

Data-based learning is introduced into this framework by 
employing a large set of training samples , , ,x x xN1 2 f" , to 
learn the dictionary D. This dictionary-learning process can 
be cast conceptually as another MBIR-style sparsely con-
strained optimization 

	 , argminD Dx

[ ]

,
i

D

D

i i i
i

N

1

2
2

0
1

j

i

2

a aa m= - +

#

a =

t t"
"

,
,
/ � (16)

where [ ]D j 2  denotes the norm of column j of D, this norm 
constraint being necessary to avoid unbounded solutions for 
D. Ultimately, this formulation uses training data as well as 
a sparsity constraint to learn an appropriate representational 
framework for a signal class, and the resulting dictionary 
can then be used as a model for such signals in subsequent 
reconstruction problems. We note that while (16) conveys the 
aim of dictionary learning, in practice, a variety of different 
formulations are used.

Learning-based filters and algorithms: The appearance 
of deep learning
Renewed interest in the application of neural networks (NNs) 
to challenging estimation and classification problems occurred 

when AlexNet won the ImageNet Challenge in 2012. The 
availability of large datasets combined with deep convolution-
al NNs (CNNs) as well as advanced computing hardware such 
as graphics processing units (GPUs) has enabled a renaissance 
of NN-based methods with outstanding performance and has 
created a focus on data-driven methods. Beyond classification, 
deep CNNs have achieved state-of-the-art performance in 
computer-vision tasks ranging from image denoising to image 
superresolution. Naturally, these deep learning models have 
made their way into the world of computational imaging in a 
variety of ways, several of which we survey next.

Estimate post-processing
Perhaps the simplest way of folding deep learning into com-
putational-imaging problems is to apply a deep learning-based 
image enhancement as a post-processing step after a recon-
structed image has been formed. In doing so, one uses an 
existing inversion scheme—such as FBP for X-ray tomogra-
phy or inverse Fourier transformation for MRI—to create an 
initial reconstructed image. A deep network is then trained to 
bring that initial estimate closer to a desired one by remov-
ing artifacts or noise. The enhancement can be done directly 
on the formed image, or more recently, the deep enhancement 
network is trained on a set of residual images between initial 
estimates and high-quality targets. Approaches in this vein are 
perhaps the most straightforward way to include deep learn-
ing in image formation and were thus some of the first meth-
ods developed. Example application domains include X-ray 
tomography [29], [30] with subsampled and low-dose data as 
well as MRI [29], [31] with subsampled Fourier data. Figure 5 
illustrates this learning-driven post-processing approach for 
subsampled MRI along with a physics-driven explicit inver-
sion as well as an MBIR-based reconstruction.

Data preprocessing
Another use of deep learning in computational imaging is as 
a preprocessing step. In these methods, learning is used to 
“correct” imperfect, noisy, or incomplete data. Accordingly, 

(a) (b) (c) (d)

FIGURE 5. Subsampled MRI reconstruction and performance in terms of signal-to-noise ratio (SNR). (a) Inverse Fourier transform of complete data.  
(b) Reconstruction of sixfold subsampled data via the inverse Fourier transform as described in the “MRI” section; SNR = 11.82 dB. (c) Reconstruction  
of sixfold subsampled data via a convex optimization regularized with a total-variation criterion, i.e., an MBIR reconstruction in the form of (7); SNR =  
15.05 dB. (d) Reconstruction via the inverse Fourier transform of the subsampled data followed by post-processing enhancement with a CNN as  
described in the “Estimate Post-processing” section; SNR = 17.06 dB. (Source: Adapted from [29], ©2017 IEEE.) 
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data can be made to more closely match the assumptions that 
underlie traditional physics-based image-formation methods, 
which can then be used more effectively. Consequently, such 
an approach can leverage existing conventional workflows and 
dedicated hardware. One example can be found in X-ray to-
mography [32] wherein projection samples in the sinogram do-
main that are missed due to the sparse angular sampling used 
to reduce dose are estimated via a deep network; afterward, 
these corrected data are used in a conventional FBP algorithm.

