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udio signal processing has passed many landmarks in its de-
velopment as a research topic. Many are well known, such 
as the development of the phonograph in the second half 

of the 19th century and technology associated with digital tele-
phony that burgeoned in the late 20th century and is still a hot 
topic in multiple guises. Interestingly, the development of audio 
technology has been fueled not only by advancements in the ca-
pabilities of technology but also by high consumer expectations 
and customer engagement. From surround sound movie theaters 
to the latest in-ear devices, people love sound and soon build 
new audio technology into their daily lives as an essential and 
expected feature.

Some of the major outcomes of the research in audio and 
acoustic signal processing (AASP) prior to 1997 were sum-
marized in a landmark paper published on the occasion of the 
50th anniversary of the IEEE Signal Processing Society (SPS) 
[1]. At that time, the vast majority of the work was driven by 
the objective to build models that capture the essential charac-
teristics of the analyzed audio signal and to represent it with 
a limited set of parameters and components. The field has 
now evolved beyond the essential characteristics explored in 
the past. For instance, a wide variety of speech/audio signal 
models have since been proposed and, in particular, around 
signal decomposition/factorization models and sparse signal 
representations. Nevertheless, the entire research domain cov-
ered by the IEEE Technical Committee (TC) on AASP is wit-
nessing a paradigm shift toward data-driven methods based on 
machine learning and, especially, deep learning.

In many applications, such data-driven models obtain state-
of-the-art results if appropriate data are available to train the 
models. This has accompanied sustained efforts to gather 
highly valuable and public data collections (and, in particular, 
annotated data), which are, in fact, essential for data-driven 
algorithms. Concurrently, to promote reproducible research 
and identify state-of-the-art methods, a number of challenges 
have arisen, for instance, in acoustic characterization of envi-
ronments (ACE), reverberant speech processing (REVERB), 
acoustic source localization and tracking, source separation 
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(SiSEC), acoustic echo cancellation (AEC), deep noise sup-
pression dedicated to single-microphone noise reduction, and 
the detection and classification of acoustic scenes and events 
(DCASE), which has been the subject of a yearly event since 
2016 (SPS data challenges: https://signalprocessingsociety.org 
/publications-resources/data-challenges; REVERB Challenge: 
http://reverb2014.dereverberation.com; SiSEC challenge: https: 
//sisec.inria.fr; and DCASE challenges: https://dcase.community 
/challenge2022). 

Without aiming for exhaustiveness, the article provides 
a view of the important outcomes of the field in the past 25 
years, also illustrating the emergence of purely data-driven 
models. In particular, the article covers the research addressed 
in signal models and representations; the modeling, analysis, 
and synthesis of acoustic environments and acoustic scenes; 
signal enhancement and separation; music information retriev-
al (MIR); and Detection and Classification of Acoustic Scenes 
and Events (DCASE).

The overall structure of the article is as follows. We dis-
cuss, in the “Advances and Highlights (Evolution and Break-
through)” section, the main axes of progress and highlights 
of the domain underlining the evolution and breakthroughs of 
the field. We then focus, in the “Emerging Topics” section, on 
the new topics that have mostly emerged in the past 25 years, 
before suggesting some conclusions and perspectives.

Advances and highlights (evolution  
and breakthrough)
Building upon the achievements prior to 1997, already dis-
cussed in [1], we summarize, in this section, the key advances 
and highlights of recent years.

Modeling and representation
We first discuss the developments in audio coding and signal 
modeling, with a focus on multichannel audio channel coding. 
We then describe some of the important work pursued in mod-
eling, analysis, and synthesis of acoustic environments, with 
specific highlights on room impulse response (RIR) analysis 
and synthesis.

Coding and signal modeling
Audio coding is a long-standing topic 
in the field and has led to several inter-
national standards. [The International 
Organization for Standardization/
International Electrotechnical Com-
mission (ISO/IEC) audio coding stan-
dards in the following are accessible at 
https://www.iso.org/standards.html by 
providing the search window with the 
numbers and years in the parentheses.] 

The field had its golden age in the 
1990s, with the first international stan-
dard of audio coding, MPEG-1 Audio 
(11172-3:1993), and its extension to 
multichannel signals of up to five chan-

nels, MPEG-2 Audio (13818-3:1995). MPEG-2 Audio was 
developed for multichannel and multilingual applications, such 
as digital radio broadcasting in Europe, with backward com-
patibility with MPEG-1.

However, without the backward compatibility constraint, 
much higher subjective quality was successfully achieved with 
MPEG-2 Advanced Audio Coding (AAC) (13818-7:1997). It 
is still the foundation of today’s audio coding algorithms and 
is employed in terrestrial TV broadcasting in Japan and Latin 
America. From a viewpoint of applications, MPEG-4 AAC 
(14496-3:2009) and MPEG-4 High-Efficiency (AAC HE-ACC) 
(14496-3:2009/Amd 7:2018) achieve sufficient audio quality at 
64 kbit/s and 32 kbit/s, respectively, for mobile applications 
and are most widely used today.

One of the major improvements is brought by bandwidth 
extension (BWE), also known as subband replication (SBR), 
which encodes only the low-frequency subband plus high-
frequency power envelope information, thereby reducing the 
bitrate with inaudible quality degradation. The decoder copies 
the low-frequency spectrum to the high-frequency band and 
adjusts the envelope by the transmitted envelope information to 
reconstruct the full-band audio (see Figure 1). MPEG-4 AAC 
and HE-AAC are used in various consumer products, such as 
PCs, tablet PCs, mobile phones, and car navigation systems, to 
name a few.

The history of MPEG-1 Audio through MPEG-4 HE-
AAC was to remove redundancy of the input audio in the 
frequency domain (transform coding), time domain (predic-
tion), and spatial domain (multichannel coding). The next 
stage of MPEG Audio, MPEG Surround (MPS) (23003-
1:2007), exploits further redundancy in the spatial domain, 
based on binaural cue coding [2]. A multichannel audio sig-
nal is decomposed into a monaural signal and additional 
spatial information in the form of the interaural level dif-
ference (ILD) and interaural time difference (ITD) in mul-
tiple time-frequency tiles (segments). The monaural data are 
encoded by MPEG-4 AAC, with a little side information 
representing the ILD and ITD. MPS achieves comparable 
quality to MPEG-4 AAC at one-third of the MPEG-4 AAC 
bitrate. The absolute subjective quality is transparent to the 
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FIGURE 1. The BWE principle.
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source signal, which is suitable for content delivery between 
geographically distributed studios and broadcasting sta-
tions. MPEG Spatial Audio Object Coding (SAOC) (23003-
2:2010) removes the redundancy of the input audio, based 
on the composition of each audio object. The input audio 
signal consists of multiple audio objects, which are indepen-
dent audio sources, such as individual musical instruments. 
Each audio object is expressed in multiple frequency tiles by 
object-level differences (OLDs) and interobject cross coher-
ences (IOCs). The OLD is the relative energy to the energy 
of the downmix signal that is a combination of the audio 
objects. The IOC is the cross correlation to the downmix 
signal. The downmix signal of multiple objects is encoded 
by MPEG-4 AAC, whereas the OLD and IOC of each object 
are encoded as side information. The decoder recovers each 
object from the downmix signal, OLD, and IOC. A direct 
link to MPEG SAOC can also be made with the line of 
work developed simultaneously on (coding-based) informed 
source separation [3].

