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Information forensics and security (IFS) is an active R&D area 
whose goal is to ensure that people use devices, data, and intel-
lectual properties for authorized purposes and to facilitate the 

gathering of solid evidence to hold perpetrators accountable. For 
over a quarter century, since the 1990s, the IFS research area has 
grown tremendously to address the societal needs of the digital 
information era. The IEEE Signal Processing Society (SPS) 
has emerged as an important hub and leader in this area, and 
this article celebrates some landmark technical contributions. In 
particular, we highlight the major technological advances by the 
research community in some selected focus areas in the field 
during the past 25 years and present future trends.

Introduction
The rapid digitization of society during recent decades has 
fundamentally disrupted how we interact with media content. 
How can we trust recorded images/videos/speeches that can 
be easily manipulated with a piece of software? How can we 
safeguard the value of copyrighted digital assets when they can 
be easily cloned without degradation? How can we preserve 
our privacy when ubiquitous capturing devices that jeopardize 
our anonymity are present everywhere? How our identity is 
verified or identified in a group of people has also significantly 
changed. Biometric identifiers, used at the beginning of the 
20th century for criminal investigation and law enforcement 
purposes, are now routinely employed as a means to automati-
cally recognize people for a much wider range of applications, 
from banking to electronic documents and from automatic bor-
der control systems to consumer electronics.

While the issues related to the protection of media 
content and the security of biometric-based systems can be 
partly addressed using cryptography-based technologies, 
complementary signal processing techniques are needed to 
address them fully. It is those technical challenges that gave 
birth to the IFS R&D community. Primarily driven, at their 
early stage, by the need for copyright protection solutions, IFS 
contributions were published in various venues and journals 
that were not dedicated to this area. Although some dedicated  
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conferences (SPIE/IST Conference on Security, Steganog-
raphy, and Watermarking of Multimedia Contents; ACM 
Multimedia and Security Workshop; and ACM Workshop 
on Information Hiding and Multimedia Security) emerged, 
this nascent community lacked a well-identified forum where 
researchers, engineers, and practitioners could exchange the lat-
est advances in the area, which is multidisciplinary by nature. A 
call for contributions to IEEE Transactions on Signal Process-
ing in 2003 attracted enthusiastic responses to fill three special 
issues on secure media. It was time to cre-
ate a platform to advance the research and 
technology development of signal process-
ing-related security and forensic issues.

To foster broader community building 
and strive for a bigger and lasting impact, 
a collective effort by a group of volunteer 
leaders of the SPS charted a road map in 
2004 for creating IEEE Transactions on 
Information Forensics and Security (T-IFS) 
and a corresponding IFS Technical Committee, both of which 
were launched in 2006. It was written in the proposal to IEEE 
that the new journal would aim at examining IFS issues and 
applications “both through emerging network security archi-
tectures and through complementary methods including, but 
not limited to: biometrics, multimedia security, audio-visual 
surveillance systems, authentication and control mechanisms, 
and other means.” A few years later, in 2009, the first edition 
of the IEEE Workshop on Information Forensics and Security 
was held, in London, U.K.

The IFS community has established a strong presence 
in the SPS and is attracting submissions from a variety of 
domains. In view of the page budget allocated to this ret-
rospective article, rather than surveying, exhaustively but 
briefly, each individual IFS area, we opt for a more focused 
review of selected domains that experienced major break-
throughs over the past 25 years and that are expected to be 
more aligned with the technical background of the IEEE 
Signal Processing Magazine readership. While this choice 
does imply that some IFS areas will not be covered, it should 
not be taken as any indication that some IFS contributions 
are more welcome than others. We hope that the following 
few pages will give the readers a flavor of what happened in 
this field as well as the specifics of the mindset underpin-
ning this research area.

Digital watermarking
In the late 1990s, MP3 song exchanges on peer-to-peer file 
sharing networks and DVD ripping increased piracy con-
cerns. In this emerging digital interconnected world, genera-
tional copies became perfect clones that could be efficiently 
distributed worldwide without being burdened by the shipping 
logistics of the old analog world. Digital watermarking was 
introduced in this context to complement traditional cryptog-
raphy-based solutions and provide a second line of defense. 
The essence of this technology was to introduce imperceptible 
changes in media content—should it be audio, images, video, 

text, or something other—to transmit information that could 
later be recovered robustly, even if the watermarked content 
had been modified [1].

This new research area rapidly attracted contributions from 
related domains: perceptual modeling, digital communications, 
audio/video coding, pattern recognition, and so on. Early water-
marking methods used very simple rules, e.g., least-significant-
bit replacement, thereby providing almost no robustness to 
attacks. Significant progress was made when the IFS research 

community realized that the retrieval of the 
embedded watermark could be framed as a 
digital communications problem. A semi-
nal watermarking contribution, coined as 
spread-spectrum watermarking [2], lever-
ages a military communications model well 
known for its resilience to jamming. The 
underlying principle is to spread each water-
mark bit across many dimensions of the 
host media content to achieve robustness; 

for a given bit }1{b !!  to be embedded and an input (host) 
n-dimensional vector ,x  additive spread-spectrum outputs a 
watermarked vector y  such that

	 by x w= + � (1)

where w is an n-dimensional carrier secret to adversaries. 
Spreading is achieved when .n 1&  Due to intentional and inad-
vertent attacks (e.g., content transcoding), a legitimate decoder 
(that knows the carrier )w  gets access only to a distorted version 
of y from which it must extract the embedded bit b with the high-
est possible reliability. By further exploiting connections with 
statistical detection and coding, it has been possible to derive 
optimal ways to extract the embedded watermark information 
for various hosts and increase robustness using channel coding. 
It should be kept in mind, however, that watermarking deviates 
from standard communications theory in that
1)	 The watermark embedding process must remain impercep-

tible, so standard power constraints (i.e., / )/n nw x2 2< < % < <  
are not sufficient.

