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B rain–computer interfaces (BCIs) employ neurophysiological 
signals derived from the brain to control computers or ex-
ternal devices. By enhancing or replacing human peripheral 

functioning capacity, BCIs offer supplementary degrees of free-
dom, significantly improving individuals’ quality of life, par-
ticularly offering hope for those with locked-in syndrome (LIS). 
Moreover, BCI applications have expanded across medical and 
nonmedical domains, including rehabilitation, clinical diagno-
sis, cognitive and affective computing, and gaming. Over the 
past decades, with a wealth of brain signals captured invasively 
or noninvasively, BCI has made spectacular progress. However, 
this also poses new challenges for signal processing techniques, 
such as characterization and classification. In this review, we 
first introduce signal enhancement and characterization meth-
ods to mine inherent patterns of nonstationary and time-varying 
brain signals. Then, we highlight widely adopted classification 
methods in BCI and the challenges they face. This article aims 
to comprehensively overview crucial signal processing tech-
niques in BCI and provide suggestions for future directions.

Introduction
BCIs are designed to obtain brain signals, decode specific pat-
terns, and transmit user intents to external devices, establish-
ing a direct communication channel between the brain and a 
computer without peripheral nerve and muscle involvement. 
BCIs hold the potential to replace or supplement peripheral 
functions, such as spelling words, controlling neuroprostheses, 
and moving cursors, benefiting individuals with neuromus-
cular disorders. Particularly valuable for LIS patients, BCIs 
enable basic communication with caregivers, significantly im-
pacting individuals, the economy, and society. 

Over the last 25 years, in-depth brain function investiga-
tion, powerful real-time hardware systems, and advanced 
signal processing technologies have contributed to the expo-
nential growth and evolution of the BCI field. Signal process-
ing technologies are essential for recent improvements in 
BCI decoding accuracy and efficiency. While several review 
articles exist on BCI, a comprehensive survey addressing the 
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evolution of key signal processing technologies over the past 
decades remains absent. This review aims to provide a sys-
tematic overview of recent BCI advancements in signal pro-
cessing technologies, discussing future directions in response 
to the growing demands of diverse applications, inspiring 
further progress in both BCI technologies and applications.

A brief history of BCI 
In 1929, Hans Berger [1] pioneered noninvasive recording of neu-
roelectrical signals from the scalp, later known as electroenceph-
alography (EEG). However, early acquisition technology strug-
gled with electrical and physiological disturbances. Extracting 
intentions from spontaneous EEG remained 
a fantasy, but EEG’s potential in examin-
ing brain functions and clinical applications 
grew. Over time, the relationship between 
brain physiology and actual or imagined 
behavior became clearer, inspiring attempts 
to control brain signals. In 1968, Wyrwicka 
and Sterman [2] demonstrated that, with spe-
cific instrumental learning, cats could control 
sensorimotor cortex slow-wave rhythms for 
food rewards. Concurrently, researchers showed that humans and 
monkeys could control brain rhythms with sensory feedbacks, 
fueling interest in using brain signals for device control [3]. By 
1973, Vidal [4] introduced the term BCI and developed the first 
vision-based BCI system. Since then, numerous BCI systems 
have been developed, with strategies to improve communication 
performance. Modern BCIs have evolved from limited capacities 
like “on” and “off” to complex functions, such as controlling ro-
botic arms, synthesizing speech, and manipulating cursors. This 
progress can be attributed to at least three factors.

First, BCI advancements have been driven by a growing 
number of individuals dedicated to improving human health 
and understanding the brain. BCIs hold significant potential 
for enhancing communication in patients with LIS due to neu-
romuscular diseases. Furthermore, BCI progress relies on vol-
untary participation from patients in exploratory experiments. 
Second, the rapid development of acquisition hardware sup-
ports collecting various physiological signals from the brain 
at different depths and spatial resolutions and allows online 
processing. This wealth of brain signals enables accurate rec-
ognition of user intent. Finally, recent BCI improvements have 
benefited from the contributions of the signal processing com-
munity. While simple brain signal characteristics can be visu-
ally discerned, subtle information requires advanced signal 
processing technologies. These technologies facilitate faster 
signal transmission, extraction, and amplification of desired 
brain activity information from redundant signals, and conver-
sion into accurate commands for controlling external devices. 
Consequently, advancements in signal processing technology 
have played a crucial role in BCI development.

Signal acquisition and paradigm types of BCI 
The initial step in developing a BCI system involves brain sig-
nal acquisition, an area that has seen diverse methodologies over 

the years, each with its own advantages and tradeoffs in terms 
of safety, clarity, portability, and cost. Broadly, these methods 
fall into two categories: invasive and noninvasive. Invasive 
methods, such as electrocorticography (ECoG) and intracorti-
cal recording, require surgical implantation of electrodes with-
in the skull. While ECoG captures electrical oscillations from 
the cortical surface, intracortical recording delves deeper into 
the gray matter, collecting single-unit activity (SUA), multiunit 
activity (MUA), and local field potentials (LFPs). Stereotactic 
EEG (sEEG) is another invasive technique that uses depth 
electrodes for precise targeting and recording from deeper 
brain structures. On the other hand, noninvasive methods, 

including EEG, magnetoencephalography 
(MEG), functional magnetic resonance im-
aging (fMRI), and functional near-infrared 
spectroscopy (fNIRS), record brain signals 
using sensors placed on or near the scalp.

Acquired brain signals can be classified 
as electrophysiological (EEG, MEG, ECoG, 
sEEG, intracortical recording) or hemody-
namic (fMRI, fNIRS). Hemodynamic 
methods indirectly record neuronal activity 

through changes in venous blood composition, while electro-
physiological methods capture voltage changes resulting from 
interneuronal electrochemical transmission. The wide use of 
electrophysiological methods in real-time BCI systems not-
withstanding, EEG stands out due to its noninvasive nature, 
high temporal resolution, portability, and affordability. How-
ever, it faces limitations in signal quality compared to invasive 
methods, attributed to signal attenuation as neuron potentials 
traverse the skull and tissues.