Until MPEG SAOC, speech-dominant 
audio signals and more general audio signals 
had been encoded with different algorithms. 
MPEG Unified Speech and Audio Coding 
(USAC) (14496-3:2009/Amd 3:2012) is the 
first audio coding framework that auto-
matically switches between the speech-
oriented algorithm and the audio-oriented 
algorithm, based on the input signal anal-
ysis result in multiple time-frequency tiles. The most recent 
member of the MPEG Audio family is MPEG-H (23008-3 
2019), which is generic coding, including 3D audio (higher-
order ambisonics or HoA).

The most successful application of audio coding is portable 
audio players, represented by Apple’s iPod. The first prototype 
was the Silicon Audio, developed in 1994, which was a pre-
cursor of the iPod first put in the market in 2001. Audio play-
ers were later extended to include video data processing. The 
iPhone, released in 2007, was the first in the world and was 
combined with a large display to make a tablet PC or with a 
tiny display to make a smart watch. A history of these handy 
personal terminals can be found in [4]. Nevertheless, despite 
their immense success, audio players are now gradually being 
replaced by music streaming.

Acoustic environments modeling, analysis, and synthesis

Modeling and analysis of acoustic impulse responses
Sound propagation in acoustic enclosures is characterized by 
multiple reflections and the addition of noise, both associated 
with the acoustic environment. When an acoustic signal propa-
gates in an echoic environment, it is reflected by the room fac-
ets and objects in the enclosure, resulting in the reverberation 
phenomenon. The acoustic impulse responses (AIRs) that re-
late sound sources and microphones are usually a few hundred 
milliseconds in duration, corresponding to a few thousand taps 
in discrete-time filtering at typical sampling rates. The decay 

rate of acoustic energy in an acoustic environment is measured 
by the reverberation time, T60, the time it takes for the expo-
nentially decaying power profile of the reverberation tail to 
decay by 60 dB from its initial value. Typical offices have a 
T60 around 300–400 ms, and larger rooms can approach 1 s, 
depending on the volume, shape, and materials. The perceived 
reverberation also depends on the ratio between the direct path 
(including the early reflections) and the power of the tail, de-
noted as the direct-to-reverberant ratio (DRR). In the same en-
vironment, distant sources will exhibit a lower DRR and be 
perceived as more reverberant.

Reverberation can degrade the quality of a speech signal 
and, in severe cases, particularly in noise, its intelligibility. The 
word error rate (WER) of automatic speech recognition (ASR) 
systems is usually severely impacted by high reverberation lev-
els, especially for a low DRR.

An AIR encompasses the entire reflection pattern, consist-
ing of the direct path, the early reflections (consisting of sev-

eral distinguishable arrivals), and the late 
reflection tail, with an exponentially decay-
ing power profile. The latter part is the main 
cause of the reverberation phenomenon.

When an acoustic environment is a 
room, its AIR is referred to as an RIR. 
Room acoustics, even in mild reverberation 
conditions, should be taken into account 
when designing acoustic signal process-
ing algorithms, and failing to do so may 

severely degrade their performance. Modeling and accu-
rately analyzing the properties of the RIR is therefore of 
crucial importance.

Room simulators, RIR datasets, and sound field generators
Acoustic signal processing algorithms should be evaluated 
under reverberant conditions. This can be achieved either by 
using recorded RIRs or using room simulators. The outcome 
of such simulators may be less accurate, but using them al-
lows researchers in the field to generate a vast number of ex-
amples. This has recently become extremely important with 
the emergence of machine learning algorithms that require 
a large volume and diversity of training data. The field has 
evolved from the pioneering work in acoustics by Schröder 
(frequency-domain modeling), Polack (time-domain model-
ing), and Allen and Berkely (the image method) [5]. Based 
on these models (especially the image method), many RIR 
generators were developed: the RIR generator (https://
github.com/ehabets/RIR-Generator), PyRoomAcoustics 
(https://pyroomacoustics.readthedocs.io/en/pypi-release/py 
roomacoustics.room.html), and gpuRIR (https://github.com/ 
DavidDiazGuerra/gpuRIR). Using these generators, one can 
evaluate the performance of audio processing algorithms and 
also train data-driven methods. Recent advances improve the 
RIR generation using data-driven methods, usually genera-
tive adversarial networks (GANs).

Databases of real-world RIRs are also available, facilitat-
ing reliable evaluation of algorithms (https://www.dreams-itn.

Sound propagation in 
acoustic enclosures 
is characterized by 
multiple reflections and 
the addition of noise, 
both associated with the 
acoustic environment.
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eu/index.php/dissemination/science-blogs/24-rir-databases, 
https://github.com/RoyJames/room-impulse-responses, and 
https://asap.ite.tul.cz/downloads/mirage). In parallel, noise field 
generators were also proposed, including isotropic noise 
(https://github.com/ehabets/INF-Generator) and wind noise 
(https://github.com/ehabets/Wind-Generator).

Inference of room characteristics
The parameters characterizing the acoustic properties of an 
enclosure can be inferred from the AIR and the reverberant 
sound itself. These parameters can be used in the development 
of audio processing algorithms and also in rendering acous-
tic scenes. The reverberation time, T60, and DRR were men-
tioned in the preceding. The coherent-to-diffuse power ratio 
(CDR) is another attribute of the sound field that determines 
the impact of reverberation and depends on the source–micro-
phone distance and reverberation time. If the direct path and 
early reflections are dominant, the sound is perceived as more 
coherent, less diffuse, and less reverberant. The ACE Chal-
lenge (http://www.ee.ic.ac.uk/naylor/ACEweb) was dedicated 
to developing and benchmarking estimation procedures for 
the preceding room acoustic parameters. A recent database of 
RIRs with annotated reflections (“dEchorate”) can be used to 
advance research further in this direction (https://zenodo.org/
record/4626590#.Y1cMoOxByAQ).

Generation of artificial reverberation
Another thriving research direction is the generation of artifi-
cial reverberation, with the most popular method being feed-
back delay networks [6]. Traditionally (from the pioneering 
work of Schröder), these algorithms have been widely used in 
music production and now find applications in new fields, such 
as game audio, including virtual and augmented reality.

