
Correlating Social Interactions to Release History During Software Evolution

Olga Baysal
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada
obaysal@uwaterloo.ca

Andrew J. Malton
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada
ajmalton@uwaterloo.ca

Abstract

In this paper, we propose a method to reason about the
nature of software changes by mining and correlating dis-
cussion archives. We employ an information retrieval ap-
proach to find correlation between source code change his-
tory and history of social interactions surrounding these
changes. We apply our correlation method on two soft-
ware systems, LSEdit and Apache Ant. The results of these
exploratory case studies demonstrate the evidence of sim-
ilarity between the content of free-form text emails among
developers and the actual modifications in the code. We
identify a set of correlation patterns between discussion and
changed code vocabularies and discover that some releases
referred to as minor should instead fall under the major cat-
egory. These patterns can be used to give estimations about
the type of a change and time needed to implement it.

1. Introduction

Imagine that there were a tool that could store a record of
all social interactions preceding each release of a software
system and collected during its development process. At
any time, the tool could suggest to a developer what would
be the amount and the type of changes in the upcoming
version, and show the location of the code where the next
modifications will occur. This intelligent application would
essentially predict the future behavior of software changes
based on the size and length of the current discussion, num-
ber and role of its participants, and most importantly, the
issues that were brought up by the participants.

Thus, developers armed with such a powerful tool,
would spend less time managing changes at the architec-
tural level, the maintenance task that might become very
costly as this type of changes affect larger parts of the sys-
tem and thus, they are more expensive to implement.

Although the idea of developing such an application
sounds very promising, the current research in the area of

distinguishing architectural changes leaves much to be de-
sired. Therefore, this paper is aimed at providing a possible
path forward for designing techniques and approaches to
monitor, plan, and predict software changes.

Regardless of the software system and the development
process, there is always a lot of useful information produced
during that process. For example, the interactions and com-
munications among developers can be a useful source of
information about the software. In fact, communications
by means of electronic mail is the only possible way for
the developers working on an open source project, to in-
teract with each other remotely. An open source product
is designed, developed and maintained through community
cooperation. Participants of an open source culture modify
the product and redistribute it to the community [9]. These
interactive communities contribute to open source project
through electronic media. Therefore, these media consist of
the discussions on a variety of issues surrounding the evolu-
tion of the open source software product such as reports on
bugs and their fixes, new feature requests, design change,
refactoring tasks, test plans, etc. Even end users are able to
contribute to the open source project by writing a problem
report or a request for a new functionality and submitting it
electronically.

Most of the time this information is lost as developers
ignore the enormous amount of discussion archives that can
be used to understand the nature of the changes. Architec-
tural changes can originate from various sources but they
are always initiated by the architects, developers and man-
agers. Thus, we believe that electronic media surrounding
the evolution of a software system can be used to make
recommendations about the nature of the changes that are
likely to happen next.

Social interactions are studied as the collection of writ-
ten discussions between stakeholders, especially developers
and users, in the form of mailing lists and e-mail archives.

In our approach we used the techniques of the Natural
Language Processing(NLP). Despite their success in many
areas, NLP methods are little used in software engineering.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

Similar to Biggerstaff [3] and Antoniol [1], our assump-
tion is that developers use meaningful names in programs
for the classes, methods, functions, types, and variables.
These names of program items are mapped to the content
of discussion archives in order to find common concepts—
words that are common to the vocabularies of the discus-
sion archives and source code changes. For this work, the
vocabulary of a document is the set of words appearing in
the document.

For each released version of a software system, we gen-
erated two vocabularies:

1. vocabulary of the changed code;

2. vocabulary of the discussion surrounding the changes.

To compute a correlation model, we compare each dis-
cussion vocabulary of a certain release against the vocab-
ulary of actual code changes for the same release and for
the whole collection of the following releases in the release
history.

A high score indicates a high probability that a particu-
lar list of concepts discussed prior to a release is relevant to
the actual code modifications of that release. We interpret
concept similarity as an indication of the existence of cor-
relation between the two artifacts, discussion archives and
release history. Later, the behavior of the calculated corre-
lation is analyzed to find the patterns of correlation between
the two artifacts. Detecting correlation patterns can be used
in predicting future software changes.

The rest of the paper is organized as follows. Section 2
presents a brief overview of related and background work.
Section 3 describes the novel approach of correlating the
history of public discussions about a particular software
system with the system’s source code change history in or-
der to understand the nature of software changes and per-
haps to forecast future modifications. Section 4 provides
case studies and the results that were obtained after applying
our approach on two open source software systems. Sec-
tion 6 discusses possible directions of future work in the
area of identifying and predicting software changes. Fi-
nally, Section 5 outlines the contributions of our work.

2. Related Work

A number of data mining studies have drawn on release
history information to reveal the nature of software change
[13, 17, 8], to find change patterns [16, 18, 15] and even to
predict future changes [10, 5].

Godfrey and Tu [13] investigated a way to detect and
model structural changes such as moving and renaming, by
performing origin analysis [12]. Origin analysis is used to
reason about where, how and why the design changes have

occurred in the system. Wu investigated the punctuated evo-
lution [17]. He observed that software architecture mainly
changes during the punctuation periods that are the periods
of sudden and discontinuous change.

Zimmermann et al. [16] presented a data mining ap-
proach over Concurrent Versions System(CVS) repositories
to recommend source code that is relevant to a given source
code fragment. Ying et al. [18] suggested to use market bas-
ket analysis techniques to assist developer with identifying
relevant source code during modification task. They deter-
mined change patterns, sets of files that were changed to-
gether frequently in the past, by applying data mining tech-
niques on the historical data of the source code. Mockus
et al. [8] studied a large legacy system to test the hypothe-
sis that a textual description of a change retrieved from the
historic version control data can be used to determine the
purpose of software changes and to understand and diag-
nose the state of a software project. Hipikat [15] is a tool
that gives recommendation about the project information a
developer should consider during a modification task.

