
94 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2023   |

SP COMPETITIONS

1053-5888/23©2023IEEE

The Video and Image Processing 
(VIP) Cup is a student competition 
that takes place each year at the 

IEEE International Conference on Image 
Processing (ICIP). The 2022 IEEE VIP 
Cup asked undergraduate students to 
develop a system capable of distinguish-
ing pristine images from generated ones. 
The interest in this topic stems from the 
incredible advances in the artificial intel-
ligence (AI)-based generation of visual 
data, with tools that allow the synthesis 
of highly realistic images and videos. 
While this opens up a large number of 
new opportunities, it also undermines the 
trustworthiness of media content and 
fosters the spread of disinformation on 
the Internet. Recently, there has been 
strong concern about the generation of 
extremely realistic images by means of 
editing software that includes the recent 
technology on diffusion models [1], [2]. 
In this context, there is a need to develop 
robust and automatic tools for synthetic 
image detection.

In the literature, there has been an 
intense research effort to develop effec-
tive forensic image detectors, and many 
of them, if properly trained, appear to 
provide excellent results [3]. Such 
results, however, usually refer to ideal 
conditions and rarely stand the chal-
lenge of real-world application. First of 
all, testing a detector on images gener-
ated by the very same models seen in 
the training phase leads to overly opti-
mistic results. In fact, this is not a realistic 

scenario. With the evolution of technol-
ogy, new architectures and different 
ways of generating synthetic data are 
continuously proposed [4], [5], [6], [7], 
[8]. Therefore, detectors trained on 
some specific sources will end up work-
ing on target data of a very different 
nature, often with disappointing results. 
In these conditions, the ability of gener-
alizing to new data becomes crucial to 
keep providing a reliable service. More-
over, detectors are often required to 
work on data that have been seriously 
impaired in several ways. For example, 
when images are uploaded on social 
networks, they are normally resized and 
compressed to meet internal constraints. 
These operations tend to destroy impor-
tant forensic traces, calling for detectors 
that are robust to such events and 
degrade performance gracefully. To 
summarize, to operate successfully in 
the wild, a detector should be robust to 
image impairments and, at the same 
time, able to generalize well on images 
coming from diverse and new models.

In the scientific community, there is 
still insufficient (although growing) 
awareness of the centrality of these 
aspects in the development of reliable 
detectors. Therefore, we took the 
opportunity of this VIP Cup to push 
further along this direction. In design-
ing the challenge, we decided to con-
sider an up-to-date, realistic setting 
with test data including 1) both fully 
synthetic and partially manipulated 
images and 2) images generated by 
both established generative adversarial 
network (GAN) models and newer 

architectures, such as diffusion-based 
models. With the first dichotomy, we 
ask that the detectors be robust to the 
occurrence of images that are only par-
tially synthetic, thus with limited data 
on which to base the decision. As for 
architectures, there is already a signifi-
cant body of knowledge on the detec-
tion of GAN-generated images [9], but 
new text-based diffusion models are 
now gaining the spotlight, and general-
ization becomes the central issue. With 
the 2022 IEEE VIP Cup, we challenged 
teams to design solutions that are able 
to work in the wild as only a fraction of 
the generators used in the test data are 
known in advance.

In this article, we present an over-
view of this challenge, including the 
competition setup, the teams, and their 
technical approaches. Note that all of 
the teams were composed of a profes-
sor, at most one graduate student 
(tutor), and undergraduate students 
(from a minimum of three to a maxi-
mum of 10 students).

Tasks, resources, and evaluation 
criteria

Tasks
The challenge consisted of two phases: 
an open competition (split into two 
parts), in which any eligible team could 
participate, and an invitation-only final. 
Phase 1 of the open competition was 
designed to provide teams with a simpli-
fied version of the problem at hand to 
familiarize themselves with the task, 
while phase 2 was designed to tackle a 
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more challenging task: synthetic data 
generated using architectures not pres-
ent in the training. The synthetic images 
included in phase 1 were generated 
using five known techniques, while the 
generated models used in phase 2 were 
unknown. During the final competition, 
the three highest-scoring teams from the 
open competition were selected and 
were allowed to provide another sub-
mission graded on a new test set. Infor-
mation about the challenge is also 
available at https://grip-unina.github.io/
vipcup2022/.