A different angle of research would rather consider geo-
metric approaches, which rely on physics-based models. The 
image method remains intractable for modeling late rever-
beration, especially that of large rooms. The radiance transfer 
method (RTM) was introduced to overcome this limitation, as 
it can model the diffuse reflections and sound energy decay 
of the late reverberation [7]. Although complex, it was later 
shown that the RTM can be linked to feedback delay networks 
to build efficient geometry-based reverberators [8].

Analysis of acoustic scenes
Here, we explore the field of acoustic scene analysis, using 
microphone arrays that are either arranged in structured con-
stellations (e.g., spherical and circular) or arbitrarily distrib-
uted in the acoustic enclosure. We discuss the localization of 
sound sources and basic concepts of data-independent spatial 
filtering. We further discuss wave domain representations us-
ing the cylindrical or spherical harmonics domain [9]. While 
originating from sound field rendering and microphone array 
beamforming, these representations are now frequently used 
for, e.g., source localization, echo cancellation, active noise 
control (ANC), and blind source separation (BSS), which are 
discussed in the following.

Acoustic sensor networks
Recent technological advances in the design of miniature and 
low-power devices enable the deployment of so-called wireless 
acoustic sensor networks (WASNs). A WASN consists of mul-
tiple (often battery-powered) microphone nodes, each of which 
is equipped with one or more microphones, a signal processing 
unit, and a wireless communication module. The large spatial 
distribution of such microphone constellations yields a large 
amount of spatial information and consequently increases the 
probability that a subset of the microphones (node) is close 
to a relevant sound source. Many daily life devices are now 
equipped with multiple microphones and considerable audio 
processing capabilities. These technological advancements 
significantly pushed the research forward. WASNs find ap-
plications in hearing devices, speech communication systems, 
acoustic monitoring, ambient intelligence, and more.

However, new challenges arise in these new ad hoc archi-
tectures. Typically, for a spatially extended network, the utility 
of sensors for a given task should be assessed, and for coherent 
signal processing of multiple sensor nodes, the signals must 
be synchronized. In particular, when data centralization is not 
possible, due either to the lack of a dedicated central process-
ing device or to overly demanding transmission/processing 
requirements, one must rely on distributed processing, where 
nodes share only compressed/fused microphone signals with 
one another. The according modifications for the various algo-
rithms, e.g., for beamforming, will be discussed along with 
their nondistributed versions in the following. First steps have 
also been taken to consider a moving robot as part of an acous-
tic sensor network.

Localization and tracking
Speaker localization algorithms, mainly time difference of 
arrival (TDoA) and direction of arrival (DoA) estimation, 
emerged in the 1970s, with solutions based on the normal-
ized cross correlation between the signals received by a pair of 
microphones, the so-called generalized cross correlation, and 
were later extended to multimicrophone solutions, most nota-
bly the steered response power phase transform [10], which 
steers a beam toward all candidate directions. Especially for 
simultaneously localizing multiple sources, generic frequency 
estimation and direction-finding algorithms (such as MUSIC 
and ESPRIT) were also adapted to acoustic applications, most 
prominently to the cylindrical and spherical harmonics do-
main. While TDoA and DoA estimation dominate localization 
efforts, efficient range estimation based on sound field charac-
teristics, e.g., the CDR, has been demonstrated and applied for 
position estimation in WASNs [11].

In later years, there were many attempts to incorporate sta-
tistical methods that can also facilitate the tracking of sources 
in dynamic scenarios, including Bayesian methods, e.g., non-
linear extensions of the Kalman filter, particle filters, and 
probability hypothesis density filters, and non-Bayesian meth-
ods, e.g., recursive expectation maximization (EM).

Acoustic reflections may degrade the performance of 
localization and tracking algorithms, especially in highly 
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reverberant environments and when multiple speakers are 
concurrently active. There are two paradigms in the literature 
to mitigate the effects of reverberation on localization accu-
racy. The first focuses on extracting the direct path of the 
sound propagation from the source to the microphones while 
trying to minimize the effects of the long AIR. Under the 
second paradigm, more general features are extracted from 
the microphone signals. These features characterize sound 
propagation. Then, a mapping from these high-dimensional 
features to the source location is learned. Manifold learning-
based methods adopt this paradigm (see the 2019 European 
Signal Processing Conference tutorial at https://sharongannot.
group/wp-content/uploads/2021/06/Speaker-Localization-on 
-Manifolds.pdf). This is part of the trend toward data-driv-
en methods, specifically deep neural network (DNN)-based 
algorithms, that infer the source location from a feature vector 
[12]. A recent survey [13] explores many of these methods.

Under the same paradigm, simultaneous localization and 
mapping (SLAM) can be used in the acoustic domain (acoustic 
SLAM) to enable devices equipped with microphones, such as 
robots, to move within their environment to explore, adapt to, 
and interact with sound sources of interest [14].

Spatial filtering
Essentially all multichannel algorithms, implicitly or ex-
plicitly, use the spatial diversity of the sensor arrangement 
for spatially selective signal processing. Referring to later 
sections for the treatment of other spatial filtering meth-
ods, such as data-dependent beamforming and multichan-
nel source separation and signal extraction, here, we limit 
the consideration to data-independent linear spatial filter-
ing, which was portrayed as an active area of research in 
[1]. Since then, notable advances in this area include the 
exploitation of the spherical harmonics domain [9], [15] 
as well as differential microphone arrays [16], [17], due to 
their high directivity. These also included the introduction 
of polynomial beamforming for efficient and flexible beam-
steering; the use of powerful optimization algorithms for 
noniterative designs of beamformers that meet robustness 
constraints, e.g., on white noise gain; and the incorpora-
tion of object-related transfer functions, e.g., head-related 
transfer functions (HRTFs), into the beamformer design. 
While these data-independent techniques were conceived 
for microphone array signal processing, they can also be 
used for sound reproduction by loudspeaker arrays. For the 
latter, more reproduction-specific techniques are discussed 
in the following.

Synthesis of acoustic scenes

Listener-centric binaural rendering
Binaural rendering usually refers to the process of spatial 
sound reproduction with headphones. One popular approach 
is based on the use of HRTF filters. Such filters contain all 
the cues that allow a listener to localize a sound source (and, 
in particular, spectral cues and interaural differences in time 

and intensity) [18]. The binaural signals are then obtained, 
for each ear, by filtering the input monophonic signal by the 
HRTF corresponding to a given position in space. The ren-
dering for reverberant environments is more complex since 
it should superimpose different HRTFs for each direction of 
the early reflections. This approach is, however, facing major 
challenges: the difficulty to acquire large databases of HRT-
Fs, the difficulty of obtaining generic and nonindividualized 
HRTFs, and the necessity to limit the computation complexity 
for high-quality rendering. These challenges have fueled ex-
tensive research in several complementary directions: 1) ob-
taining more generic HRTFs, 2) obtaining means to adapt 
generic HRTFs to individuals (for instance, by averaging sets 
of HRTFs, using anthropometric measurements, and resort-
ing to physical models), and 3) selecting an appropriate set 
of HRTFs from a large database by, e.g., subjective tests [19].