2)	 The wide range of attacks that the watermark is expected 
to be resilient to exceeds the typical channel distortions 
and jammers.
Spread-spectrum watermarking fundamentally assimilates 

the host media content x to interference on the underlying low-
powered watermark transmission bw, which can, at best, be 
modeled statistically.

A breakthrough came about by accounting for the fact 
that the media host is fully known at the time of watermark 
embedding (but not watermark detection) and that an alter-
native communications model (with side information) can be 
used to reject the interference of x completely. Side-informed 
watermarking is typically instanced through quantization-
based watermarking [3]. In this case, the watermarked vector 
is obtained as

	 ( )Qy xb= � (2)

Information forensics 
and security is an active 
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to ensure that people 
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intellectual properties for 
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where ( )Qb $  is a secret (to adversaries) vector quantizer that 
depends on the embedded bit of information and is designed 
in such a way that y x-  meets a perceptibility constraint. The 
theoretical basis for side-informed watermarking was derived 
from Gel’fand and Pinsker’s random-binning idea [4], which 
relies on an auxiliary random variable as a proxy for trading 
off source and channel distortion. Especially influential to the 
IFS community was Costa’s application of the random-binning 
paradigm to side-informed Gaussian channels that introduced 
the key element of distortion compensation in his construction 
of the auxiliary variable [5]. Following Costa’s catchy title, the 
concept of coding with side information at the transmitter came 
to be known as “dirty paper coding” (DPC). The rescue from 
the oblivion of DPC, now so prevalent in wireless communica-
tions, undeniably owes partly to watermarking research.

While the communications model serves as the core 
engine, the generic blueprint of a watermarking system typi-
cally requires additional components: a signal transformation 
to map the host media onto a multidimensional feature space 
that is robust to distortion, a powerful resynchronization 
framework to compensate for the misalignment experienced 
by the watermarked content, key-seeded pseudorandom mech-
anisms to obfuscate inner mechanics of the system to nonau-
thorized parties, and so on. This final item reveals a salient 
aspect of watermarking. A hostile adversary who wants to dis-
rupt watermarked communications may be present, especially 
when watermarking is used for copyright protection. In that 
case, there is an incentive for pirates to strip the watermark that 
prevents them from accessing premium content or that some-
how encodes their identity.

Therefore, a sizable research effort has been dedicated to 
characterizing how to prevent such an adversary from detect-
ing, estimating, tampering, and/or removing the watermark 
signal. For instance, it has been shown that specific measures 
should be taken to prevent watermark information leakage 
when the adversary has the opportunity to observe several 
watermarked assets [6]. On another front, research contri-
butions have highlighted the risks of making the watermark 
detector publicly accessible. In that case, the adversary could 
devise powerful strategies to disrupt the watermark, thanks to 
the availability of a reliable oracle [7]. This is particularly rele-
vant when watermarking is used for copy and playback control, 
and relevant countermeasures must be implemented. More 
critically, findings from deployments for live video distribu-
tion revealed that pirate operators might blend different sourc-
es of the same video stream, each one with its watermark, to 
generate the video they distribute. Such adversarial behaviors, 
which have long been thought to be academic mind games, 
require the introduction of dedicated coding mechanisms for 
the watermark to survive, such as, for instance, anticollusion 
codes [8], [9].

Content protection application use cases have historically 
driven research on digital watermarking. For instance, in the 
late 1990s, the Content Protection Technical Working Group 
and the Secure Digital Music Initiative considered watermark-
ing to implement a copy control mechanism for DVDs and 

music. Still, the adoption of watermarking was hampered in 
its early days by controversies, e.g., the backlash against pro-
tection mechanisms after the U.S. Digital Copyright Millen-
nium Act and European Union (EU) Copyright Directive and 
bullish marketing that oversold watermarking as a silver bullet 
against piracy. Nevertheless, forensic watermarking is widely 
deployed in digital cinemas, postproduction houses, screener 
systems, and direct-to-consumer video distribution platforms 
to trace the source of piracy. This commercial success was fur-
ther recognized in 2016 with a Technology and Engineering 
Emmy Award for “Steganographic Technologies for Audio/
Video for Engineering Creativity in the Entertainment Indus-
try.” Digital watermarking is also routinely used to perform 
audience measurement for radio and TV by companies, such 
as Nielsen, in North America, and Médiamétrie, in Europe. 
Besides this core market, the scope of watermarking appli-
cations has now expanded beyond content protection, e.g., to 
convey metadata and media content reliably. For instance, 
Digimarc is pushing watermarking to replace barcodes in 
retail stores to speed up checkout time and is currently explor-
ing whether watermarking could be used for plastic packaging 
to facilitate waste recycling.

Robust hashing
The fundamental requirement of digital watermarking is that 
multimedia content needs to be modified prior to its delivery to 
the recipient. In other words, this technology degrades, to some 
extent, the content, which can appear odd in view of its goal to 
protect the asset. A parallel line of research in the IFS commu-
nity, coined robust hashing (also known as perceptual hashing 
and content fingerprinting), stemmed from this contradiction.

Robust hashing constructs a binary representation of the 
content in a robust low-dimensional space, aiming at fast and 
reliable recognition under severe distortions. It is common 
practice for watermarking techniques to also leverage such 
low-dimensional spaces to introduce the watermark signal 
in perceptually significant portions of the signal and thereby 
achieve robustness. Therefore, it is no surprise that the bodies 
of work of both research areas share several design patterns, 
e.g., invariant spaces, pseudorandom projections, differential 
features, and so on. On another front, there are connections to 
research on biometrics and content indexing that look for func-
tions that output the same binary value for similar contents. 
Nevertheless, the IFS community undertook this challenge 
with a slightly different approach, inspired by cryptographic 
hash functions. These one-way functions have the property 
that they produce very different hash values as soon as a sin-
gle bit of the input changes. They are routinely used to check 
the integrity of digital assets and to provide efficient inverse 
lookup mechanisms for large-scale databases. Robust hashing 
relaxes this “high-sensitivity” property, and the aim is, rather, 
to tailor one-way functions that yield the same result for per-
ceptually similar pieces of content [10]. The underlying ratio-
nale is that a media asset should hash to the same or similar 
value even after modifications to the content that do not alter 
its semantics, such as recompression, filtering, resizing, and 
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more. Thus, robust hashing can be viewed as some quantiza-
tion scheme in a robust multidimensional space.