BCI paradigms generally encompass two categories: exog-
enous and endogenous. Exogenous paradigms decode brain 
signals elicited by external stimuli, while endogenous para-
digms rely on spontaneous brain signals generated by mental 
tasks without external triggers. The well-explored exogenous 
paradigm includes the P300 event-related potential-based 
(ERP) BCI. Recorded using EEG, P300 responses are usu-
ally elicited approximately 300 ms after an oddball stimulus 
in the parietal lobe. The first P300 ERP-based BCI system, 
a word spelling system controlled by brain signals, was pro-
posed by Farwell and Donchin in 1988 [5]. A screen displays 
a letter matrix to the user, and each letter flashes randomly. 
When the desired letter is highlighted, the user’s gaze elicits 
a P300 ERP, which is used for selection. Despite its effec-
tiveness as a communication tool for those with motor neu-
ron diseases, single-trial P300 ERP detection is challenging 
due to potential noise sources. Techniques for preprocessing, 
feature extraction, and classification are necessary to inter-
pret brain signals effectively. However, the P300 ERP’s effi-
ciency is limited as it can output only a few characters per 
minute. Alternatively, steady-state visual evoked potentials 
(SSVEPs)-based BCI has gained popularity. This method 
involves the occipital cortex detecting sinusoidal-like oscil-
lations in response to high-frequency visual stimuli. It gen-
erates high signal-to-noise SSVEP signals, enabling efficient 
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target selection. SSVEPs and P300 ERPs are favored due to 
their experimental convenience and adaptability, requiring 
minimal training. Advanced classification algorithms and 
error-related negative evoked potentials further enhance their 
performance. However, they might not be ideal for patients 
with severe  neurological deficits who have difficulty gazing, 
or for prolonged use due to visual fatigue.

In contrast to exogenous paradigms, endogenous BCI 
paradigms are a promising research avenue, centering on self-
regulated brain signal patterns evoked by mental tasks. Slow 
cortical potentials (SCPs), with frequencies ranging from 0.1 
to 1 Hz, are a prime example. SCPs present as positive or nega-
tive fluctuations in cerebral electrical activity, lasting from 
several hundred milliseconds to seconds. Negative SCPs relate 
to behavioral or cognitive preparation, while positive SCPs 
indicate reduced neural excitation and behavioral inhibition. 
SCP-based BCIs enable control of external devices by modu-
lating brain signals for both healthy individuals and paralyzed 
patients. However, SCPs’ slow dynamics challenge real-time 
performance [6]. Another prominent endogenous paradigm 
involves sensorimotor rhythms (SMRs), encompassing elec-
trical oscillations in the mu (8–13 Hz), beta (14–26 Hz), low 
gamma (30–50 Hz), and high gamma (50–200 Hz) frequency 

bands. SMR amplitude changes, linked to movement or motor 
intent, are characterized by decreased mu and beta bands and 
increased low and high gamma bands. High gamma bands, 
particularly, relate to critical cognitive and motor functions, 
making them vital in SMR-based BCI systems. Modulating 
these bands allows users to control cursors or operate neural 
prostheses, powered wheelchairs, and orthoses through SMR-
based BCIs, assisting those with motor impairments in regain-
ing mobility [7]. Despite requiring more focused training and 
having lower efficiency compared to exogenous paradigms, 
endogenous paradigm-based BCIs offer essential benefits for 
patients with complete motor function loss, as no external 
stimuli gazing is needed.

Apart from the four well-established paradigms, emerging 
BCI approaches aim to enhance user comfort and system per-
formance. Hybrid BCIs, combining different control signals or 
modalities, have been proposed to augment control efficiency. 
For instance, Allison et al. utilized a hybrid BCI that lever-
ages EEG signals from motor imagery and visual stimuli, sig-
nificantly surpassing standalone BCI paradigms [8]. Similarly, 
Kwak et al. integrated EEG and fNIRS signals to circumvent 
limitations in solo EEG- and fNIRS-based systems, yielding 
higher recognition accuracy for mental arithmetic and motor 

imagery tasks [9]. Despite the superior 
performance of hybrid paradigms, con-
cerns persist about the intuitiveness of 
their control processes. To address this, 
Min et al. emphasized the importance 
of cognitive signal-based BCIs that 
decode goal-oriented intentions from 
the prefrontal cortex [6]. Prefrontal 
ECoG signals, for example, have been 
shown to predict hand grasping and 
elbow flexion movements before ini-
tiation [10]. Additionally, EEG signals 
decoding error-related potentials have 
also potentially enhanced motor imag-
ery tasks [11]. Such cognitive brain 
signals present promising prospects for 
enhancing BCI performance and user 
acceptance. Furthermore, Gao et al. 
championed fusing human and artificial 
intelligence to establish advanced BCIs 
with collaborative intelligence [12].

Method 
As depicted in Figure 1, both invasive 
and noninvasive brain signals undergo 
several processing stages: digitization, 
transmission, preprocessing, feature 
extraction, pattern classification, and 
finally, target command generation to 
operate external devices. This compre-
hensive BCI framework encompasses 
various signal processing techniques. 
To improve BCI usability in practical 
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FIGURE 1. Framework of a common BCI system (adapted from [3]). As shown in the figure, the 
acquired neurophysiological activity signals are preprocessed, feature extracted, and converted into 
control commands by pattern classification methods. The brown texts represent the signal processing 
techniques that may be used.
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environments, several considerations are necessary at each 
stage. These include enhancing the signal-to-noise ratio 
through noise suppression, developing signal representations 
that highlight target rhythms, and creating efficient pattern clas-
sification methods. In the sections that follow, we will review 
relevant signal processing techniques—such as spike sorting, 
signal filtering, blind source separation (BSS), time–frequency 
analysis, and classification algorithms—with an emphasis on 
their advancements over the past two decades.