Sound field rendering
Beyond the universal numerical methods based on finite ele-
ments and finite differences, the signal processing of sound 
fields started to take advantage of wave domain representa-
tions, especially using the cylindrical or spherical harmonics 
domain [9], and has now been applied to address many key 
challenges in sound field rendering.

An important class of sound rendering techniques relies 
on a specific setting of distributed loudspeakers surrounding 
the listening area. Specific formats were developed based on 
stereophonic principles for a variety of configurations: six 
channels, including an additional one for low frequencies (5.1); 
eight channels (7.1); 12 channels (10.2); and 24 channels (22.2). 
These formats are associated with directional sound field 
encoding, which imposes strict constraints on the loudspeaker 
positions. Also, in practice, the spatial illusion is correct only 
in a rather small area around the center of the room (called the 
sweet spot). Outside this sweet spot, the sound is perceived as 
coming from the closest loudspeaker. The approaches based 
on sound field reproduction, such as ambisonics, originally 
proposed by Gerson in 1973, and wave field synthesis, intro-
duced in the 1980s by Berkhout, and, in a more general rep-
resentation, the spatial frequency domain [20] solve some of 
these constraints by taking into account the actual position of 
the speakers and creating virtual speakers for each required 
direction. In practice, these approaches can rely on object-
based coding and have a much wider sweet spot. Since their 
introduction, these methods have received much attention and 
led to many extensions for sound field reproduction with para-
metric and nonparametric methods, with potentially small-size 
microphone arrays for the recording to arbitrary loudspeaker 
layouts [21]. Once sound field rendering also accounts for the 
acoustic environment, room equalization techniques become 
necessary, which have been studied in [22].

Acoustic signal enhancement
In this section, we explore both single- and multimicrophone 
approaches for acoustic signal enhancement, address-
ing multiple sources of interference, namely, echo, feedback, 
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reverberation, noise, and competing signals. A generic view of 
an acoustic signal processing architecture together with sound 
field synthesis, which was discussed in the preceding, is de-
picted in Figure 2.

Echo cancellation
Echo cancellation emerged in the 1960s but has seen radical 
progress in the past 50 years. Many of the advances in the 
field of AEC were explored at the SPS 50th anniversary [1], 
including recursive least squares, affine projection, subband 
and frequency-domain adaptive filters, and double-talk de-
tectors. AECs became the enabling technology of hands-free 
telecommunication systems, especially modern video confer-
ence systems.

Several important challenges were then tackled to take into 
account the nonlinearities of the reproduction system [23], [24], 
the latter also harnessing DNNs to improve performance. A 
global approach for combining (residual) echo cancellation, der-
everberation, and noise reduction, usually by applying a postfil-
tering stage, was also a topic of extensive research. The classical 
spectral postfiltering may be substituted with modern structures, 
such as DNNs, to further improve performance. In multimi-
crophone settings with additive noise present, it is important 
to design the AECs and beamforming stages such that their 
cross interference is minimized. Step size control continued to 
develop from double-talk detection [25] to Kalman filter-based 
and, more recently, Kalman filter with deep learning-based step 
size optimization. Stereophonic AEC, as discussed in Sondhi’s 
seminal work, was extended to the multichannel case [26] and 
multiple-input, multiple-output AEC in the wave domain.

Comprehensive surveys of the AEC field, its achievements, 
and remaining challenges can be found in [26] and [27]. The 
International Workshop on Acoustic Echo and Noise Control 
(https://www.iwaenc.org), begun in 1989 and held at two-years 
interval, was originally dedicated to AEC, but its scope was 
rapidly extended to other audio signal processing domains, 
and the name was accordingly changed to the International 
Workshop on Acoustic Signal Enhancement.

Acoustic feedback and ANC
Acoustic feedback occurs when a microphone signal is played 
back by a loudspeaker (e.g., in public announcement systems 
and hearing aids). This creates a closed 
loop that limits the amount of amplifi-
cation that can be applied in the loop 
before the system becomes unstable 
and produces the howling effect [28]. 
This problem is well known to hearing 
aid wearers, who report it as one of the 
main drawbacks, especially for those 
requiring high gain due to moderate to 
severe hearing impairment. In the first 
step, a good “closed” fitting of a hear-
ing aid can usually provide for a stable 
increase in useful gain. To go beyond 
this, adaptive processing was intro-

duced in the 1990s to cancel the feedback components, and 
this approach has been advancing in recent years through the 
use of better models of the feedback path and better methods to 
control feedback-canceling algorithms. Usable gains have ris-
en by as much as 10 dB in some cases, providing correspond-
ing benefits to the hearing impaired.

ANC systems are based on microphones that capture the 
sound outside a volume and render “antisound” to create a quiet 
zone. Research in the field was boosted by commercial prod-
ucts, e.g., noise-canceling headphones and aircraft and automo-
tive applications. Aside from just suppressing noise in a given 
zone, multizone rendering became a topic of significant, both 
theoretical and practical, interest [29]: here, in each zone, only 
one of multiple simultaneously active sources should be audi-
ble, i.e., forming a “bright” zone, whereas all others should be 
suppressed, i.e., forming a “dark” zone each. This technology 
finds applications in entertainment, business, and health appli-
cations. For example, the sound from multiple TVs in the same 
hospital room may be zoned separately to each patient’s bed. 
Also, the sound level and rendering strategy of a movie may be 
zoned differently to different seats in the listening room, creat-
ing a “bright zone” and a “dark zone.” Different languages for 
the dialogue may also be rendered in specific zones.

Note that as soon as the reference information on the unde-
sired sound in a certain zone does not need to be acquired by 
microphones but can be estimated from an observable sound 
source and modeled and measured sound propagation path 
characteristics (e.g., impulse responses), the creation of dark 
and bright zones reduces to a spatial filtering task.

Dereverberation
Related to the objective of AEC, the topic of dereverberation 
has received growing attention due to the clear need to remove 
reverberation from audio signals, particularly in speech pro-
cessing tasks. Dereverberation, as opposed to AEC, is a blind 
estimation problem, as no reference signal for the anechoic 
signal is available. While only a few dereverberation algo-
rithms were available in the late 1990s, dereverberation has 
become a flourishing field of research and reached some level 
of maturity, as reflected by a dedicated and highly cited book 
summarizing a decade of intensive activity [30] and, later, by 
the community-wide REVERB Challenge. Both single- and 

Sound
Field

Synthesis ...

Noise

...