Resources
Participants were provided with a 
labeled training dataset of real and syn-
thetic images. In particular, the dataset 
available for phase 1 comprised real 
images from four datasets (FFHQ [4], 
Imagenet [17], COCO [18], and LSUN 
[19]), while synthetic images were gen-
erated using five known techniques: 
StyleGAN2 [11], StyleGAN3 [12], 
GLIDE [5], Taming Transformers [10], 
and inpainted images with Gated Con-
volution [13]. All the images of the test 
data were randomly cropped and 
resized to 200 × 200 pixels and then 
compressed using JPEG at different 
quality levels. This pipeline was used to 
simulate a realistic scenario where 

images were randomly resized and 
compressed as happens when they are 
uploaded to a social network. In addi-
tion, they all had the same dimensions 
to avoid leaking information on the 
used generators (some models only 
generate data at certain specific resolu-
tions). Some examples of generated 
images used during the competition are 
shown in Figure 1.

Teams were provided with Python 
scripts to apply these same operations 
to the training dataset. For phase 2, 
there were no available datasets since 
the generated models in this case were 
unknown to the teams. However, partic-
ipants were free to use any external 
data, besides the competition data. In 
addition, participants were allowed to 
use any available state-of-the-art meth-
ods and algorithms to solve the prob-
lems of the challenge.

Teams were requested to provide the 
executable code to the organizers to test 
the algorithms on the evaluation datas-
ets. The Python code was executed 
inside a Docker container with a GPU 
of 16 GB with a time limit of one hour 
to process a total of 5,000 images. The 
teams were allowed to submit their 
code and evaluate their performance 
five times during the period from 8 
August to 5 September 2022.

Evaluation criteria
The submitted algorithms were scored 
by means of balanced accuracy for the 
detection task (score = 0.7 × accuracy 
phase 1 + 0.3 × accuracy phase 2). The 
three highest-scoring teams from the 
open competition stage were selected as 
finalists. These teams had the opportu-
nity to make an additional submission 
on 8 October on a new dataset and were 
invited to compete in the final stage of 
the challenge at ICIP 2022 on 16 Octo-
ber 2022 in Bordeaux. Due to some 
travel limitations, on that occasion, they 
could make a live or prerecorded pre-
sentation, followed by a round of ques-
tions from a technical committee. The 
event was hybrid to ensure a wide par-
ticipation and allow teams who had visa 
issues to attend virtually. In the final 
phase of the challenge, the judging 
committee considered the following 
parameters for the final evaluation 
(maximum score was 12 points):

 ■ the innovation of the technical solu-
tion (one to three points)

 ■ the performance achieved in phase 
1 of the competition, where only 
known models were used to gener-
ate synthetic data (one to three 
points)

 ■ the performance achieved in phase 2 
of the competition, where unknown 

FIGURE 1. Examples of synthetic images from the datasets used in the open competition. The first row shows samples from GLIDE [5], Taming Transform-
ers [10], StyleGAN2 [11], StyleGAN3 [12], and inpainting with Gated Convolution [13]. The second row shows samples from BigGAN [14], DALL-e mini 
[6], Ablated Diffusion Model [15], Latent Diffusion [7], and LaMa [16]. The images in the fifth column are only locally manipulated (the regions outlined in 
red are synthetic).

https://grip-unina.github.io/vipcup2022/
https://grip-unina.github.io/vipcup2022/
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models were used to generate syn-
thetic data (one to three points)

 ■ the quality and clarity of the final 
report, a four-page full conference 
paper in the IEEE format (one to 
three points)

 ■ the quality and clarity of the final 
presentation (either prerecorded or 
live), a 15-min talk (one to three 
points).

2022 VIP Cup statistics  
and results
The VIP Cup was run as an online class 
through the Piazza platform, which 
allowed easy interaction with the teams. 
In total, we received 82 registrations for 
the challenge, 26 teams accessed the 
Secure CMS platform, and 13 teams 
made at least one valid submission. 
Teams were from 10 different countries 
across the world: Bangladesh, China, 
Germany, Greece, India, Italy, Poland, 
Sri Lanka, United States of America, 
and Vietnam.

Figure 2 presents the accuracy 
results obtained by the 13 teams partici-
pating in the two phases of the open 
competition. First, we can observe that 
the performance on test set 1 including 
images from known generators was 
much higher than those obtained in an 
open set scenario, where generators are 
unknown. More specifically, there were 
accuracy drops of around 10% for 
the best techniques, confirming the 

difficulty to detect synthetic images 
coming from unknown models. Then, 
we noted that even for the simpler sce-
nario, only four teams were able to 
achieve an accuracy above 70%, which 
highlights that designing a detector that 
can operate well on both fully and 
locally manipulated images is not an 
easy task.