Spike sorting 
The process of spike sorting plays a pivotal role in the analy-
sis of electrophysiological recordings, particularly those from 
intracortical sources, by accurately identifying and isolating 
action potentials generated by individual neurons. This is cru-
cial as raw neural signals typically comprise a blend of action 
potentials from various closely situated neurons, in addition to 
background noise, making the accurate extraction and attribu-
tion of these action potentials essential for the interpretation of 
neural activity and the enhancement of BCI performance [13].

Addressing these challenges, the spike sorting work-
flow commences with preprocessing, a step that filters data, 
removes artifacts, and normalizes signal amplitude, thereby 
emphasizing the pertinent frequency range (typically 300 Hz 
to 3 kHz for spikes). This is followed by spike detection, where 
preprocessed signals are scanned for potential neural action 
events. The evolution of techniques here, from simple fixed-
voltage thresholds to adaptive thresholding and wavelet-based 
methods [14], has greatly improved detection accuracy and 
reliability. The feature extraction phase then follows, a stage 
where methodologies have seen substantial advancement. 
From the basic extraction of waveform parameters like spike 
amplitude, width, and area, the process has evolved to employ 
principal component analysis (PCA) for its ability to highlight 
key variations in spike shapes and minimize redundant infor-
mation. More recently, wavelet-based methods have emerged, 
providing a time–frequency signal representation, thereby cap-
turing transient characteristics of spike waveforms, and further 
improving classification accuracy [15].

Following feature extraction, spike clustering and classifi-
cation occur, where feature vectors are grouped based on their 
similarity. Clustering algorithms such as k-means, hierarchi-
cal clustering, and supervised learning techniques like support 
vector machines (SVMs) and artificial neural networks [16], 
have been employed to improve classification accuracy and 
automation. Finally, the validation phase has transitioned from 
manual inspection to more objective and automated methods. 
Measures, such as Victor–Purpura distances and van Rossum 
distances, assess spike sorting performance by comparing the 
similarity or dissimilarity between spike trains [17]. Objec-
tive metrics like precision, recall, and F1 score have also been 
developed to enable standardized comparisons of different 
sorting techniques.

The efficacy of spike sorting techniques in invasive BCI 
studies is well-documented, with significant advances in recog-
nizing user intent, controlling digital and mechanical devices, 

and improving communication efficiency for paralyzed users 
[18]. However, spike sorting technology encounters significant 
hurdles, notably overlapping spikes, which result from simulta-
neous or near-simultaneous neuronal firing, complicating the 
sorting process and segregation of concurrent action potentials. 
Currently, template matching and Bayesian techniques offer 
promising solutions to manage these overlaps and improve 
spike separation accuracy [13]. Furthermore, the variability in 
spike waveforms, induced by factors like electrode drift, neu-
ral activity shifts, or recording conditions, poses a challenge to 
the consistent classification and separation of spikes from iden-
tical neurons. Adaptive spike sorting algorithms have emerged 
as potential solutions, capable of monitoring and adjusting to 
spike waveform changes over time, thereby ensuring precise 
spike separation despite waveform variability.

Despite its potential, current technology has inherent limi-
tations. For instance, accurately determining the number of 
clusters, or neurons, in unsupervised clustering algorithms is 
a challenge due to the indeterminacy of the true neuron count. 
To address this, model selection techniques or information- 
theoretic criteria, such as the Akaike Information Criterion or 
the Bayesian Information Criterion, are employed to approxi-
mate optimal cluster numbers, enhancing sorting accuracy [19]. 
Furthermore, some spike sorting algorithms are computation-
ally intensive, complicating real-time processing, particularly 
with high-density electrode arrays or large-scale recordings. 
Evaluating the accuracy and reliability of spike sorting algo-
rithms also poses a challenge due to the lack of ground truth 
data, the true identity of spike-generating neurons. One pos-
sible solution is using simulated data or ground truth data from 
simultaneous intracellular and extracellular recordings to assess 
and compare algorithm performance [13]. The establishment of 
standardized evaluation metrics and benchmarks could further 
facilitate the comparison and validation of different spike sort-
ing methodologies, propelling the field’s progression.

Currently, spike sorting techniques, to a certain extent, 
require human intervention for optimization. However, given 
the rapid escalation in demand for massive-channel and por-
table electrode arrays, the necessity for automated approaches 
becomes overwhelmingly clear [13]. Moreover, developing 
hardware implementation strategies that facilitate efficient 
deployment of BCI technology holds significant value for 
future advancements.

Signal filtering 
Neurophysiological signals are prone to contamination from 
physiological and nonphysiological artifacts during acquisi-
tion. Nonphysiological artifacts, such as powerline interfer-
ence, along with physiological artifacts like electrooculogram, 
electrocardiogram (ECG), and electromyogram signals, often 
emerge during EEG data collection. Various filtering tech-
niques have been explored to counteract these issues. Classi-
cal frequency filters, for instance, effectively eliminate narrow 
band noise, such as powerline interference. Advanced para-
metric filters, including adaptive, Wiener, Kalman, and Bayes 
filters, optimize filtering parameters using reference signals 
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or signal state information, promoting the extraction of clean 
brain signals. However, these methods often presuppose dis-
tinct spectral characteristics for brain signals and artifacts, a 
condition that may not always be met due to frequency over-
lap, thereby constraining their efficacy [20]. This article will 
 spotlight two prevalent filters, smoothing and spatial filters, 
and discuss their successful applications in the BCI field.