Sound
Field

Analysis

FIGURE 2. A typical multichannel sound system. On the analysis side, a spatially and/or spectrally 
selective acquisition is applied, including noise reduction, speaker separation (using either beamform-
ing or independent component analysis), and dereverberation. Echo signals are also removed, and 
sources may be localized. On the synthesis side, a spatially selective rendering is applied, and noise 
can be actively canceled.

https://www.iwaenc.org
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multimicrophone dereverberation algorithms have been pro-
posed and evaluated. Statistical modeling of the decaying tail 
of the RIR has been used to derive spectral methods for single-
microphone dereverberation [31].

In the multichannel case, dereverberation can be treated 
as a blind equalization problem. Hence, either the RIR coef-
ficients or, alternatively, the inverse of a matrix of impulse 
responses should be estimated. Estimation procedures for the 
multichannel equalization system include subspace methods, 
i.e., extracting the RIRs from the null subspace of the spatial 
correlation matrix of the received microphone signals and 
least-sqaures methods for (partially) equalizing the multichan-
nel RIRs and, consequently, the reverberation effects. The 
anechoic signal and (time-varying) RIRs can be also jointly 
estimated by applying a (recursive) EM algorithm in parallel 
to Kalman filtering.

The weighted prediction error (WPE) method [32] real-
ized blind dereverberation of time-varying colored audio 
sources, such as speech, based on multichannel linear predic-
tion (MCLP). To enable MCLP to handle such a source, the 
WPE introduced two necessary extensions into it: a nonsta-
tionary Gaussian source model and a delayed prediction that 
protects inherent source correlation from 
being whitened by MCLP. The WPE estab-
lished a new effective MCLP algorithm 
called variance-normalized delayed lin-
ear prediction. Several extensions to this 
method, including joint BSS and derever-
beration and the incorporation of DNNs, 
were also proposed.

In recent years, several successful data-
driven methods based on DNNs were pro-
posed [33]. We believe that this research 
direction will continue, exploring aspects 
including the noisy and time-varying nature of real-world 
scenarios, probably combining model-based and data- 
driven paradigms.

Noise suppression
Noise reduction algorithms gained momentum in the late 
1970s, with the pioneering single-channel spectral subtraction 
method published by Boll and by Berouti et al. A few years 
later, with the introduction of the seminal papers by Ephraim 
and Malah on the estimation of the spectral amplitude and the 
log-spectral amplitude (LSA), statistically optimal methods 
became dominant. Beyond the statistically optimal estimation 
under the Gaussian assumption on the speech spectral com-
ponents, these papers also introduced novel concepts related 
to estimation under signal presence uncertainty as well as the 
decision-directed approach for the a priori signal-to-noise ratio 
(SNR) estimation. Extensions to other probability distributions, 
e.g., super-Gaussian, were later presented. Comprehensive sur-
veys of the state of the art in the first decade of the 21st century 
can be found in [34] and [35].

While it was assumed for many years that the estimation 
of the phase is unimportant and that it is sufficient to estimate 

the amplitude spectrum of the speech and augment it with the 
noisy phase, recent findings have shown that it is beneficial to 
estimate the phase as well [36].

All-pole modeling of the speech signal, widely used in tra-
ditional speech compression algorithms, was adopted by Lim 
and Oppenheim to develop an iterative scheme, alternating 
between the estimation of the speech autoregressive coeffi-
cients and enhancing the speech signal using Wiener filtering. 
The same speech model was later used under the EM frame-
work, with a Kalman filter substituting the Wiener filter.

An early data-driven model for speech enhancement was 
proposed in [37]. In this work, rather than using a specific 
model for the LSA of the speech, a mixture of Gaussians model 
is inferred in a training stage using the entire TIMIT data-
base. In recent years, the field of single-microphone speech 
enhancement (including noise reduction) has been dominated 
by DNN-based algorithms. Many of these algorithms recast 
the noise reduction problem as a mask estimation. The ideal 
binary mask (IBM) determines for each time-frequency bin 
whether it is dominated by speech or noise. Another popular 
mask is the ideal ratio mask (IRM), which is a softer version of 
the IBM. A survey of many noise reduction algorithms can be 

found in [38], where other masks, e.g., the 
complex IRM, which is also sensitive to the 
phase, are explored and compared. Although 
already achieving remarkable results, there 
are still many challenges left. Many of the 
algorithms require huge amounts of speech 
and noise data for training, and the result-
ing models are usually very large. There is a 
growing interest in developing “thin” mod-
els that can be deployed in edge devices, 
such as cellular phones, and even simpler 
devices that are used as nodes in WASNs. 

Moreover, in most telecommunication applications, low laten-
cy is mandatory, rendering utterance-level algorithms inad-
equate. There are many challenging acoustic environments 
that require further algorithmic improvements. One example 
is busy cafés and bars, usually characterized by babble noise. 
Another example is factories and mines, characterized by 
extreme noise levels. A third example is transient noise, e.g., 
keyboard typing and wind noise.

Spatial filtering (beamforming)
The enhancement and separation capabilities offered by mul-
tichannel interfaces are usually greater than those of single-
channel interfaces, although DNN-based single-microphone 
solutions now offer competitive performance. We have ex-
plored data-independent beamformers. This section is dedicat-
ed to data-dependent beamformers, namely, beamformers that 
adapt to the received microphone signals. Early multimicro-
phone speech enhancement and speaker separation solutions 
adopted beamforming techniques with free-field propagation 
models [1]. Early attempts to incorporate statistically optimal 
solutions in the beamformer design as well as advanced speak-
er localization algorithm are summarized in [39].

There is a growing 
interest in developing 
“thin” models that can be 
deployed in edge devices, 
such as cellular phones, 
and even simpler devices 
that are used as nodes in 
WASNs.
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As discussed in the preceding, sound fields in acoustic 
enclosures are typically characterized by high-order multipa-
th propagation. If the number of microphones is too small to 
form narrow beams, using only the direct path of the AIR may 
provide insufficient sound quality. It therefore became com-
mon to take into consideration the entire AIR in the beam-
former design. The concept of designing a matched filter 
toward multiple reflections of the sound was first introduced 
by Jan and Flanagan in 1996, but without discussing AIR esti-
mation procedures.

In [40], the acoustic transfer function (ATF) relating 
the speaker and a microphone array was estimated using 
a subspace tracking procedure and used in the design of a 
minimum variance distortionless response (MVDR) beam-
former. The relative transfer function (RTF) was later 
introduced and used in the MVDR design as a substitute 
for the ATF. The RTF encompasses the relevant informa-
tion regarding the acoustic propagation between the source 
and a pair of microphones. Multiple optimal design criteria 
were used in the literature of microphone arrays, namely, 
the MVDR, the multichannel Wiener filter (MWF) and its 
variant the speech distortion-weighted MWF [41], the maxi-
mum SNR, and the linearly constrained minimum variance 
(LCMV). The latter addresses the speaker extraction prob-
lem, which is closely related to (semi-) blind speaker separa-
tion, as discussed in the next section of this article. Here, 
we only briefly note that microphone array processing and 
BSS paradigms are now strongly interrelated and routinely 
borrow ideas from each other. Further elaboration on spatial 
processing algorithms can be found in [42] and [43], includ-
ing spatial processing criteria and algorithms and the rela-
tion to blind speaker separation.