A common approach now is to have several such quantizers 
that produce subhashes, combined with efficient nearest-neighbor 
search mechanisms. For instance, it has been exemplified that 
capturing the sign of the first derivative of some robust trans-
form coefficient provides a rather stable hash representation of 
audio content [11]. Such a mechanism can, then, be exploited 
to construct song recognition applications, such as Shazam, 
and to provide means for broadcast monitoring and audience 
measurement. Robust hashing has also been used to check 
the integrity of multimedia documents and to identify physi-
cal objects, thanks to the hash of their microstructures. Today, 
research on robust hashing mostly focuses on visual content 
and is mostly published in content indexing and retrieval ven-
ues. A seminal example represents content as a bag of (visual) 
words [12], each word being a robust hash, and exploits these 
words to recognize content. For instance, YouTube deploys 
such techniques to assess whether uploaded user-generated 
content contains material subject to copyright claims.

Steganography and steganalysis
Steganography is a tool for private covert communication. 
The sender typically hides a secret message in a host (cover) 
document by slightly modifying it and then communicating it 
overtly to the recipient. A steganographic channel is consid-
ered secure when an adversary observing the communication 
cannot detect the fact that steganography is being used. Once 
the use of steganography is detected, it is considered broken.

Steganography complements encryption for situations 
when even the existence of the private communication must 
be concealed and thus finds use in oppressive regimes that ban 
the use of encryption and for military operations. Statistical 
undetectability is the main factor distinguishing between steg-
anography and watermarking. In contrast to steganography, 
the presence of watermarks is often advertised, and they usu-
ally have to be robust to distortion while carrying a relatively 
small payload.

Since detection of steganography amounts to detecting 
slight modifications of the host signal, steganalysis can be 
categorized as a forensic technique whose goal is to establish 
whether the host signal has been modified in a way that is 
indicative of embedding a secret. Consequently, many tech-
niques developed for steganalysis found applications in foren-
sics and vice versa.

Steganographic security
Steganography, in its modern form, is conceptually nested 
within the fields of information theory, statistical hypothesis 
testing, and coding. The senders, usually named Alice and 
Bob, communicate by exchanging objects, which we will as-
sume are digital images. They both agree upon the embedding 
and extraction algorithms used to embed a secret message in 
a cover and extract it from the stego-object. Both algorithms 
make use of a secret shared key, as depicted in Figure 1.

Covers are drawn for communication according to some 
probability distribution .Pc  If Alice uses steganography, her 
images s will, in general, follow a different stegodistribution 
.Ps  If Alice is able to make sure that ,P Pc s=  the stegosystem 

is considered perfectly secure because it is impossible to dis-
tinguish between Pc  and Ps  by just observing the channel.

Perfect security is achievable only when Alice knows the 
cover distribution, in which case, she can synthesize images from 
her secret message by running it through a cover source entropy 
decoder. Bob reads the message by compressing the image.

For digital media, though, the underlying statistical model 
is never perfectly known, and thus, all stegoschemes, in prac-
tice, are imperfect. A useful measure of steganographic secu-
rity is the Kullback–Leibler (KL) divergence,

	 ( )
( )
( )

( ) logD P P P
P
P

x x
x

c s c
s

c
KL

x
< =/ � (3)

because it bounds the performance of the best detector that the  
warden can build. For imperfect steganography, ( ) ,D P P 0c sKL 2<  
and with n images being sent, Alice needs to scale her payload to 
be proportional to n  to avoid being caught, with near certainty, 
by the warden. This asymptotic result is known as the square root 
law of imperfect steganography [13].

Practical steganography
There are two main image formats currently in use: raster for-
mats, such as bitmap, portable network graphics, and TIFF, 
and the popular JPEG format. Steganographic methods for 
JPEG files modify the quantized discrete cosine transform co-
efficients to embed the secret message.

Modern embedding methods are adaptive to content: they 
take into account the detectability of embedding changes in 
different parts of the cover image. Intuitively, changes made 
to a blue sky or water, out-of-focus parts of an image, and 
overexposed pixels will be more detectable than in textured 

areas, such as sand, grass, and trees. 
Alice can guide the embedding by 
assigning “costs” of changing each 
cover element and then requesting that 
the expected total cost of embedding 
(distortion) be minimal. Alternatively, 
she can adopt a statistical model and 
embed while minimizing statistical 
detectability, usually simplified to the 
point that it can be expressed using the 
deflection coefficient.

Emb (c, m, k)

Message m

Key k

Cover c Ext (s, k)

Key k

Message m

Channel With
Passive Warden

Stego s

Alice Warden Bob

FIGURE 1. The components of the steganographic channel.
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Today, virtually all steganographic techniques for digital 
images use some form of the preceding two paradigms. The 
actual embedding is implemented using linear codes, with the 
message m being communicated as the syndrome of the stego-
image represented with bits ( , ):mod 2y s=  ( ) ,Extm s Hy= =  
where H is the code parity check matrix. The parity check 
matrices of the so-called syndrome trellis codes [14] offer a 
clever blend of randomness for optimality in terms of the pay-
load distortion (detectability) tradeoff, with enough structure 
to allow computationally efficient implementation using the 
Viterbi algorithm.

Steganalysis
Steganalysis detectors can be built using the tools of detection 
theory as a form of the likelihood ratio test, and they can be 
data-driven constructed using machine learning. The former 
usually imposes a statistical model on signals extracted from 
the image (typically, noise residuals), while data-driven detec-
tors are built by representing images using “features” hand de-
signed to be sensitive to embedding changes but insensitive to 
image content.