Smoothing filter
Smoothing filters utilize adjacent data points to refine signal 
values without distorting their overall tendencies. Representa-
tive methods include moving average, median, and Savitzky–
Golay (SG) filters. The moving average filter, a simple low-pass 
filter, calculates the average value within a fixed-length signal 
window. Meanwhile, the median filter, a nonlinear filter, out-
puts the median value of a sorted signal window. Both filters 
reduce noise in BCI applications. However, moving average fil-
ters may flatten and widen peaks in brain signals, potentially 
causing erroneous analyses. The SG filter, a more suitable al-
ternative, has been extensively studied for the past two decades. 
Originally developed in 1964 for noise reduction in chemistry 
spectra [21], the SG filter has since gained popularity for en-
hancing various signal types. It employs local least-square poly-
nomial regression to determine each point’s smoothed value, 
retaining waveform peak shapes and heights essential for brain 
signal analysis. Figure 2(a) displays the original and filtered 
EEG signals, illustrating noise reduction and signal smooth-
ness. Since the early 2000s, SG filters have improved noise re-
duction in EEG and ECoG, thereby directly augmenting BCI 
system performance [22]. Acharya et al. [23] and Gajbhiye et al.  
[24] developed adaptive strategies to optimize the order and 
frame size selection for the SG filter, aiming to maximize cor-
relation coefficients and improve denoising performance. In a 
different approach, Agarwal et al. [25] enhanced signal quality 
using a cascaded version of the SG filter.

Spatial filter
Spatial filters effectively recover essential information dis-
tributed across channels, thereby enhancing the extraction 
of discriminative features. Figure 2(b) illustrates how well-
established spatial filters can intuitively highlight task-related 
regions. Generally, spatial filters are categorized into refer-
ence filters and data-driven filters. Reference filters, includ-
ing ear-reference, bipolar, common average reference (CAR), 
and Laplacian, are predefined using electrode position in-
formation and neurophysiological plausibility. Conversely, 
data-driven filters are established and optimized using user-
specific signals, with representative filter construction algo-
rithms including common spatial pattern (CSP), independent 
component analysis (ICA), PCA, and canonical correlation 
analysis (CCA).

Reference filters are prevalent in BCI system construction 
because of their efficiency and implementation simplicity. 
These filters, including bipolar, CAR, and Laplacian filters, 
work by subtracting the average brain signal from specific 
electrodes from the electrode of interest, thereby focusing on 
signal fluctuations in the BCI system. McFarland et al. [26] 
highlighted the superior performance of CAR and Laplacian 
methods over the ear-reference method in EEG-based BCI sys-
tems. They also introduced large Laplacian filters that better 
match the topographical extent of the EEG signal. However, 
the efficacy of reference filters heavily depends on judicious 
reference selection. To address this, some researchers have 
proposed strategies that enhance reference signal generation, 
such as linearly combining several reference channels [27].

Data-driven spatial filters optimize parameters using 
brain signals in either supervised (CSP) or unsupervised 
(ICA, PCA, CCA) manners. These filters identify correla-
tions between electrode channels to suppress noise and weight 
each channel according to its relevance to specific brain pat-
terns. CSP filters enhance differences between two classes 
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FIGURE 2. (a) Example outputs processed by a smoothing filter, i.e., SG filter. This filter smooths the raw EEG signal while ensuring that the tendency is 
not distorted. (b) Example outputs of spatial filters (adapted from [28]), where the motor imagery of the left (right) hand can activate the Region around 
the right (left) motor cortex.
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of signals by maximizing variance differences. In practice, 
high variance often reflects a strong brain rhythm of  interest, 
while low variance indicates an attenuated rhythm. This 
property enables the filters to enhance brain pattern distinc-
tions. ICA and PCA decompose multichannel brain signals 
into independent or linearly uncorrelated components. CCA 
maximizes the correlation coefficient between two filtered 
signals. Notably, CCA and ICA methods are frequently used 
for removing locomotion-induced artifacts, with ICA-based 
methods being the most prevalent. The CSP algorithm has 
garnered considerable attention in BCI applications over the 
past decades [29], with numerous extensions developed for 
more efficient spatial filtering. These extensions broadly fall 
into two categories: spatiospectral joint analysis and regu-
larization. In this section, we review these CSP algorithm 
improvements, which may also inspire further advancements 
in other spatial filter algorithms.

The CSP algorithm is effective in extracting spatial infor-
mation, but it does not consider spectral characteristics. Given 
that BCI signals often exhibit notable variations within spe-
cific frequency bands, such as the mu-band variations in 
SMR-based BCI, ignoring spectral information can lead to 
inaccurate focusing on redundant details. To address this, 
several CSP extensions have been proposed to jointly analyze 
both spatial and spectral characteristics. For instance, the com-
mon spatiospectral patterns approach optimizes spatial filters 
alongside frequency filters for each channel, allowing for an 
additional capture of spectral information [30]. Another meth-
od, subband CSP (SBCSP), decomposes signals into subbands 
using a filter bank, with the final decision based on fusing CSP 
features extracted from each band [31]. The filter bank CSP 
(FBCSP) goes a step further by obtaining correlation infor-
mation between different subbands through mutual learning 
[32], thereby improving BCI performance. However, while 
filter bank-based methods provide more detailed spatiospec-
tral information, they also introduce a greater computational 
burden. As a result, additional FBCSP variants have been pro-
posed to adaptively select fewer targeted frequency compo-
nents based on their importance to the BCI task.