Learned explicit priors
Yet another use of deep learning in computational imaging 
has been to develop explicit data-derived learned priors that 
can be used in an MBIR framework. An example of this ap-
proach can be found in [33] wherein a K-sparse patch-based 
autoencoder is learned from training images and then used as 
a prior in an MBIR reconstruction method. An autoencoder 
(depicted in Figure 6) is a type of NN used to learn efficient re-
duced-dimensional codings (or representations) of information 
and is composed of an encoder E  and decoder D  such that 

( )x xD E .^ h  with ( )xE  being of much lower dimension than 
.x  The idea is that one is preserving the “essence” of x  in cre-

ating ( ),xE  which can be considered a model for x  and that, 
ideally, ( )xD E^ h is removing only useless artifacts or noise. A 
sparsity-regularized autoencoder can be obtained from a set of 
training data xi" , as the solution of the optimization

, argmin Ks.t.x x xE D D E E
,

k k
k

k2
2

0
E D

#= - ^ ^ ^hh h/ � (17)

where E  and D  are both NNs whose parameters are learned 
via solving (17). Once E  and D  of the autoencoder are found, 
they can be used as a prior to reconstruct an image using an 
MBIR formulation
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Such an approach was adopted, for example, in [33], which ap-
plied (18) using a formulation based on image patches, solving 
the resulting optimization via an alternating minimization.

Learned inverse mappings
Deep learning can also be used to train a network that directly 
implements the inverse mapping from the data y  to estimate xt  
(e.g., [34]). That is, we learn a function F  such that .x yF=t ^ h  
This approach was taken in [35] with a method termed AU-
TOMAP. Four cases motivated by tomography and MRI were 
considered: tomographic inversion, spiral k-space MRI data, 
undersampled k-space MRI data, and misaligned k-space MRI 
data. The AUTOMAP framework used a general feed-forward 
deep NN architecture composed of fully connected layers fol-
lowed by a sparse convolutional autoencoder. The network for 
each application was learned from a set of corresponding train-
ing data without the inclusion of any physical or expert knowl-
edge. Taking k-space MRI as an example, although we know 
that the inverse Fourier transform produces the desired image, 
the AUTOMAP network has to discover this fact directly from 
the training data alone. While the results are intriguing, the ap-
proach suffers from the large number of training parameters 
required by the multiple fully connected layers, which seems to 
limit its application to relatively small problems.

Deep image priors
The final approach that we consider here is the deep image prior 
(DIP) [36], which replaces the explicit regularizer ( )xR  in the 
MBIR optimization (7) with an implicit prior in the form of an 
NN. Specifically, as in the autoencoders discussed previously, 
the DIP NN is a generator or decoder, ( ),D $  that maps a re-
duced-dimensional “code” vector w  to a reconstructed image, 
i.e., ( ) .wx D=t  The DIP formulation solves for the decoder so 
as to minimize the loss with respect to the observation ,y  i.e.,

	 , .argmin y wD L D
D

= ^ ^ hh � (19)

For example, one might use a loss in the form of ,y wL D =^ ^ hh  
,y wC D 2

2
- ^ ^ hh  as in (8). While optimization might also 

include ,w  usually the code w  is chosen at random and kept 
fixed; additionally, the initial network D  is also typically cho-
sen at random. In essence, (19) imposes an implicit regulariza-
tion such that ( ) 0xR =  for images x  that can be produced by 
the deep NN ,D  and ( )xR 3=  otherwise. DIP formulations 
have been applied to a number of image-reconstruction tasks, 

including denoising, superresolution, and 
inpainting [36], as well as in applications 
such as MRI, computed tomography, and 
radar imaging, along with other compu-
tational-imaging modalities illustrated in 
Figure 1. The DIP approach has the advan-
tage that the decoder D  is learned during 
the DIP optimization (19) as applied to the 
specific observed y  in question; that is, no 
large body of training data is required. On 
the other hand, the number of iterations 
conducted while solving (19) must be care-
fully controlled so as to avoid the overfit-
ting of ( )x wD=t  to .y

Encoder
Decoder

Low-Dimensional
Representation

x
E(x)

D(E(x))

FIGURE 6. A generic autoencoder structure. 
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Folding learning into algorithms: Coming full circle
In the “Physics-Driven Imaging: Explicit Inversion” section, 
we noted that the early stages of imaging were dominated by 
the drive for physics-derived algorithms that achieve the in-
verse of the physical sensing operator, which is then applied 
to the observed data. This emphasis on algorithmic inversion 
was subsequently replaced with the optimization framework of 
MBIR, allowing more complex sensing configurations and the 
inclusion of prior information. In the service of increasing the 
role of learning in computational imaging, researchers have 
recently shifted their focus from optimization back to algo-
rithms, but this time using learned—rather 
than analytically derived—elements. We 
now discuss some examples of recent devel-
opments in this vein with an aim to present 
representative examples of these methods 
rather than an exhaustive catalog.