A popular general methodology for designing feature 
representations for steganalysis is based on the concept of a 
rich model consisting of a large number of diverse submod-
els [15]. Rich media models can be viewed as a step toward 
automatizing steganalysis to facilitate fast development of 
accurate detectors of emerging steganographic schemes, 
instead of having to develop a new approach for each new 
embedding method.

The latest generation of detectors is built in a purely data-
driven fashion by presenting a deep convolutional neural net-
work (CNN) with examples of cover and stego images. This 
constitutes yet another paradigm shift in the field of stega-
nalysis that leads to significant improvements in the detection 
accuracy of just about every embedding scheme in both the 
spatial and JPEG domains (see an example of HILL algorithm 
detection in Figure 2).

The most recent trend in steganalysis (and in forensics in 
general) with deep learning (DL) is to use CNNs pretrained on 
computer vision tasks as a good starting point and apply the 
techniques of transfer learning to refine them for steganaly-
sis. For steganalysis, though, one needs to make sure that the 
feature map resolution is not decreased via pooling and strides 
too early in the network architecture, as this form of averag-
ing suppresses the signal of interest, the noise-like stegosignal, 
while reinforcing the content, which is really the “corrupting 
noise” for the steganalyst [16].

DL has also advanced the field of steganography in the 
form of adversarial embedding and fully automatized data-
driven learning of embedding costs Backpack [17]. 

Biometrics
In the past couple of decades, biometric technologies have 
become increasingly pervasive in our everyday life, due to 
several inherent advantages they offer over conventional rec-
ognition methods, which are based on what a person knows, 

e.g., passwords and PINs, and what a person has, e.g., ID 
cards and tokens. However, using biometric data raises many 
security issues specific to biometric-based recognition sys-
tems and not affecting conventional approaches for automatic 
people recognition.

Biometrics, such as voice, face, fingerprint, and iris, to cite 
a few, are exposed traits. Therefore, not being secret, they can 
be covertly acquired and stolen by an attacker and eventually 
misused, leading, for example, to identity theft. Moreover, con-
trary to passwords and PINs, raw biometrics cannot be revoked, 
canceled, and reissued if compromised since they are the user’s 
intrinsic traits and are limited in number.

The use of biometrics also poses many privacy concerns. 
Biometric data can be used for purposes different than what 
was intended in the first instance of collection and for what an 
individual has agreed to. Moreover, when an individual gives 
out biometric characteristics, information about that person, 
such as ethnicity, gender, and health conditions, can be poten-
tially disclosed. Some biometrics can be covertly acquired at 
a distance and, therefore, could be used for surveillance. In 
addition, using biometrics as a universal identifier across dif-
ferent applications can allow person tracking, thus potentially 
leading to profiling and social control. To some extent, the 
loss of anonymity can be directly perceived by users as a loss 
of autonomy.

In recent years, the need to develop secure and privacy-
compliant biometric systems has stimulated industrial and 
academic research [18] and standardization activities [19]. 
A biometric system is the interconnection of data capture, 
signal processing, comparison, decision, and data storage sub-
systems. Threats against a biometric system are diverse and 
can be unleashed against its different components, including 
transmission channels. In Figure 3, major intentional attacks 
are synthetically illustrated.

Among the depicted attacks, those against templates, hin-
dering both the security and privacy of biometric systems, 
and the spoofing attack, also known as a presentation attack, 
at the sensor level, have become mainstream in biometric-
related research.
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FIGURE 2. The detection error of the HILL stegoalgorithm at 0.4 bits/pixel. 
The improvements during 2011–2016 were due to the use of rich models, 
while CNNs were responsible for the advancements during 2017–2018.
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Security and privacy requirements of a biometric system
The need to protect biometric templates has emerged as a very 
stringent requirement for the deployment of secure and privacy-
sympathetic biometric systems. However, classical encryption 
techniques cannot be effectively employed, essentially because 
of the noisy nature of biometric data that does not allow mak-
ing comparisons directly in the encrypted domain. To answer 
the need for secure and privacy-compliant biometric systems, 
several approaches that treat security and privacy requirements 
as two sides of the same coin, aiming at enhancing security and 
minimizing privacy invasiveness, have been designed in the 
recent past, also triggering significant standardization activity.

The ISO/International Electrotechnical Commission (IEC) 
24745 standard [19] makes a clear distinction between the 
identity reference and the biometric reference (BR), where the 
first refers to nonbiometric attributes, such as names, address-
es, and so forth, uniquely identifying a user, and the second to 
biometric-related attributes of the individual.

From an ideal standpoint, a secure and privacy-compliant 
biometric system needs to possess the following properties:

■■ Confidentiality: From a security point of view, the BR can 
be made available to authorized entities, which have full 
control of the data, and is protected from nonauthorized 
ones. From a privacy perspective, the BR can be accessed 
only by entities that need to access the data and for the pur-
pose for which they were initially collected. The user has 
full control of the data, with the right to be forgotten.

■■ Integrity: The integrity of the biometric sample of the BR, 
and the whole authentication process, need to be ensured.

■■ Revocability and renewability: If a BR is compromised, 
severe security and privacy issues can arise since an attack-
er can get unauthorized access and the BR as well as other 
personal data can be revealed. Therefore, it should be pos-
sible to revoke a compromised BR and issue a new one 
based on the same biometric sample.

■■ Irreversibility: To prevent biometric data from being used for 
purposes different than the originally intended and agreed ones, 
the BR needs to be irreversibly transformed before being stored.

■■ Unlinkability: BRs should not be linkable, and it should not 
be possible to infer that they originated from the same bio-
metric data, in a computationally feasible way, for different 
applications and datasets.

In addition, from an ideal point of view, the performance of a 
biometric system compliant with the requirements in the pre-
ceding should not degrade.

Biometric template protection
According to ISO/IEC 24745, a renewable BR consists of two 
elements, the pseudonymous identifier (PI) and the auxiliary 
data (AD), which are generated during the enrollment phase 
and kept separated either logically or physically.