In addition, CSP has been reported to be highly sensitive 
to noise, outliers, and prone to overfitting. To address these 
issues, several extended studies of CSP have demonstrated 
that adding regularization or prior information to the algo-
rithm can help mitigate these problems. Regularization can 
be applied either at the level of covariance matrix estimation 
or at the level of the objective function. For example, Kang 
et al. [33] proposed a composite covariance matrix obtained 
through linearly combining covariance matrices of multiple 
subjects, which proved more robust than traditional CSP, 
especially with limited training data. Additionally, Lotte and 
Guan [34] introduced a unified theoretical framework for 
regularized CSP and developed four improved regularized 
algorithms aimed at either constraining covariance matrix 
estimation or optimizing the objective function according to 
brain signal characteristics. Subsequent studies have sought to 
design better regularized CSP algorithms from various per-

spectives, such as stationary subspace analysis, divergence 
maximization, and probabilistic analysis.

Summary
In this section, we have examined a pivotal signal processing 
technique in BCI, namely, signal filtering. The establishment 
of suitable filters aids in the removal of extraneous information 
from recorded signals, and the extraction of physiologically rel-
evant features, both of which are critical for building efficient 
BCI systems. Compared to reference filters, data-driven spatial 
filters usually provide superior BCI performance due to their 
capacity to extract task-specific and subject-specific infor-
mation under diverse brain conditions. However, data-driven 
methods often necessitate a significant amount of training data 
and are susceptible to interference. Furthermore, their perfor-
mance can degrade significantly across trials and subjects. 
Therefore, future research might consider the development of 
robust spatial filters capable of extracting highly discrimina-
tive and generalizable features from limited data.

BSS 
In BCI, observations are typically collected from a group of 
sensors, each receiving a mix of source signals. BSS aims to re-
cover target sources from observed signals, with only these ob-
servations available for the separation procedure. For instance, 
PCA uses an orthogonal linear transformation to decompose 
observations into a set of uncorrelated principal components 
that maximize variance. It is assumed that artifacts and under-
lying neurophysiological activities are represented by different 
components with distinct topographies and power spectra. As 
a result, artifact removal and dimensionality reduction can be 
achieved by eliminating insignificant components considered 
as noise. Another conventional BSS algorithm is ICA, which 
assumes that sources are non-Gaussian and mutually indepen-
dent signals. By decomposing brain signals using higher-order 
statistics, ICA can detect small nonbrain artifacts and has been 
extensively employed in EEG denoising [35].

Although BSS techniques like PCA and ICA have demon-
strated utility in artifact removal, they may face some limita-
tions in practical usage. These techniques are fundamentally 
linear models and may struggle with nonlinearly mixed noise. 
Moreover, they only utilize spatial information, ignoring tem-
poral correlations, which restricts their focus to isolated arti-
facts, such as ECGs and eye movements, limiting broader 
applications. Additionally, assumptions like spatial orthogo-
nality and statistical independence of source signals may be 
unrealistic constraints for real-world sources. Consequently, 
complex artifacts may be distributed among multiple compo-
nents, making their effective removal challenging. Recently, 
joint BSS (JBSS) methods have demonstrated improved per-
formance in removing complex noise. JBSS methods can 
exploit dependence relationships of sources across multiple 
datasets, potentially achieving performance enhancements 
beyond those attained by single-set BSS approaches. For 
example, Clercq et al. [36] used CCA to suppress muscle arti-
facts in EEG signals. Their study constituted two datasets: the 
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original signal and its temporally delayed version. CCA was 
then employed to identify sources that were maximally auto-
correlated between datasets and mutually uncorrelated within 
each. It was assumed that muscle artifacts exhibited relatively 
low autocorrelation compared to neurophysiological activity. 
Experiments on simulated data also demonstrated that CCA’s 
denoising performance surpassed that of ICA. Furthermore, 
various effective JBSS methods have been developed, such 
as the ensemble empirical mode decomposition-CCA (EMD-
CCA) method for noise reduction in single-channel signals, 
and the multiset CCA method capable of processing more than 
two datasets simultaneously. Chen et al. [35] systematically 
reviewed numerous JBSS methods.

CCA has also been successfully applied in SSVEP-based 
BCI. Lin et al. [37] first utilized CCA to find the maximal 
correlation coefficient between EEG signals and manually 
designed reference signals, representing the SSVEP frequen-
cy by the reference signal with the largest coefficient. They 
demonstrated that the CCA-based method achieved higher 
identification accuracy than power spectral density-based 
analysis. Several CCA extensions have been proposed to 
improve recognition accuracy, including multiway CCA and 
regularized multiway CCA. However, these methods relied 
on predefined sine–cosine waves for constructing reference 
signals, which may be problematic due to intersubject or inter-
trial EEG variations. Zhang et al. [38] addressed this by using 
multiset CCA to optimize reference signals from multiple sets 
of EEG data at the same stimulus frequency. To fully exploit 
SSVEP-related signals, researchers have also developed vari-
ous approaches, such as filter bank CCA and task-related 
component analysis. However, these models only consider 
linear relationships, neglecting the nonlinearities in real EEG 
signals. Recently, kernel CCA, deep CCA, and deep multiset 
CCA have been proposed to learn nonlinear EEG signal rep-
resentations using kernel- and neural network-based methods. 

In summary, BSS methods, particularly JBSS methods, have 
been successfully employed in BCI, offering promising solu-
tions to real-world problems.

Time–frequency analysis 
Brain signals, characterized by their nonstationary and time-
varying nature, are subject to variations due to experimental 
conditions and mental states. For example, SMRs dynamical-
ly change in response to an individual’s imagined movement. 
Although frequency-based features offer high spectral resolu-
tion, they fail to capture essential time domain information 
needed for decoding dynamic brain signals. Consequently, 
time–frequency analysis, which examines time-varying spec-
tral content, has gained prominence in recent years (refer 
to Figure  3). Time–frequency analysis methods are divided 
into two categories: time–frequency distribution (TFD) esti-
mation and time–frequency decomposition. TFD estimation 
techniques represent power and phase changes in brain sig-
nals over time, while time–frequency decomposition methods 
dissect signals into components with distinct time–frequency 
characteristics, enabling the reconstruction of the original sig-
nal via inverse transform. Numerous studies have shown that 
incorporating time–frequency information significantly im-
proves BCI system performance when compared to frequency 
analysis alone.