While general-purpose multimicrophone speech enhance-
ment algorithms aim at selectively enhancing the desired 
speech source and suppressing interfering sources and ambi-
ent background noise, the objective of binaural algorithms is 
also to preserve the auditory impression of the acoustic scene. 
This can be achieved by preserving the so-called binaural 
cues of the desired speech source, interfering sources, and 
background noise such that the binaural hearing advantage 
of the auditory system can be exploited, and confusions due 
to a mismatch between acoustic and visual information are 
avoided. A range of multichannel filters to achieve this goal is 
surveyed in [43, Ch. 18].

All criteria discussed in the preceding were designed for 
centralized processing. In WASNs, when such processing 
becomes too expensive, either optimal or suboptimal distrib-
uted algorithms should be applied instead. The outcome of the 
optimal distributed algorithms should be identical to their cen-
tralized counterparts, while for suboptimal algorithms, some 
performance degradation may result. The advantage of the 
latter family of algorithms is reduced communication band-
width and sometimes even a lower local computational load. 
The challenges typical to WASN processing, several important 
applications, and several efficient node fusion schemes can be 
found in [44]. Distributed versions of many of the preceding 

criteria can be found in the literature. In WASN processing, 
sampling rate synchronization may be crucial for guaranteeing 
the proper operation of the system. Multiple resynchronization 
schemes can be found in the literature.

A large number of DNN-based spatial processing algo-
rithms were proposed in recent years. Three main trends can 
be found in the current literature. In the first line of work, the 
DNN is used for estimating the building blocks of the statisti-
cally optimal beamformers. In the second line of work, e.g., in 
[45], the DNN directly estimates the multichannel weights of 
the beamformer. The advantage of the latter is the ability to go 
beyond the conventional second-order statistics and implement 
a beamformer with perceptually more meaningful cost func-
tions (or with the WER as a loss function in ASR applications). 
However, this may not be as robust as the DNN-controlled 
beamformers. In the third line of work, the DNN is directly 
applied to the multichannel data, and the beamformer structure 
is not preserved.

Audiovisual signal enhancement
The visual modality can clearly support the enhancement task. 
As an example, focusing on the face of the speaker, and par-
ticularly the lips, can be used to extract the desired speaker 
from background noise and competing speakers [46].

Signal separation
Source separation and blind source separation (BSS) were top-
ics of growing interest in the mid-1990s and gradually moved 
from determined and overdetermined cases to the more chal-
lenging underdetermined case, where there are potentially 
more sources than observed mixtures [47]).

Determined case
BSS started as an application of independent component anal-
ysis (ICA). A series of ICA conferences began in 1999 and 
were held in 1.5-year intervals, playing an important role in 
promoting the field. Audio signals are, due to TDoAs of the 
source signals arriving at different sensors and reverberation, 
convolutively mixed in a room. Because a convolutive mixture 
in the time domain can be converted to instantaneous mixtures 
in the frequency domain, the frequency-domain ICA approach 
converts time-domain signals into the time-frequency domain 
by using a short-time Fourier transform (STFT). ICA theory 
inherently includes two ambiguities: output order (permuta-
tion) and output amplitude (scaling). Both become serious 
problems in frequency-domain ICA. To solve the permutation 
problem, spatial information and spectral information of the 
sources are key information. It was further shown that ICA-
based BSS forms a null directivity pattern toward the interfer-
ing source and suppresses it [48].

An interesting framework for multichannel blind signal pro-
cessing for convolutive mixtures, known as Triple-N ICA for 
Convolutive Mixtures [49], defines an information-theoretic 
cost function and enables the utilization of three fundamental 
signal properties, namely, nonwhiteness, non-Gaussianity, and 
nonstationarity. Nonnegative matrix factorization (NMF) [50] 
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separates sources by using common frequency patterns as fre-
quency bases. Independent low-rank matrix analysis [51] sepa-
rates sources by using spatial information of ICA and spectral 
information of NMF. As in most fields of audio processing, 
deep learning methods are now widely used, and some of them 
are improved variants of classical algorithms. For instance, the 
multichannel variational autoencoder (VAE) [52] combines 
spatial information of ICA and spectral information of DNNs. 
Audio source separation methods and algorithms are surveyed 
in [43] and [53].

Monophonic separation
Although multichannel separation provided a way to invert 
mixing, the case in which the input mixture is presented in a 
single channel only, known as monophonic separation, posed 
a new challenge. Techniques that emerged in this area utilized 
either generative modeling or variations of masking approach-
es to recover the intended source. This problem also brought 
into the spotlight the idea of trained separation algorithms as 
opposed to blind methods.

An early successful approach along these lines came from 
models based on NMF [50]. These models were pretrained 
using sound examples, learned a target-specific spectral dic-
tionary, and were able to isolate and reconstruct such a target 
from an input mixture. Variations of this approach included 
multichannel versions, convolutional models, models trained 
on a variety of spectrotemporal representations, Markov mod-
els, probabilistic formulations, and more [54], [55].

Although generative models performed well at the time, an 
alternative approach came from a technique that was first used 
for multichannel separation. W-disjoint orthogonality [56] took 
advantage of sparsity in the time-frequency representation of 
most sounds to directly apply a binary mask on a spectrogram 
and isolate the desired sound. First formulated for stereo record-
ings, this idea became a cornerstone for approaches based on 
NNs and resulted in a discriminative approach to solving the 
separation problem, where each time-frequency point is classi-
fied as useful or not. A popular NN model that made use of this 
idea was deep clustering [57], which projected mixtures in a 
space where time-frequency bins could be clustered and labeled 
accordingly as belonging to independent sources. Other NN 
models dispensed with the clustering step, thereby losing some 
generality, and directly attempted to predict a mask given just 
an input mixture [38]. The latter approach has dominated the 
source separation research of late, providing many approaches 
with impressive-sounding results, ranging in their application 
from small and efficient on-device speech enhancers that are 
commonly used for most voice communication today to larger 
high-quality offline models, such as those used for the award-
winning restorations of historical Beatles recordings. Models 
along these lines have explored many of the new neural archi-
tectures (the U-net, transformers, and so on) and span a wealth 
of extensions, such as the use of soft masks, models that learn 
a latent space as opposed to using an STFT [58], models that 
resolve ambiguity in the order of output sources (permutation-
invariant training, conditional models that are guided toward a 

target by a user, models that directly optimize perceptual met-
rics, and more). In Figure 3, several examples of approaches for 
monophonic separation are given.