Biometric template protection schemes can be broadly clas-
sified into two different categories, specifically, transforma-
tion-based approaches and biometric cryptosystems. It is worth 
mentioning that hybrid methods combining these two have also 
been investigated.

Transformation-based approaches rely on using a func-
tion whose parameters represent the AD, either invertible or 

Data
Capture
Systems

Signal
Processing
Subsystem

Comparison
Subsystem

Decision
Subsystem

Data
Storage

Subsystem

Eavesdropping
Attack Replay Attack
Man in the Middle
Brute Force Attack

Insertion of Imposter
Data Component
Replacement

Hill Climbing
Comparison Score Manipulation

Insertion of Imposter Data
Component Replacement
Hill Climbing Manipulation
of Comparison Score

Hill Climbing
Threshold Manipulation
Denial of Service

Manipulation
of Decision

Eavesdropping Attack
Replay Attack
Man in the Middle

Sensor Spoofing
Capture of Signal
Replay of Signal

Disclosure of BR/IR
Replacement of BR/IR
Modification of BR/IR
Deletion of BR/IR
Denial of Service

FIGURE 3. The threats to a biometric system. BR: biometric reference; IR: identity reference.
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noninvertible, used to transform the BR. The original tem-
plate is discarded, whereas the transformed one is stored as PI. 
The match is then performed in the transformed domain. The 
employed function can be invertible, in which case, a key is 
needed, and the security of the approach depends on key man-
agement. Alternatively, systems relying on the use of nonin-
vertible transformations are more secure, but the design of a 
noninvertible transformation that does not degrade the recog-
nition performance accuracy is challenging. Several transfor-
mations have been proposed and been applied to a variety of 
biometric identifiers [20], [21].

Biometric cryptosystems are based on adapting crypto-
graphic techniques to the intrinsic noisy nature of biometric 
data, usually employing error correction coding approaches to 
protect a BR. Roughly speaking, biometric cryptosystems can 
be classified into key generation, where a key is obtained from 
the BR, and key binding schemes, where the BR is bound to a 
key. In both cases, a secret related to the PI is bound to the BR 
to generate some public data, namely, the AD, that ideally does 
not leak information about the BR and that, in conjunction with 
the BR, can allow retrieving the secret. Within the key bind-
ing scenario, the introduction of two constructions, the fuzzy 
commitment for ordered data and the fuzzy vault for unor-
dered data, have significantly stimulated research in the field 
and been applied to several biometric identifiers [22]. In [23], 
an error-tolerant cryptographic primitive, namely, the secure 
sketch, has been introduced, and in [24], a general framework 
for analyzing the security of a secure sketch with application to 
face biometrics is carried out.

Approaches based on secure multiparty computation, 
employing homomorphic encryption and garbled circuits, have 
also been proposed for secure and privacy-compliant biometric 
systems [25]. These architectures rely on the computation of 
the distance between the stored BR and the probe biometrics 
in the encrypted domain. The privacy and security of these 
approaches depend on the computational effort to discover a 
decryption key by an adversary. However, these methods have 
shown that they are not mature enough to be deployed in real-
life applications, such as those requiring fast identification 
response, since the involved computational complexity, com-
munication burden, and computational time are significantly 
higher than other architectures.

Several information-theoretic studies have investigated 
potential AD information leakage in key binding approaches, 
that is, the amount of information leaked by the AD about the 
BR. In [26], the fundamental tradeoff between the secret key 
and privacy leakage rates in biometric systems is studied for 
different scenarios. In [27], the findings of [26] are expanded 
by further discussing the tradeoff among security, privacy, 
and identification performance. It has been pointed out that 
as higher identification rates are achieved, more information 
leakage must be tolerated, and the smallest secret keys can be 
generated. In addition, the need to provide a quantitative evalu-
ation of unlinkability has been addressed in ISO/IEC 30136 
[28], where metrics for security and privacy protection perfor-
mance assessment have been given.

Presentation attacks
Due to the integration of biometric sensors in almost every 
smart device and their use in several applications, presentation 
attacks [29], defined as the presentation of previously stolen 
human characteristics or fake ones to the acquisition sensor of 
a biometric system to gain unauthorized access, are receiving 
increasing interest. Several approaches have been proposed, 
mainly for fingerprint, iris, and face biometrics. The advent of 
DL has further fed this line of research, with the development 
of deepfakes (the “Advent of Deepfakes” section).

Multimedia forensics
The analysis of multimedia evidence has been an essential part 
of digital forensics since the 1980s. However, only in the late 
1990s, with the proliferation of personal digital devices, did 
it became a full-fledged research field known as multimedia 
forensics, with a focus on source identification (for example, 
establishing which camera took a given photo) and authenticity 
verification (for example, detecting the presence and position 
of manipulated areas in an image). These areas have radically 
evolved in the past 25 years, following the equally fast evolu-
tion of key enabling technologies, such as the hardware and 
software of imaging devices and new methods for synthetic 
data generation, and pushed by the massive increase in the 
volume of audiovisual communications over the Internet and 
social networks.

The progression of IFS research from digital watermark-
ing to multimedia forensics revolves around the use of “extrin-
sic” versus “intrinsic” features [30], [31]. These terms were 
first coined by an interdisciplinary team at Purdue University 
for electrophotographic printers [32]. The team examined the 
banding artifacts of printers and treated them as an “intrin-
sic” signature of a printer that can be identified by appropriate 
image analysis techniques; it also developed a way to manipu-
late the banding artifact to embed additional information as an 
“extrinsic” signature to encode side information, such as the 
date and time that a document was printed.