The short-time Fourier transform (STFT) is a notable TFD 
estimation method. By dividing the signals into short con-
secutive windows and performing Fourier transforms, STFT 
provides insights into the time–frequency domain. However, 
the choice of window size poses a tradeoff between time and 
frequency resolutions. Wide windows excel at distinguishing 
between similar or low-frequency components, providing high 
frequency resolution. This advantage comes at the expense 
of reduced temporal resolution, hindering the accurate iden-
tification of frequency changes’ timing. Narrower windows, 
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FIGURE 3. The wavelet method was used to calculate the time–frequency spectrum of channels C3 (a) and C4 (b) when a subject executed left-hand 
movement imagery, as adapted from [39]. This analysis revealed that the energy in the mu-band of the ipsilateral sensorimotor cortex initially increases 
and subsequently decreases during task performance. Conversely, the energy in the corresponding contralateral brain region exhibits an inverse pattern. 
Hence, time–frequency analysis offers an intuitive representation of the temporal changes in brain rhythms.
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conversely, offer excellent temporal resolution for precise tim-
ing detection but struggle with closely spaced frequency com-
ponents, resulting in limited frequency resolution. Since brain 
signals encompass both high- and low-frequency  components, 
an adaptable strategy is necessary to optimize temporal reso-
lution across varying frequencies. The continuous wavelet 
transform (CWT) presents an alternative approach, employing 
narrow windows for high frequencies and wide windows for 
low frequencies, addressing the need for flexibility in time–
frequency analysis.

CWT enables a more flexible analysis through a series of 
bases (wavelets) with different resolutions both on time and 
frequency. The CWT of the signal x(t) at the scale s (associated 
with the frequency) and the time t is defined as: 

 ( , ) ( ) .X t s
s

x
s

t d1
x }

x
x= -

3

3

-

+ ` j#  (1)

Here, /( )( )t s} x -  represents the dilated and shifted ver-
sion of the mother wavelet ( ) .} x  Changing the scale factor 
s can simultaneously raise (lower) the center frequency of 
the wavelet and compress (stretch) the waveform in the time 
domain. This property grants the CWT the ability to employ 
flexible window lengths at varying frequencies. For BCIs, the 
wavelet waveforms should bear biologically plausible com-
ponents relative to the target signal. Typical wavelet bases 
employed include Morlet and Haar wavelets. However, CWT’s 
deployment of multiple mother wavelet variations across a 
plethora of frequencies introduces redundancy. In addressing 
this, modifications, such as the discrete wavelet transform [40] 
and the wavelet packet transform [41], have been proposed. 
These methodologies adopt discrete values for the dilation and 
time-shifting of the mother wavelet, offering a more compu-
tationally efficient alternative while maintaining satisfactory 
frequency resolution.

Another promising research direction is to use time–fre-
quency analysis to locate subject-specific frequency bands to 
enhance motor intention recognition. For instance, Delisle-
Rodriguez et al. [42] applied STFT to automatically locate 
the subject-specific bands that pack the highest power during 
pedaling motor imagery and achieved satisfactory classifica-
tion results, demonstrating that these specific narrow bands 
improve both performance and computation efficiency. Simi-
larly, Kumar et al. [43] and Yang et al. [44] showed that opti-
mizing subject-specific frequency bands can further enhance 
motor imagery classification performance. These studies indi-
cate that BCI systems can improve accuracy by pinpointing 
the subject-specific frequency bands with target fluctuations 
in brain signals. However, careful design of time–frequency 
analysis or optimization methods is crucial, as inaccurate 
localization of narrow bands may lead to omitted information 
and significantly degraded performance [42].

Despite their merits, wavelet-based techniques also possess 
limitations. First, the selection of the basis significantly influ-
ences the analysis outcome. Second, a tradeoff between tem-
poral and frequency resolution persists. In response to these 

challenges, EMD and its derivatives have emerged as promis-
ing alternatives within the BCI domain. EMD decomposes sig-
nals iteratively and adaptively into simpler, data-driven bases, 
called intrinsic mode functions, unveiling diverse neurophysi-
ological patterns. Due to its data-driven operation and the 
employment of Hilbert transform-derived instantaneous fre-
quencies, EMD surpasses traditional Fourier or wavelet-based 
methods in terms of both temporal and frequency resolutions. 
As evidenced by Huang et al. [45], EMD offers superior fre-
quency resolution compared to CWT in SSVEP-based BCI 
tasks. Moreover, EMD extensions, such as ensemble EMD [46] 
and multivariate EMD [47], proficiently analyze intricate brain 
signals across multiple channels.

This section outlines popular time–frequency analysis 
methods, with STFT and wavelet-based techniques being 
parameter-driven methods reliant on predefined bases. Though 
intuitive and efficient, determining critical parameters remains 
challenging. Conversely, EMD, a data-driven method, offers a 
flexible representation with accurate instantaneous frequency, 
but at a higher computational cost. Consequently, a tradeoff 
between computational speed and decomposition accuracy 
must be considered in practical applications.