A special case of these models has had a significant 
impact on music processing. The release of easy-to-use music-
oriented source separation models (https://research.deezer.com 
/projects/spleeter) has resulted in a wealth of free and commer-
cial software that allows users to decompose a music record-
ing into its constituent instrument tracks and freely remix 
and manipulate. Aside from being a very useful tool, this has 
enhanced the way we interact with recorded music and opened 
new avenues of media interactivity that are still being explored.

Although discriminative models offer superior perfor-
mance with relative ease of use, their downside as compared 
to generative methods is that they are prone to overspecializa-
tion and cannot be easily extended and redeployed for alterna-
tive uses. Some open questions still remain on how to make 
universal separators, learn with limited training data, extend a 
trained model to work out-of-distribution, and so on. Despite 
the impressive-sounding demos, there is still a lot of work to 
be done in this space.

Emerging topics
Another viewpoint of the evolution and breakthrough dis-
cussed in the preceding is the emergence of new topics, al-
most absent in the 1990s and that today are among the most  
popular fields.

Objective evaluation
Objective evaluation of speech and audio quality has emerged 
as a highly relevant topic in the past 25 years. If the ultimate 
means for speech/audio quality evaluation and intelligibility 
assessment is a human perceptual test, it is also known that 
it is costly and tedious to organize. This has motivated the 
community to develop objective metrics for sound quality that 
are better correlated with perception. For instance, led by the 
speech coding community, several speech quality metrics were 
developed (and standardized), including Perceptual Evaluation 
of Speech Quality, Perceptual Objective Listening Quality 
Assessment, and Virtual Speech Quality Objective Listener. 
An overview of objective perceptual measures is provided in 
[59]. There is also widespread adoption of speech intelligibil-
ity measures for hearing aids, such as Short-Time Objective 
Intelligibility (STOI) together with binaural extensions: modi-
fied binaural STOI. These measures are the de facto standard 
for assessing the impact of speech enhancement algorithms 
in human interface devices. Similarly, several metrics were 
proposed to evaluate audio quality (such as Perceptual Evalu-
ation of Audio Quality and Perception Model-Based Quality) 
and the performance of an audio source separation algorithm 
(the scale-invariant signal-to-distortion ratio, signal-to-artifact 
ratio, and signal-to-interference ratio) [60]. Other interesting 
objective measures were also proposed, in particular for hear-
ing-impaired listeners (see [61] for an overview).

More recently, we have also seen the incorporation of trained 
models that output perceptual scores [62]. These models can be 

https://research.deezer.com/projects/spleeter
https://research.deezer.com/projects/spleeter
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trained on audio inputs to directly predict user responses and 
provide a rapid alternative to listener tests and otherwise slow-
to-compute evaluation methods. When used with differentiable 
models, these evaluation methods can also be directly incorpo-
rated into algorithm optimization, providing new possibilities 
for training perceptually relevant systems.

Finally, when any of the approximations in the preceding 
are not deemed sufficient, audio algorithm designers can resort 
to modern crowdsourcing tools that can reach thousands of lis-
teners and conduct experiments with unprecedented sample 
sizes. The ability to do this has revolutionized how audio 
products are evaluated today and provides stronger statistical 
results than ever before.

MIR
MIR is defined as a field that covers all the research top-
ics involved in the understanding and modeling of music 
and that uses information processing methodologies (see 
the MIR road map at http://www.mires.cc/wiki/index1a1d.
html?title=Roadmap&oldid=2137). It is, in essence, an inter-
disciplinary domain involving machine learning, signal pro-
cessing, and/or musicology. The nature of the processed music 
can also be very diverse, including the raw audio signal, a 
symbolic representation of the music score or recording (for 
example, in the musical instrument digital interface format), an 
image (for example, as a scanned version of the music score), 
and even as 3D trajectory movements (for example, as ges-
tures of performers). If the MIR domain has initially focused 
on symbolic music processing, some early studies have paved 
the way for many subsequent works on raw audio signals, for 
example, in speech/music discrimination, beat tracking [63], 
and music analysis and recognition [64], to name a few. The 
early approaches often took inspiration from speech recogni-
tion methods, mostly using mel-frequency cepstral coefficients 
(MFCCs) as features, with statistical models such as Gaussian 
mixture models (GMMs), hidden Markov models (HMMs), 
support vector machines (SVMs), and more. Similarly, for un-
derdetermined source separation, major progress was made 
in using dedicated low-rank and sparse decomposition, such 

as based on NMF and matching pursuit and its variants. With 
the exception of some early papers that exploited NNs (see, 
for example, [65] for multipitch estimation), the advent of deep 
learning is rather recent (see Figure 4). Today, the major trend 
is to consider deep learning for nearly all applications, with 
remarkable achievements in polyphonic music source sepa-
ration, music transcription (estimation of melody, harmony, 
rhythm, lyrics, and so on), music style transfer, and music syn-
thesis, for instance, [66]. As in speech recognition, the field has 
also received a great interest toward end-to-end deep learning 
approaches, which even replace the traditional feature extrac-
tion step with a data-driven representation learning paradigm.

The variety and complexity of music signals also motivate 
the development of new tailored methods for representation 
learning and unsupervised learning to avoid the particularly 
cumbersome stage of music signal annotation. A particularly 
interesting approach was recently introduced for self-super-
vised pitch estimation [67]. Besides the main historic domains 
of MIR, music synthesis is becoming a stronger field with 
impressive results, especially around new generative models. 
In recent years, we have witnessed the emergence of approach-
es at the crossroads of DNNs and classical generative models 
in so-called deep generative models. Some of the most popu-
lar models include different forms of autoencoders (including 
VAEs, autoregressive models, and GANs). A concurrent trend, 
especially for music generation, revisits the use of classic audio 
signal models, such as, for instance, the source–filter model 
of speech production and the harmonic + noise model. In 
fact, such models have great potential in hybrid neural archi-
tectures integrating audio models under the form of differen-
tiable signal processing blocks [68]. Hybrid architectures are 
indeed particularly attractive and already show great promise. 
For instance, the use of differentiable source generative mod-
els opens the path to data-efficient fully unsupervised music 
source separation paradigms [69].