From statistical to data-driven approaches
Around the turn of the millennium, the most popular ap-
proaches for source identification and forgery detection relied 
on mathematical and statistical models. A breakthrough in the 
field was the emergence of methods based on the concept of 
the device fingerprint, following the seminal 2006 work [33] 
on the camera photo response nonuniformity (PRNU) pattern. 
The PRNU is a deterministic sensor pattern, due to tiny im-
perfections in sensor manufacturing, and can be regarded as a 
sort of device fingerprint. PRNU-based methods significantly 
advanced the state of the art in both source identification and 
image forgery detection and have been extensively used by law 
enforcement agencies to analyze both physical devices and 
web accounts. Many other pieces of information have been 
exploited for forensic investigation, arising from all phases of 
the digital life of multimedia assets: traces of in-camera op-
erations, such as chromatic aberrations, color filter array arti-
facts, and double JPEG compression, but also clues related to 
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out-camera image processing steps, such as image smearing, 
shadows, and reflections [34].

An inherent limit of model-based approaches is that they 
mostly fail when the hypotheses do not hold. On the other 
hand, this is rather the norm in real-world uncontrolled sce-
narios where data go through unpredictable post-processing 
operations, as happens on social networks. Another major 
issue is technological advances. For example, the introduction 
of computational photography has strongly changed the data 
acquisition pipeline, and many hypotheses of model-based 
methods do not hold anymore. Data-driven machine learn-
ing methods can partially solve these problems, and, in fact, 
they have been successfully applied, starting from the first 
experiments in 2005 [31]. Several tools also took inspiration 
from work carried out in steganalysis since, despite the obvi-
ous differences, both research areas focus on seemingly invis-
ible alterations of the natural characteristics of an image. For 
example, in the 2013 IEEE Image Forensics Challenge, the 
winning solutions relied on the rich models [15] developed 
with great success in steganalysis.

Advent of deepfakes
DL has brought a revolution in multimedia forensics, mak-
ing available a wealth of simple and powerful tools that allow 
one to create synthetic content easily. The first deepfake video 
dates back only to autumn 2017. However, the wide spread of 
tools based on autoencoders, generative adversarial networks, 
and, more recently, diffusion models has led to the exponen-
tial growth of deepfakes we observe today, which threatens so 
many areas of our society, from politics to journalism to the 
private lives of citizens. In particular, artificial intelligence 
(AI)-powered tools that allow one to generate realistic faces 
has raised great alarm not only for the diffusion of misinfor-
mation but also for the vulnerability of biometric systems.

However, DL also heavily impacted the defense side, 
making new powerful tools and methodologies available to 
the forensic analyst. Especially important was the creation 
of larger and larger datasets of manipulated media, which 
allowed researchers to train and fine-tune deep NNs [35]. 
DL-based detectors, trained and tested on such datasets, 
soon outperformed methods that relied on handcrafted fea-
tures. In particular, in the most challenging situations of 
low-quality compressed videos, there is a large gap between 
a solution based on extracting forensic features and a fully 
data-driven method based on a very deep CNN [36]. In attri-
bution tasks, DL allows one to learn a camera fingerprint 
from the available data, gaining independence from a fixed 
mathematical model and proving more effective in many 
different situations [37]. The concept of the fingerprint was 
also extended to synthetic images with so-called artificial 
fingerprints, related to new types of artifacts introduced in 
the generation process [35].

Despite their obvious potential, AI-based methods also have 
well-known weaknesses, from a general lack of interpretability 
to a limited generalization ability, with poor performance on 
data generated by manipulation methods and synthetic sources 

never seen in the training phase. A further major challenge is 
represented by adversarial attacks, which can easily fool DL 
detectors. This happens especially when the detector relies on 
low-level features that can be easily removed by injecting suit-
able adversarial noise. For this reason, a recent trend is toward 
the exploitation of semantic artifacts, which are more robust to 
different signal degradations, such as the biometrics of a spe-
cific identity and the geographic information estimated from 
an image or video.

From single- to multimodal analysis
Another major evolution is represented by a paradigm shift 
from data processed in isolation to multimodal analyses. With 
the progress of technology, devices tend to lack unique features 
that allow easy identification, and manipulations become in-
creasingly sophisticated, evading the scrutiny of expert users. 
In this context, working on a single media modality may be 
insufficient, while a joint analysis of all pieces of information 
associated with a media asset may become key to successful 
forensics. Accordingly, current methods look for inconsis-
tencies among multiple modalities, such as audio–video and 
text–image, the latter being especially relevant when unaltered 
images are used in a new but false context. This trend started 
in the early 2010s, with the introduction of multimedia phy-
logeny [38], which aims at investigating the history and evolu-
tionary process of digital objects by automatically identifying 
the structure of relationships underlying the data. This has led 
to synergy among different research fields: signal processing, 
computer vision, and natural language processing. In parallel, 
the attention to multimedia forensics has moved from forensics 
labs and law enforcement agencies, as it was 25 years ago, to 
big tech companies, such as Facebook and Google, and large 
international research programs. Likewise, research papers 
once published mostly in specialized forensics venues now 
find a much wider audience, including major computer vision 
conferences and satellite workshops.

Adversarial signal processing and  
machine learning
If there is one thing that researchers trained in the watermark-
ing field had learned by the end of the first decade of the new 
millennium, it is that security is not robustness [39]. Dealing 
with random noise and benevolent manipulations is not like 
dealing with an enemy whose explicit goal is to make the 
system fail. In the meantime, other security-oriented signal 
processing applications were emerging, including multimedia 
forensics [40], biometric security [41], network intrusion detec-
tion [42], spam filtering, anomaly detection, and many others. 
Despite their differences, all these fields were characterized 
by a unifying feature: the possible presence of one or more 
adversaries aiming at making the system fail. Prompted by 
this basic observation, multimedia security researchers started 
studying the adversarial dynamics describing the interplay be-
tween the actions of the system designer and the adversary. 
Some early works in this area include [43] and [44], where 
game theory was used to predict behavioral dynamics in traitor 
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tracing and media sharing applications. As a result of these ac-
tivities, a broad research area, often referred to as adversarial 
signal processing [45], emerged, whose final goal is to design 
signal processing tools that retain their effectiveness even in 
the presence of an adversary.