Classification algorithms 
In the architecture of a BCI, classification algorithms play a 
pivotal role by interpreting user intentions and converting them 
into control instructions for external devices. These algorithms 
traditionally optimize a function to weigh features and parti-
tion classes based on the features extracted from brain signals. 
As per [48], these conventional classifiers can be divided into 
distinct categories based on their design approach. First, lin-
ear classifiers, such as linear discriminant analysis (LDA) and 
SVM construct linear decision boundaries. Second, neural 
networks, like multilayer perceptrons, are composed of artifi-
cial neurons structured into layers, creating approximations of 
linear or nonlinear decision boundaries. Next, Bayesian clas-
sifiers, including Bayes quadratic classifiers and hidden Mar-
kov models, develop probabilistic models for each class, using 
Bayes’ theorem to classify feature vectors. Nearest neighbor 
classifiers, such as k nearest neighbor and Mahalanobis dis-
tance, label based on proximity to neighbors. Last, hybrid clas-
sifiers amalgamate multiple classifiers to generate more robust 
predictions, examples of which include boosting, voting, and 
stacking techniques.

Classifiers, in conjunction with extracted features, effi-
ciently decipher signal patterns produced during specific brain 
activities. For instance, linear classifiers have been successfully 
applied in P300-based spelling systems and upper limb move-
ments decoding, showcasing impressive recognition accuracy 
with both LDA and SVM [49]. Moreover, an enhanced self-
paced BCI system has also been introduced, leveraging mul-
tiple SVMs and multiple classifier systems [50]. However, the 
performance of these traditional classifiers is largely deter-
mined by feature representation accuracy, and human expertise 
may be inadequate for general circumstances. To address this 
issue, recent research has pivoted toward deep neural networks 
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(DNNs) as a means to bolster BCI performance. DNNs oper-
ate by learning hierarchical representations of brain signals 
via multiple stacked layers, thereby concurrently capturing 
high-level spatial–temporal features and latent dependencies. 
By merging feature representation with classification, DNNs 
streamline the BCI pipeline. Numerous DNN architectures, 
such as convolution neural network (CNN), deep belief net-
work, recurrent neural network (RNN), and their derivatives, 
have been implemented in the BCI domain. A hybrid model of 
CNN and RNN, where the former extracts spatial information 
while the latter learns temporal information, is most frequently 
employed in the BCI field. While DNN-based methodologies 
have attained state-of-the-art performance in a range of BCI 
tasks, they are not without issues, including model overfitting 
and distribution mismatch.

Small training sample size
One major challenge faced by existing classification methods 
is the small size of training samples. In practice, it is unfea-
sible to have users complete a multitude of tasks prior to BCI 
usage, resulting in a scarcity of training samples. This limita-
tion can lead to overfitting and a subsequent decline in BCI 
performance. An intuitive solution to this problem is data 
augmentation, a strategy that artificially enriches and diver-
sifies the training sample, thereby enhancing the character-
ization of the target distribution. Data augmentation methods 
in BCI are typically divided into data modification and gen-
erative model-based methods. Data modification techniques 
produce artificial samples by transforming, adding noise to, 
and blending raw signals or extracted feature vectors. For in-
stance, Zhang et al. [51] transformed STFT features of EEG 
signals to augment training samples, improving the robust-
ness of their CNN model. Another method involved the cre-
ation of artifact samples through time and time–frequency 
domain segmentation and recombination. Generative mod-
el-based methods, including variational autoencoders and  
generative adversarial networks, generate more realistic 
and diverse samples by leveraging distribution informa-
tion learned from the training samples. These approaches 
have demonstrated significant improvements in the training  
process and optimized BCI classification performance in 
scenarios with limited sample sizes [52].

In addition, certain classifiers have been specifically 
developed to tackle limited sample sizes. Lotte et al. [53] sug-
gested using three classifiers—a shrinkage LDA classifier, 
random forest, and Riemannian classifier—when confront-
ed with scarce training samples. These classifiers construct 
robust models by enhancing distribution modeling accuracy, 
employing ensemble learning, and mapping data to geometric 
space, respectively. Furthermore, novel machine learning par-
adigms, such as few-shot learning and semisupervised learn-
ing, have been introduced to combat the issue of small sample 
sizes [54]. Few-shot learning improves the prediction of new 
sample classes by comparing the similarity of new samples 
with available training samples. This method allows for per-
formance enhancement through the use of other relevant 

datasets, thus reducing dependency on training data. Semisu-
pervised learning utilizes a small number of labeled samples 
and a large number of unlabeled samples. This paradigm alle-
viates the difficulty of constructing effective classification 
models by capturing underlying distribution information from 
unlabeled samples, reducing the need for a large number of 
labeled training samples. 

Distribution mismatch
Another challenge faced is the distribution mismatch between 
training samples and testing samples. Brain signals are in-
herently nonstationary, meaning the brain patterns observed 
during training may differ from those recorded during test-
ing. Factors like intersubject variability, changes in mental or 
physical states, and surrounding noise can significantly alter 
the distributions within the collected brain signals. If the clas-
sifiers cannot adapt to these distribution changes in a timely 
manner, BCI performance will inevitably decrease. Existing 
methods have attempted to solve this problem through trans-
fer learning, which aims to apply the knowledge gained from 
tasks of classifying training samples to better identify testing 
samples with mismatched distributions. These classifiers re-
estimate and update their parameters using labeled or unla-
beled samples from the testing session, enabling them to adapt 
to distribution changes and effectively classify nonstationary 
brain signals. For instance, an adaptive version of the LDA 
classifier uses Kalman filtering to track changes in the coeffi-
cient and update the classifier according to the properties of the 
input samples [55]. Additionally, Vidaurre et al. [56] proposed 
an unsupervised adaptation method for the LDA classifier that 
effectively updates class means and the global covariance ma-
trix by considering the nonstationary nature of brain signals. 
Both studies have shown that adaptive classifiers can better 
classify motion imagery brain signals compared to original 
methods. However, traditional adaptive classifiers only use 
shallow feature representations to update the classifier, poten-
tially limiting their adaptability.