Perhaps the most straightforward exam-
ple of this paradigm is to start with a physi-
cally derived inverse algorithm and then 
replace parts of the original algorithm with alternative learned 
elements. For example, in [37], [38], the physics-appropriate 
FBP algorithm of tomography is mapped into an NN architec-
ture wherein the back-projection stage is held fixed while the 
filter (i.e., the combining weights) is instead learned from data 
to minimize a loss function.

A particularly impactful and popular approach has been 
plug-and-play priors (PPPs) [39], [40], which was motivated 
by the advances in image denoising within the image process-
ing community. Effectively, PPP incorporated into the MBIR 
image-formation framework the power of advanced denois-
ers—such as those based on nonlocal means [41] or block-
matching and 3D filtering (BM3D) [42]—even though these 
denoisers are not simple solutions of an underlying optimi-
zation problem. Specifically, the PPP framework originated 
from the ADMM approach [(12), (13), and (14)] for solving 
the MBIR problem (7). ADMM entails iteration over two main 
subproblems, with one subproblem (13) involving the observa-
tion and sensor loss function , ,y xCL^ ^ hh  while the other (12) 
involves a proximal operator of the prior (or regularization) term 

( ),xR  which has the form of a MAP denoiser. This insight led 
to the replacement of the prior proximal operator derived from 

( )xR  in (12) with alternative state-of-the-art denoisers even 
though these denoisers might have no corresponding explicit 
function ( ) .xR  The result was an extremely flexible framework 
leading to state-of-the-art performance in a very diverse range 
of applications.

The PPP framework allows one to replace explicit image 
priors specified by the function ( )xR  with powerful image-
enhancement mappings, including those potentially learned 
from training data (e.g., [43]). Notable developments within 
this framework or inspired by it include general proximal algo-
rithms, regularization by denoising (RED), and multiagent 
consensus equilibrium (MACE). General proximal algorithms 
arose when it was demonstrated that while the original devel-
opment of PPP focused on the ADMM algorithm, the same 

approach can be applied to any proximal algorithm [24], 
including, in particular, the accelerated proximal gradient 
method or the fast iterative shrinkage/thresholding algo-
rithm (ISTA) [44], which are far more suitable for problems 
with a nonlinear forward operator and which have allowed 
the development of online variants of PPP [45], i.e., those 
that use only a subset of the observations ,y  rather than the 
full set, at each iteration. Additionally, RED was proposed 
as an alternative formulation for exploiting a denoiser in a 
way that does have an explicit cost function [46]. While this 
formulation is tenable in only some special cases [47], it 

has proven to be a popular alternative to 
PPP, with a growing range of applications 
and extensions. 

Finally, MACE [48] extended the origi-
nal PPP framework in two distinct ways: 
extending the number of terms (or “agents”) 
that could be addressed via a formulation 
that is closely related to ADMM consen-
sus [23, Ch. 7] and introducing a more 

theoretically sound interpretation of the approach based on 
fixed-point algorithms rather than as optimization with 
unknown or nonexistent regularizers. The general nature 
of MACE has also been used to include learned models 
into both the observation side of inverse problems as well 
as the prior-image information [49], allowing balanced 
inclusion of both types of constraints—Figure  7 shows 
an example.

Additionally, interest has grown in a set of techniques that 
can be collected under the labels “algorithm unrolling,” “deep 
unrolling,” or “unfolding” [50], as depicted in Figure 8. The 
idea of these methods is to view a fixed number of iterations 
of an algorithm as a set of layers (or elements) in a network. 
The resulting network then performs the steps of the algo-
rithm, while the parameters or steps of the original network 
are then collectively learned from training data or replaced by 
learned alternatives. One stated benefit of such an approach is 
that the resulting overall networks, obtained from underlying 
optimization algorithms, can be interpreted in ways that typi-
cal black-box deep networks with many parameters cannot.