The peculiar feature of adversarial signal processing is the 
presence of an informed and intelligent attacker who does not 
act stochastically since he/she introduces a disturbance opti-
mized to cause the maximum damage to the system. To do so, 
the attacker exploits the knowledge he/she has about the to-be-
attacked system. As a leading example (and without pretend-
ing to be exhaustive), let us consider a system responsible for 
making a binary decision. The binary decision may regard the 
presence of a watermark within a signal, detecting anomalous 
behavior, and verifying a biometric trait. Let us assume, for 
simplicity, that a linear function is used. More specifically, let

	 ( ) , ( ) ( )x i w ix x w
i i

n
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be a linear combination of the input signal x and a proper 
vector of weights w. The system makes a positive decision if 
( ) Tx 2z  and a negative one otherwise. In digital watermark-

ing, for instance, x corresponds to the observed signal and w to 
the watermarking key. As another example, (4) may model an 
anomaly detector based on Fisher discriminant analysis. In this 
case, x contains the features the detector relies on and w the 
weights of the linear combination. In a white-box attack, the 
attacker knows exactly the form of ,z  including the vector w.  
In this case, the optimum attack corresponds to adding a per-
turbation z, defined as follows:
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where ew  is a vector having the direction of w and f  is an 
arbitrarily small positive quantity and where we have assumed 
that the goal of the attacker is to turn a positive decision into 
a negative one. If the attacker does not know w, attacking the 
system would require the addition of random noise, with two 
negative consequences (for the attacker): 1) uncertainty about 
the result of the attack and 2) the necessity of introducing into 
the system a larger distortion (on average).

Alternatively, the attacker may not know w but may have 
access to the values assumed by z in correspondence with 
properly chosen inputs. In this case, the attacker may estimate 
the gradient of z and add a perturbation aligned to the negative 
direction of the gradient. If z is nonlinear, he/she can use gra-
dient descent to exit the positive decision region with a mini-
mal distortion. In other cases (black-box attacks), the attacker 
can observe only the final decision of the system in correspon-
dence to chosen inputs. In this case, he/she can apply a so-
called sensitivity attack. Let us assume again that z is a linear 
function. The attacker first chooses a random input resulting in 
a negative decision. Then, he/she applies a bisection algorithm 
to find a point on the boundary of the decision region. Finally, 
he/she repeats the procedure n times, finding n points on the 

boundary of the decision region. Due to the linearity of ,z  such 
n points are enough to estimate w and compute z as in (5). If 
the detection boundary is not linear, then the attack is more 
difficult yet still possible, as shown in [7].

Let us now turn our attention to the defender. First, the 
defender may want to keep part of the system secret. By fol-
lowing a common practice in cryptography, secrecy should be 
incorporated within a key, while the overall form of the sys-
tem is assumed to be known. In the simple linear case out-
lined before, this means that the attacker knows the form of 
z but does not know w. If the defender knows the attacker’s 
strategy, he/she can adopt other countermeasures. For instance, 
he/she may try to limit the information the attacker can infer 
by observing the system’s output by randomizing the decision 
function. In systems based on machine learning, the defender 
may retrain the system by incorporating some attacked inputs 
in the training set. In this way, the system learns to recognize 
the attacked inputs and treat them properly.

A problem with most of the defenses described so far is that 
they assume a static situation, where the attacker adopts a fixed 
strategy ignoring the possible countermeasures adopted by the 
defender (it goes without saying that a similar drawback applies 
to most attack strategies.) When this is not the case, the defend-
er can adopt a worst-case solution, assuming that the attacker 
has perfect knowledge of the attacked system. However, this 
tends to be an overly pessimistic approach, given that, in some 
cases, it may be difficult and even impossible for the attacker 
to obtain perfect knowledge of the system. Furthermore, the 
defenses put forward under the worst-case assumption may be 
too complicated, leading to a significant deterioration of the 
system’s performance. An elegant solution to solve this appar-
ent deadlock and avoid a situation in which new attacks and 
defenses are developed iteratively in a never-ending loop con-
sists of modeling the interplay between the attacker and the 
defender by using game theory. Game theory, in fact, provides 
a powerful way to model the interplay between the attacker and 
the defender, whose contrast can be defined by the payoff of a 
zero-sum game, while the constraints they are subject to and 
the knowledge they have can be modeled by a proper defini-
tion of the set of moves they can choose from. Furthermore, it 
is possible to model both scenarios wherein the attacker and 
the defender design their systems independently and situations 
where one of the players acts first and the other adapts his/her 
move based on the choice made by the first player. Eventu-
ally, by computing the payoff at the equilibrium, the achiev-
able performance of the system when both players adopt an 
optimum strategy can be evaluated. Some examples of works 
where game theory was successfully used to derive optimal 
strategies for the attacker and the defender include [42], [43], 
[46], and [47].

Adversarial AI
DL and AI are revolutionizing the way signals and data are 
processed. In addition to new opportunities, DL raises new 
security concerns. When Szegedy et al. [48] pointed out the 
existence of adversarial examples affecting virtually any 
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deep NN model, the AI community realized that robustness 
is not security and that proper countermeasures had to be 
taken if AI were to be used within an adversarial setting. 
Such concerns gave birth to a new discipline, usually re-
ferred to as adversarial AI (or adversarial machine learn-
ing). Adversarial machine learning has many similarities 
with adversarial signal processing. When targeting a binary 
classification network, for instance, adversarial attacks are 
nothing but a re-edition of the white-box attacks described 
in (5). More generally, by assuming that the to-be-attacked 
input is close to the decision boundary and that the boundary 
is locally flat, in its simplest form, an adversarial example 
can be computed as

	 x x e ( )adv xf= - dz � (6)

where we have assumed that the goal of the attack is to change 
the sign of the network output, e ( )xdz  is a vector indicating the 
direction of the gradient of the output of the network in cor-
respondence of the input x, and f  is a (usually small) quantity 
ensuring that the network decision is inverted. Even if more 
sophisticated ways of constructing adversarial examples have 
been proposed, the similarity to adversarial signal processing 
is evident, the main peculiarity of attacks against DL archi-
tecture being the ease with which ( )xdz  can be computed 
by relying on back propagation. A distinguishing feature of 
adversarial machine learning is the possibility of attacking 
the system during the learning phase. Backdoor attacks are 
a typical example, where the attacker manipulates the train-
ing set to inject into the network a malevolent behavior [49]. 
Interestingly, this attack presents several similarities with wa-
termarking. Backdoor injection, in fact, can be seen as a way 
to watermark an NN to protect the intellectual property rights 
of DL models [50].