Recently, DNN-based transfer learning methods have 
gained attention due to their powerful ability to extract transfer-
able features and align mismatched distributions. A common 
method is to fine-tune a pretrained DNN model using newly 
inputted calibration samples. The pretrained model, which 
has been optimized with a large amount of data, is assumed to 
provide beneficial knowledge for further supervised learning 
from the limited samples [57]. Another representative case of 
transfer learning is domain adaptation (DA), which assumes 
that training samples and calibration samples are collected 
from the source and target domains, respectively. DA aligns 
the marginal or conditional distributions between source and 
target domains through optimization of DNN parameters, 
with measurement metrics of distribution differences includ-
ing maximum mean discrepancy, Kullback–Leibler diver-
gence, and Jensen–Shannon divergence [54]. However, both 
fine-tuning and DA methods require users to provide new 
samples to calibrate the classifier, which may be inconvenient. 
Alternatively, efforts have been made to address the problem 
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of distribution mismatch from the perspective of domain gen-
eralization, which aims to extract invariant features across 
domains, thus eliminating the need for target domain data.

Summary
In this section, we have discussed traditional and DNN-based 
classification methods commonly employed in BCI. These 
classifiers can achieve promising performance when combined 
with ample training samples and robust feature representations. 
However, two major challenges in practical BCI applications, 
namely small training sample size and distribution mismatch, 
significantly impede accurate classification. We have also ex-
amined some promising solutions to these issues, but further 
efforts are required to mitigate the disturbances caused by the 
nonstationary and variable nature of brain signals. Another 
well-established approach to enhance BCI performance is the 
coadaptation strategy. Coadaptive calibration is a dynamic and 
interactive learning process in which both the user and the BCI 
system adapt to each other over time. This process enables 
continuous improvement in BCI performance as the system 
learns from the user’s brain activity patterns while the user 
learns to modulate their brain activity more effectively. Stud-
ies have demonstrated the effectiveness of coadaptive BCI sys-
tems [58]. In summary, by addressing the challenges of small 
sample sizes, distribution mismatches, and the nonstationary 
nature of brain signals, researchers can develop more effective 
and user-friendly BCI systems capable of better adapting to a 
diverse range of real-world applications.

Conclusions and future directions 
In this article, we have examined recent advancements in signal 
processing for BCI technology. BCIs offer a novel mode of com-
munication that is not only convenient but also provides signifi-
cant benefits for individuals with neuromuscular diseases. The 
general framework of a BCI system includes signal acquisition, 
preprocessing, feature extraction, and pattern classification, 
with each of these steps posing distinct challenges for signal 
processing technologies. We have discussed a variety of signal 
enhancement and characterization methods. Given the inher-
ently weak magnitude of brain signals and their susceptibility to 
contamination by artifacts, accurately representing neurophysi-
ological activity is critical for effective decoding processes. 

Various methods, including spike sorting, filters, and BSS have 
been developed to enhance features of interest; these methods 
take into account the unique properties of brain signals, such 
as spatial distribution and rhythm bands. Data-driven methods 
generally tend to outperform parametric ones, which could be 
attributed to the fact that brain signals recorded in real-world 
scenarios often do not exactly conform to the assumptions of 
parametric models. In contrast, data-driven methods are capa-
ble of fitting the inherent correlations in the current data, thus 
enhancing accuracy. However, they are often sensitive to data 
variability caused by cross trials or cross subjects, which makes 
building a robust method a significant challenge. This overview 
of signal processing techniques and their advancements in BCI 
over the past two decades are summarized in Table 1.

We also introduced the commonly used classification 
methods in BCI. While most classification methods can 
achieve promising performance under ideal conditions, prac-
tical issues, such as small training sample size and distribution 
mismatch, can significantly degrade BCI performance. Data 
augmentation-based methods enhance the number and diver-
sity of training samples to some extent, but the artificially 
created samples often involve simple morphological changes 
in existing samples, making it difficult to simulate the actual 
sample distribution. Therefore, how to find the possible regu-
larities of brain signals for simulating the samples with more 
physical significance is demanded. In addition, a number of 
works try to utilize knowledge learned from other users to 
facilitate the training of target users. Despite their improve-
ment in classification performance, they inevitably require the 
acquisition of labeled or unlabeled calibration samples from 
the target user. Further attempts may be made on domain 
generalization and online DA methods without imposing any 
calibration burden on the target user. In recent years, DNNs 
have gained significant attention due to their excellent feature 
representation capabilities. However, they also bring addition-
al challenges in architecture design and interpretability.

It is worth noting that despite the surge in BCI-related pub-
lications over the past two decades aimed at enhancing the 
quality of life for those with LIS, definitive improvements in 
quality of life have not yet been convincingly demonstrated. 
Although published reports indicate relatively rapid spelling 
capabilities, very few works have demonstrated this in patients 

Table 1. Fundamental signal processing techniques and their advancements in BCI over the past two decades.

Signal Filtering Blind Source Separation Time–Frequency Analysis
Classification  
Algorithms

SG filter
Adaptive SG filter
Cascaded SG filter
Wavelet domain 
 optimized SG filter

Common average reference
Laplacian filter
CSP
Common spatiospectral patterns
SBCSP
FBCSP
Regularized CSP

PCA
ICA
CCA
Multiway CCA Kernel CCA
Regularized multiway CCA
Multiset CCA
Filter bank CCA
Deep CCA

STFT
Discrete wavelet transform
CWT
Wavelet packet transform
EMD
Ensemble EMD
Multivariate EMD

Traditional classifier 
DNN
Data augmentation
Semisupervised learning
DA
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with completely LIS. Consequently, whether the absence of 
contingent thinking and intention in completely LIS impedes 
BCI performance remains an open question that warrants fur-
ther investigation [59]. 
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