Though the number of works in this spirit is now so large 
that it is impossible to touch on them all, we briefly mention 
a few final examples. An early instance was the work in [51], 
which was based on the ISTA for sparse coding and may be 
the first to refer to algorithm “unrolling.” In [51], a small fixed 
number of ISTA iterations are used for the network structure, 
and the associated linear weights are learned. In another 
example, [52] starts with a projected gradient-descent meth-
od to minimize a regularized optimization problem similar 
to (8), and then the projector onto the space of regularization 
constraints in the algorithm is replaced by a learned CNN. In 
a similar vein, the authors of [28] instead start with a solu-
tion to (7) provided by 10 iterations of the Chambolle-Pock 
primal-dual algorithm, and then the functions of the primal 
and dual steps are replaced by learned CNNs. Another exam-
ple is found in [53], which unrolls a half-quadratic splitting 

Additionally, the use of 
training data coupled 
with high-dimensional 
models can compensate 
for imperfect analytical 
knowledge in a problem.



50 IEEE SIGNAL PROCESSING MAGAZINE   |   July 2023   |

algorithm for the solution of a blind-deconvolution problem to 
obtain an associated network with the underlying parameters 
then being learned. We note that while many more examples 
are discussed in [50], they all largely retain physics-derived 
observation models while incorporating prior information 
implicitly through learning or training processes for algorith-
mic parameters.

While a variety of NN models have 
been used in this context, there has been 
significant recent interest in generative 
models, including various forms of genera-
tive adversarial networks [54], normaliz-
ing flows [55], and score-based diffusion 
models [56], [57]. The stochastic nature of 
these methods also makes them attractive 
for uncertainty characterization for computational imaging, 
another alternative for which is to use Bayesian NNs [58]. 
Finally, the challenges associated with access to the ground 
truth required for supervised learning have led to the devel-
opment of self-supervised or unsupervised methods for learn-
ing-based computational imaging [59], [60], an important 
current direction.

The rise of learning-based methods discussed in this 
section represents a great increase in the richness of the 
prior information that can be included in computational-
imaging problems. Additionally, the use of training data 
coupled with high-dimensional models can compensate 
for imperfect analytical knowledge in a problem. Conse-

quently, these methods are an ongoing area 
of active research and promise to impact 
a wide range of application areas. In 
our taxonomy of computational-imaging 
approaches, these techniques are char-
acterized by relatively high computation 
(for parameter learning) coupled with 
the use of big data.

SPS involvement
This section provides a brief history of SPS initiatives and 
activities related to computational imaging, including the 
establishment of IEEE Transactions on Computational Im-
aging (TCI) and the SPS Computational Imaging Technical 
Committee (CI TC) as well as support for community-wide 
conference and seminar activities.

TCI focuses on solutions 
to imaging problems in 
which computation plays 
an integral role in the 
formation of an image 
from sensor data.

Unrolling

Iterative
Algorithm

Unrolled
Algorithm

y

y

h(·; θ) h1(·; θ1) h2(·; θ2) hN(·; θ N)

x

x

FIGURE 8. A general framework for algorithm unrolling. Left: An iterative algorithm composed of iterations of the fixed function ( )h $  with parameter set 
.i  Right: An unrolling of N iterations into a network with multiple sublayers of ,hk  where each hk  now represents a (possibly structured) network with 

(possibly) different parameters ;ki  these networks are then learned through a training process. (Source: Adapted from [50].)

(a) (b) (c) (d)

FIGURE 7. Tomographic reconstructions with challenging limited-angle scanning in a baggage-screening security application. (a) Ground truth (FBP 
reconstruction using complete scanning). (b) FBP reconstruction followed by CNN post-processing using half-scan data. (c) PPP reconstruction with an 
image-domain learned denoiser using half-scan data. (d) MACE reconstruction including both learned data- and image-domain models using half-scan 
data. (Source: Adapted from [49], ©2021 IEEE.) 
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TCI
Motivated by the rapid growth of computational imaging as 
a research and technology area distinct from image process-
ing, the creation of a new journal on computational imaging 
was first proposed to the SPS Technical Activities Board Pe-
riodicals Committee in 2013 in an effort led by three serving 
and prior editors-in-chief of IEEE Transactions on Image 
Processing: Charles Bouman, Thrasos Pappas, and Clem 
Karl. The motivation for the new journal 
was the rapid growth of computational im-
aging as a research and technology area 
distinct from image processing. The jour-
nal was launched in 2015, with Clem Karl 
as its inaugural editor-in-chief.