In Figure 3, we present some addi-
tional analyses of all of the submitted 
algorithms. Figure 3(a) aims at under-
standing how much computational 
complexity (measured by the execution 
time to process 10,000 images) impacts 
the final score. Interestingly, there is 
only a weak correlation between com-
putation effort and performance, with 
methods that achieve the same very 
high score (around 90%) with very dif-
ferent execution times. Figure 3(b), 
instead, shows the results of each meth-
od on test set 1 and test set 2. In this 
case, a strong correlation is observed: if 
an algorithm performs well/poorly on 
test set 1, the same happens on test set 
2, even if the datasets do not overlap 
and are completely separated in terms 
of generating models.

Finally, in Figure 4, we study in 
some more detail the performance of 
the three best performing techniques, 
reporting the balanced accuracy for 
each method on each dataset. For test 
set 1 (known models), the most diffi-
cult cases are those involving local 

manipulations. The same holds for test 
set 2 (unknown models) with the addi-
tional problem of images fully generat-
ed using diffusion models, where 
performances are on average lower than 
those obtained on images created by 
GANs. We also provide results in terms 
of area under the receiver operating 
characteristic curve in Figure 5. In this 
situation, we can note that the first and 
second places reverse on test set 2, 
which underlines the importance to 
properly set the right threshold for the 
final decision. A proper choice of the 
validation set is indeed very important 
to carry out a good calibration.

Highlights of the technical 
approaches
In this section, we present an overview 
of the approaches proposed by all of the 
participating teams for the challenge. 
All proposed methods relied on learn-
ing-based approaches and train deep 
neural networks on a large dataset 
of real and synthetic images. Many 
diverse architectures were consid-
ered: GoogLeNet, ResNet, Inception, 
Xception, DenseNet, EfficientNet, 
MobileNet, ResNeXt, ConvNeXt, and 
the more recent Vision Transformers. 
The problem was often treated as a 
binary classification task (real versus 
fake), but some teams approached it as 
a multiclass classification problem with 
the aim to increase the degrees of 
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FIGURE 2. The anonymized results in terms of accuracy of the 13 teams on the two open competition datasets. 
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FIGURE 4. The balanced accuracy of the three best performing methods on images from test set 1 and test set 2. 

freedom for the predicting model and 
also to include an extra class for 
unknown models.

To properly capture the forensic trac-
es that distinguish pristine images from 
generated ones, the networks considered 
multiple inputs, not just the RGB image. 
Indeed, it is well known that generators 
fail to accurately reproduce the natural 
correlation among color bands [20] and 
also that the upsampling operation rou-
tinely performed in most generative 
models gives rise to distinctive spectral 
peaks in the Fourier domain [21]. There-
fore, some solutions considered as input 
the image represented in different color 
spaces, i.e., HSV and YCbCr, or com-
puted the co-occurrence matrices on the 
color channels. Moreover, to exploit fre-
quency-based features, two-stream net-
works have been adopted, using features 
extracted from the Fourier analysis in 
the second stream. A two-branch net-
work was also used to work both on 
local and global features, which were 
fused by means of an attention module 
as done in [22]. In general, attention 
mechanisms have been included in sev-
eral solutions. Likewise, the ensembling 
of multiple networks was largely used to 
increase diversity and boost perfor-
mance. Different aggregation strategies 
have been pursued with the aim to gen-
eralize to unseen models and favor deci-
sions toward the real image class, as 
proposed in [23].

The majority of the teams trained 
their networks on the data made avail-
able for the challenge; however, some 
of them increased this dataset by gen-
erating additional synthetic images 
using new generative models, such as 
other architectures based on GANs 
and new ones based on diffusion 
models. Of course, including more 
generators during training helped to 
improve the performance, even if 
some approaches were able to obtain 
good generalization ability even add-
ing a few more models. In addition, 
augmentation was always carried out 
to increase diversity and improve gen-
eralization. Beyond standard opera-
tions, like image flipping, cropping, 

resizing, and rotation, most teams 
used augmentation based on Gaussian 
blurring and JPEG compression, 
found to be especially helpful in the 
literature [24], but also changes of sat-
uration, contrast, and brightness, as 
well as CutMix and random cutout.

Finalists
The final phase of the 2022 IEEE VIP 
Cup took place at ICIP in Bordeaux, on 
16 October 2022. Figure 6 shows the 
members of the winning team while 
receiving the award. In the following, 
we describe the three finalist teams list-
ed according to their final ranking:  
FAU Erlangen-Nürnberg (first place), 
 Megatron (second place), and Sherlock  
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(third place). We will also present some 
details on their technical approach.