Given the striking similarities between adversarial machine 
learning and security-oriented applications of signal process-
ing, the signal processing community is in an ideal position to 
contribute to the emerging area of adversarial AI, transferring 
to this domain the theoretical and practical knowledge devel-
oped in the past 25 years.

Additional topics
As mentioned in the introduction, we opted for a focused re-
view of the IFS research areas that experienced the major 
attention and breakthroughs and that were aligned with the 
typical technical background of the readership of IEEE Sig-
nal Processing Magazine. Nevertheless, the scope of IFS is 
much wider, and this section is intended to provide a glance 
at other relevant subareas. The most interested readers are 
invited to check out our flagship journal publication, T-IFS, 
to grasp a comprehensive view of the IFS domain, includ-
ing areas closer to computer science, information theory, and 
digital communications.

Due to its security-oriented application domain, a sizable 
portion of the IFS research has been related to applied cryp-
tography for (multimedia) signals. While the IFS community 

has not been so much involved with advances for digital rights 
management and conditional access systems, it has explored 
alternate encryption mechanisms that would be better suited 
for multimedia signals compared to bulk encryption. These 
techniques, routinely coined selective encryption [51], consist 
of encrypting only a small portion of the signal representa-
tion to incur unrecoverable degradation while preserving lossy 
compression capabilities. Unfortunately, the parsing cost of 
these techniques hampered their adoption. Surviving incarna-
tions of this paradigm today include pattern based, most nota-
bly used in Apple’s Sample Advanced Encryption Standard 
and MPEG Common Encryption [52], and encryption limited 
to a region of interest.

On another front, signal processing in the encrypted domain 
received increasing attention in the late 2000s. The necessity 
of processing encrypted signals without first decrypting them 
arises naturally whenever two or more parties need to coop-
erate to reach a common goal, without revealing proprietary 
signals (and data) of a private nature, such as, for instance, 
medical records [53]. The cryptography community provided 
baseline tools, namely, homomorphic encryption and multi-
party computations, to process encrypted data. Nevertheless, 
when the data to be processed take the form of signals, it is 
necessary to exploit synergies between cryptographic tools 
and signal processing techniques to obtain secure and effi-
cient solutions. Over the years, the IFS community has greatly 
contributed to developing such solutions for a wide variety of 
applications domains, including biomedical signal processing, 
biometrics, smart metering, private recommender systems, and 
many others.

While forensic techniques for multimedia documents were 
discussed in the “Multimedia Forensics” section, the IFS com-
munity has also explored how to apply similar methodology 
for other types of signals. For instance, human actions may 
lead to changes in the surrounding electromagnetic field asso-
ciated with Wi-Fi systems. These changes can be analyzed to 
detect a variety of movements, e.g., 1) walking in a building 
and entering a room, (2) subtle breathing movements, and 3) 
unexpected sudden movement, such as falling down [54]. The 
power grid, whose nominal frequency varies over time in a 
unique manner, also provides a ubiquitous form of ambient sig-
natures. Harnessing the time–frequency properties of grid sig-
natures, which may be revealed in subtle but detectable ways 
from audiovisual recordings, can enable forensic analysis to 
determine the capturing time, location, and integrity of these 
recordings [55].

A final line of research worth mentioning is the so-called 
security of noisy data [56]. It relates to the ability of reliably 
recognizing data and signals when their representation slightly 
differs from one observation to the other. This fundamental 
problem underpins several IFS subareas, such as biometrics, 
robust hashing, and sensor-based forensics. Interestingly, the 
baseline tools developed to tackle this challenge can be revis-
ited to tailor some kind of physically unclonable features. 
For instance, some IFS contributions have demonstrated that 
it is feasible to extract some signature from the microscopic 
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structures of paper and other physical objects to facilitate 
brand protection and the fight against counterfeiting [57].

Conclusions
All in all, within a quarter century, the IFS 
research community has widened its focus 
well beyond its initial goal that revolved, to 
a large extent, around intellectual property 
protection. It fully embraced the transition 
into our new digital world and addresses 
fundamental societal challenges related to 
trust, privacy, and protection. While such 
topics are routinely viewed as owned by computer science, the 
unique contributions of the IFS community clearly established 
that signal processing has its own role to play. For instance, the 
great strides in machine learning are anticipated to raise chal-
lenges with the emergence and popularization of generative 
methods capable of substantiating synthetic realities, such as 
deepfakes and artificially generated images, text, and videos. 
This blur of the frontier between natural and synthetic signals 
is happening right now and will undeniably become an excit-
ing playground for the IFS research community.

While the changes coming with machine learning may be 
scary, they are also likely to have their own batch of benefits for 
the IFS research area, which typically aims at isolating/detect-
ing low-power signals whose characteristics may not be known 
beforehand. Similar to other domains, technological advances 
need to be accompanied, on some occasions, by an evolution 
of the legal framework that governs our lives to diffuse the risk 
of unmanaged technical advances, including to rule the use of 
IFS technologies and avoid their misuse. The road to hell is 
paved with good intentions, and a surveillance technology to 
protect the safety of people can be abused to invade privacy. 
It is of equal importance to educate citizens and raise their 
awareness of some of the dangers inherent to our new digital 
world, without scaring them. As Descartes said, human senses 
can be misleading, and one should not take at face value what 
he sees, reads, or hears (on the Internet).
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