DCASE 
Nevertheless, the most recent and strongest growth has been 
in the field of DCASE [70]. This growing interest is visible 
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FIGURE 4. MIR: a rather early adoption of DNNs. RNN: recurrent NN; LSTM: long short-term memory.
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in the increase of the DCASE community and the success of 
its DCASE workshop, a series launched in 2016 (with atten-
dance growing from 68 in 2016 to 201 in 2019, with an aver-
age of 50% from the industry), and its companion international 
challenge (with continuous growth of the number of submitted 
systems, from 84 in 2016 to 470 in 2020). (Note, though, that 
the very first DCASE challenge was organized in 2013, but it 
became an annual event only from 2016.) This steady increase 
of interest is clearly visible in the number of submissions to 
ICASSP: in 2022, DCASE was by far the field with the highest 
number of submissions, with up to 23.5% of all submissions 
in audio. Although very important work on the perception of 
sound objects was reported by Schaeffer in his treatise on mu-
sical objects in the 1960s, one often refers to computational au-
ditory scene analysis and the work on acoustic scene analysis 
by Bregman in the early 1990s as the most emblematic initial 
work in DCASE.

As illustrated in Figure 5, this field has seen a similar 
(although much faster) evolution from speech recognition-
inspired methods to fully data-driven deep learning meth-
ods, with a particularly strong axis on weakly supervised 
approaches [71].

With the notable exception of work by Sawhney and Maes 
in 1997, which exploited NNs, most of the studies until 2015 
relied on more traditional clustering and machine learn-
ing paradigms, for instance, based on the SVM, GMM, and 
HMM. Also, similar to the domains of audio source separation 
and MIR at the dawn of the 21st century, many works have 
exploited approaches to obtain compact and informative audio 
signal representations. Sparse decomposition methods, image-
based features, and NMFs have been particularly popular. 
Then, since 2014, deep learning has gained strong momentum 
and very rapidly become the mainstream architecture. In the 
DCASE 2016 challenge, all submitted systems for acoustic 
scene classification but four involved NNs, even if they were 
not yet defining the state of the art. Two years later, in the 2018 
challenge, the top 30 performing systems were DNN-based, 
confirming the indisputable supremacy of NNs for such a task. 

Although DCASE often refers to a single domain, it consid-
ers, in practice, multiple applications, which have their own 
specifics and constraints. In acoustic scene recognition, a more 
mature application, numerous approaches were proposed to 
operate at low complexity, and in that regard, the use of net-
work compression, pruning, and knowledge distillation, for 
instance, exploiting teacher–student frameworks, are among 
the most successful developments. For the task of acoustic 
events detection and localization, there is easy access to huge 
weakly annotated databases. This has obviously accompanied 
the emergence of an anthology of weakly supervised and few-
shot learning approaches, for instance, around prototypical 
networks and mean teacher architectures, which are particu-
larly efficient for few-shot learning, weakly supervised learn-
ing, and domain adaptation. Finally, it is worth mentioning the 
wide use of data augmentation techniques, which have proved, 
in many domains, to be very efficient to reduce model overfit-
ting. Popular data augmentation techniques include SpecAug-
ment (with feature warping and time-frequency masking), 
pitch shifting, time stretching, mix-up and channel confusion 
in the case of multichannel recordings, random noise addition, 
and many more.

Powerful consumer electronics devices  
and fast Internet connections
Finally, recent years have witnessed a very fast deployment of 
powerful consumer electronics devices with audio processing 
capabilities and usually with more than a single microphone. 
Example devices are laptops, tablet PCs, cellular phones, 
smartphones and smart watches, smart speakers, hearing de-
vices and hearables, smart loudspeakers (Amazon Echo, Ap-
ple HomePod, and Google Home), and virtual and augmented 
reality glasses. Dedicated multimicrophone hardware, e.g., 
spherical microphone arrays, is also available (see the Eigen-
mike at https://mhacoustics.com). 

Concurrently, the rapid deployment of fast Internet con-
nections, specifically with data over the cellular network, 
dramatically changed the way we communicate. Rather than 
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FIGURE 5. DCASE: from perceptual auditory sound analysis to large-scale deep learning algorithms. ASA: auditory scene analysis; PLP: perceptual linear 
predictive; k-NN: k-nearest neighbors.
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communicating over the wired telephone network and, later, 
the cellular network, we now widely use voice over Internet 
Protocol (VoIP) as a cheap and reliable alternative. Moreover, 
teleconferencing tools, e.g., Google Meet, Skype, and Zoom, 
have become very popular, as recently demonstrated during 
the COVID-19 pandemic, allowing everyone to work from 
home and remotely communicate with colleagues and cowork-
ers. The VoIP technology promoted research on audio coding, 
packet loss concealment, and echo cancellation over IP. Simi-
larly, the widespread use of the Internet has revolutionized the 
consumption of music through new applications, such as audio 
and music retrieval and music identification [e.g., the popu-
lar Shazam service (https://www.shazam.com)], and around 
streaming services with automatic recommendation and playl-
ist generation.

Conclusions and perspectives 
The domain of AASP is clearing experiencing growing inter-
est, with a broad range of specific and interdisciplinary re-
search and development. This growth has been accompanied 
by the AASP TC, whose “mission is to support, nourish and 
lead scientific and technological development in all areas of 
audio and acoustic signal processing.” Over the years, and 
especially recently, the domain has shifted toward more data-
driven methods for nearly all speech and audio applications. 
In some cases, the methods developed are pure end-to-end ap-
proaches, where all the “knowledge” is extracted from data. 
We believe that this is a very strong trend that will be further 
developed in the future but probably with a different angle. 
In fact, pure end-to-end deep neural approaches are complex, 
often overparametrized, and, in many cases, remain rather 
unexplainable. There is thus an interest to go toward more 
frugal data-driven and interpretable and controllable systems. 
A potential path is to combine the strength of data-driven 
paradigms with efficient signal models to build new model-
based (and hybrid) deep neural architectures. For example, in 
MIR, it is possible to associate differentiable sound produc-
tion models and deep learning architectures to design inter-
pretable, more frugal, and yet efficient methods. This may 
be one of the future paths toward developing new algorithms 
and technologies that will be in accordance with sustainable 
and ecological development and compliant with high ethical 
standards, which we believe will become general concerns of 
major importance.

Another future research direction that should receive grow-
ing interest in audio processing is federated (or collaborative) 
learning [72]. In fact, massive amounts of data are now stored 
on devices. As a result, more models can now be directly trained 
on devices (often referred to as on the edge). This allows us to 
better take into account privacy concerns (recorded data are 
not stored centrally) but also brings a number of challenges 
for audio applications, particularly in global optimization with 
communication constraints, learning with heterogeneous data 
(audio data recorded from diverse and heterogeneous recording 
devices), and learning with partial and missing data. Federated 
learning, which gathers techniques for machine learning and 

statistical signal processing using multiple distributed devices, 
then, appears as a particularly promising framework for future 
audio processing applications. Stronger edge devices, with 
more powerful processing units and faster communication 
capabilities, will certainly support this trend.

We also expect that multimodal processing will become 
more prominent and that we will witness, in the near future, 
more algorithms that utilize vision to support speaker local-
ization and separation. Beyond audiovisual processing, other 
modalities will be more extensively used, e.g., brain-informed 
speech separation using electroencephalography signals [73].
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