FAU Erlangen-Nürnberg
 ■ Affiliation: Friedrich-Alexander-

Universität Erlangen-Nürnberg, 
Germany

 ■ Supervisor: Christian Riess
 ■ Tutor: Anatol Maier
 ■ Students: Vinzenz Dewor, Luca 

Beetz, ChangGeng Drewes, and 
Tobias Gessler

 ■ Technical approach: an ensemble of 
vision transformers pretrained on 
Imagenet-21k and fine-tuned on a 
large dataset of 400,000 images. To 
extract generalizable features, a pro-
cedure based on weighted random 
sampling was adopted during training 
aimed at balancing the data distribu-

tion. Models included during training 
were the five known techniques 
StyleGAN2 [11], StyleGAN3 [12], 
GLIDE [5], Taming Transformers 
[10], and inpainted images with 
Gated Convolution [13]. In addition, 
images generated using DALL∙E [25] 
and VQGAN [10] were used.

Megatron
 ■ Affiliation: Bangladesh University of 

Engineering and Technology, 
Bangladesh

 ■ Supervisor: Shaikh Anowarul Fattah
 ■ Students: Md Awsafur Rahman, 

Bishmoy Paul, Najibul Haque 
Sarker, and Zaber Ibn Abdul Hakim

 ■ Technical approach: a multiclass 
classification scheme and an ensem-
ble of convolutional neural networks 
and transformer-based architectures. 
An extra class was introduced to 
detect synthetic images coming 
from unknown models. Knowledge 
distillation and test time augmenta-
tion were also included in the pro-
posed solution. The training set 
included, beyond the five known 
techniques, additional images coming 
from the following generators: 
ProGAN [26], ProjectedGAN [27], 
CycleGAN [28], DDPM [29], 
Diffusion-GAN [30], Stable Diffusion 
[31], Denoising Diffusion GAN [32], 
and GauGAN [33].
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FIGURE 5. The area under the receiver operating characteristic curve (AUC) of the three best performing methods on images from test set 1 and test set 2. 

FIGURE 6. The winning team (FAU Erlangen-Nürnberg) during the award ceremony at ICIP 2022 in 
Bordeaux.
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Sherlock
 ■ Affiliation: Bangladesh University of 

Engineering and Technology, 
Bangladesh

 ■ Supervisor: Mohammad Ariful 
Haque

 ■ Students: Fazle Rabbi, Asif Quadir, 
Indrojit Sarkar, Shahriar Kabir 
Nahin, Sawradip Saha, and Sanjay 
Acharjee

 ■ Technical approach: a two-branch 
convolutional neural network that took 
as input features 
extracted in the 
spatial and in the 
Fourier domain. 
The ad  opted ar -
chitectures were 
EfficientNet-b7 
and Mobile  Net 
-v3. In addition, 
strong augmenta-
tion was perform -
ed, which included also CutMix 
beyond standard op  erations. During 
training, only the five known gener-
ation techniques were considered.

Conclusions
This article describes the 2022 VIP Cup 
that took place last October at ICIP. The 
aim of the competition was to foster 
research on the detection of synthetic 
images, in particular, focusing on imag-
es generated using the recent diffusion 
models [7], [8], [15], [34]. These archi-
tectures have shown an impressive abil-
ity to generate images guided by textual 
descriptions or pilot sketches, and there 
is very limited work on their detection 
[35], [36], [37]. Below, we highlight the 
main take-home messages that emerged 
from the technical solutions developed 
in this competition:

 ■ The best-performing models are pre-
trained very deep networks that rely 
on a large dataset of real and syn-
thetic images coming from several 
different generators. Indeed, increas-
ing diversity during training was a 
key aspect of the best approaches.

 ■ Augmentation represents a funda-
mental step to make the model 
more robust to post-processing 
operations and make it work in 
realistic scenarios.

 ■ Generalization is still a main issue in 
synthetic image detection. In partic-
ular, it has been observed that one 
main problem is how to set the cor-
rect threshold in the more challeng-
ing scenario of unseen generators 
during training.

 ■ The detection task can benefit of the 
attribution, which aims at identify-
ing the model that was used for syn-
thetic generation.
We believe that the availability of the 

dataset (https://github.
c o m / g r i p - u n i n a / 
D M i m a g e D e t e c -
tion) created during 
the challenge can 
stimulate the research 
on synthetic image 
detection and motivate 
other researchers to 
work in this inter-
esting field. The ad -

vancements in generative AI make 
the distinction between real and fake 
very thin, and it is very important to 
push the community to continuously 
search for effective solutions [38]. In 
particular, the VIP Cup has shown 
the need to develop models that can 
be used in the wild to detect synthet-
ic images generated by new architec-
tures, such as the recent diffusion 
models. In this res pect, it is important to 
design explainable methods that can 
highlight which are the forensic arti-
facts that the detector is exploiting 
[39]. We hope that more and more 
methods will be published in the 
research community and will be 
inspired by the challenge proposed 
in the 2022 IEEE VIP Cup at ICIP.
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