TCI focuses on solutions to imaging 
problems in which computation plays an 
integral role in the formation of an image from sensor data. 
The journal’s scope includes all areas of computational 
imaging, ranging from theoretical foundations and methods 
to innovative computational-imaging system design. Topics 
of interest include advanced algorithms and mathematical 
methodology, model-based data inversion, methods for image 
recovery from sparse and incomplete data, techniques for 
nontraditional sensing of image data, methods for dynamic 
information acquisition and extraction from imaging sensors, 
and software and hardware for efficient computation in imag-
ing systems.

TCI has grown rapidly since its inception. With around 40 
submissions a month and an impact factor of 4.7, it is now one 
of the leading venues for the publication of computational-
imaging research. TCI is somewhat unique within the SPS 
publications portfolio in that it draws submissions from a broad 
range of professional communities beyond the SPS, including 
SIAM, Optica (formerly the Optical Society of America), and 
SPIE, and that it has connections to a broad range of domains, 
including radar sensing, X-ray imaging, optical microscopy, 
and ultrasound sensing. The editorial board similarly includes 
members from these diverse communities.

CI TC
The Computational Imaging Special Interest Group was estab-
lished within the SPS in 2015 and was promoted to TC status 
in 2018. The goal of the CI TC is the promotion of compu-
tational imaging as well as the formation of a community of 
computational-imaging researchers that crosses the traditional 
boundaries of professional-society affiliations and academic 
disciplines, with activities including the sponsorship of work-
shops and special sessions, assistance with the review of pa-
pers submitted to the major society conferences, and the sup-
port and promotion of TCI. The CI TC currently consists of the 
chair, the vice chair (or the past chair), and 40 regular voting 
members. Additionally, there are nonvoting advisory mem-
bers, associate members, and affiliate members. To promote 
collaboration across communities, the CI TC also appoints li-
aisons to other IEEE and non-IEEE professional groups whose 
interests intersect with computational imaging.

Those interested in becoming involved with the CI TC can 
become an affiliate member via an easy web-based registration 
process (see https://signalprocessingsociety.org/community 
-involvement/computational-imaging/affiliates). Affiliates are 
nonelected nonvoting members of the TC, and affiliate mem-
bership is open to IEEE Members of all grades as well as to 
members of certain other professional organizations in inter-
disciplinary fields within the CI TC’s scope.

Vision and outlook
Although computational imaging has only 
recently emerged as a distinct area of re-
search, it rests upon several decades of work 
performed in separate research and tech-
nology communities. Accordingly, a broad 
collaboration of researchers—hailing from 

signal processing, machine learning, statistics, optimization, 
optics, and computer vision with domain expertise in various 
application areas ranging all the way from medical imaging and 
computational photography to remote sensing—is essential for 
accelerating progress in this area. This progress is exactly what 
TCI and the CI TC aim to catalyze. Most recently, the commu-
nity has seen an increasing involvement and impact of machine 
learning in computational imaging, a theme to which TC mem-
bers and TCI authors make significant contributions.

Conclusions
In conclusion, computational imaging has emerged as a signifi-
cant and distinct area of research. With the increasing demand 
for improved information extraction from existing imaging sys-
tems coupled with the growth of novel imaging applications and 
sensing configurations, researchers have turned to advanced 
computational and algorithmic techniques. These techniques, 
including deep learning methods, have led to the development 
of new imaging modalities as well as the ability to process and 
analyze large datasets. The SPS has played an important role in 
this growing area through the creation of a new highly ranked 
journal, a new energetic TC, and support for new cross-society 
conference and seminar activities. The continued advancement 
of computational imaging will impact a wide range of applica-
tions, from health care to science to defense and beyond.
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