Shirabad et al. [10] used machine learning techniques to
extract models from the past experience that can be used
in future predictions. Hassan and Holt [5] used historical
source control systems to predict change propagation. They
presented some heuristics for change propagation, as well
as the approach to study various change propagation mod-
els [5].

Several researchers have investigated relationships be-
tween software artifacts. Antoniol et al. [1] have proposed
a semi-automatic approach for recovering trace links be-
tween free-text documentation such as manual pages and
functional requirements, and source code classes. They
used two IR models, probabilistic and vector space model
(VSM), to rank the documents against the query consist-
ing of the source code identifiers. Marcus and Maletic [7]
used Latent Semantic Indexing (LSI), an extension of the
VSM, that searches for concepts rather than searching for
terms. De Lucia et al. [6] used the LSI model also for trace
link recovery to deal with any type of software artifacts, in-
cluding requirement and design artifacts, test cases and code
classes.

Our approach also aims at finding relations between two
artifacts, discussion archives and source code. However, we
did not apply some predefined IR models but rather we first
applied data mining techniques on the release history of a
software system and discussion archives to recover useful
information about these resources and then we used NLP
methods in text analysis to identify correlation between
code and social interactions among developers.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

3. Correlating Discussion Archives with Source
Code Changes

The conceptual similarity method [2] uses the terms ex-
tracted from the discussions and identifiers extracted from
the code to find correlation between natural language dis-
cussion archives and source code changes. These terms
form a discussion vocabulary, and the identifiers form a
changed code vocabulary. Later these vocabularies are com-
pared in order to determine their common concepts - terms
that appear in both vocabularies. A term becomes a concept
if it is defined in the code as well as represented in human
communications. This set of common concepts represents
the correlation between these vocabularies.

In our work, we aim at mapping discussion archives to
the source code changes. Therefore, each file is treated as
a textual document. This allows us to compare correspond-
ing files across release history and to compute a difference,
defined as delta, representing source code changes between
two sequential releases.

A release history of a software system, denoted by R, is a
set of versions deployed during the development process of
the system. R = {r1, r2, ..., rk}, where k is the total number
of released versions, k = |R|.

A discussion archive consists of a large amount of email
messages. Each email message can refer to different struc-
tures of the source code like a function, a method or a class
and so on. As we are interested in matching code modifica-
tions of a complete release with the electronic discussions
that caused them, email messages have to be organized to
form a discussion of that release.

A discussion document d is a set of email messages orig-
inated between two sequential releases. Discussion docu-
ment di consists of all the email interactions that occur be-
tween release ri and its preceding release ri−1. The email
interactions prior to the first release are not considered be-
cause the first release is the starting point for identifying
changes and its preceding discussion is omitted.

Hence, a discussion corpus D̄ is defined as a set of dis-
cussion documents D̄ = {d1, d2, ..., dn}. The total number
of documents in the corpus is n = |D̄| = k-1. Therefore, to
form a discussion corpus, email messages are arranged into
documents, one document for each release to allow the link-
ing between release discussion and version modifications.

Each source file is considered as a textual document. To
be able to relate a discussion document with the source
code, the content of all the files that represent a software
system, is joined together into one document.

A source code document denoted by c, is a set of all the
source files for a single release. Therefore, ci represents a
source code document for release i.

We used fine grained analysis of release repositories to
recover the history of source code modifications indicated

by lines that have been added, deleted and changed dur-
ing the evolution of a source file. Each release represented
by the source file document is compared to its predecessor
by running Unix utility diff . Each delta contains a line by
line difference, such as added, deleted and changed lines,
between two source code documents, thus ∆i = ci - ci−1.
Therefore, a corpus of code changes C̄ is a set of deltas C̄ =
{∆1, ∆2, ..., ∆m}. The total number of deltas in the corpus
is m = |C̄| = k-1, k ∈ R.

The process of finding correlation between the discus-
sion document and source code changes embedded in delta
consists of the following steps:

1. Building the discussion vocabulary by extracting terms
from the discussion document.

2. Building the changed code vocabulary by extracting
identifiers from delta.

3. Comparing discussion and changed code vocabularies.

3.1. Building the Discussion Vocabulary

We now define the regular, new, and repeated vocabu-
laries which arise from the discussion history. The idea
is that the regular vocabulary represents the common coin
throughout the history of the system; that the new vocab-
ulary is whatever is being specially discussed for the next
release; and the repeated vocabulary is whatever is still be-
ing specially discussed since the last release.

A discussion vocabulary D, also referred as regular dis-
cussion vocabulary, is a set of terms extracted from a dis-
cussion document, D ≤ d.

This stage is performed in five steps:

1. First, each attachment or email header containing a
date and time of a message, a subject, the name of
an author, a recipient is removed as it does not carry
information.

2. In the second step, each number or punctuation, such
as a comma, period, quotation mark, bracket, hyphen,
is eliminated.

3. In the third step, each capital letter is transformed into
its lower case letter.

4. The next step includes sorting and duplicate removal.

5. Finally, a list of stop words [14] is applied to eliminate
most common English words that are articles, preposi-
tions, etc.

Analyzing discussion documents, we introduce a few
more types of vocabulary that we expect carry valuable in-
formation.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

New topic vocabulary is denoted as N and calculated as a
relative complement of the discussion vocabulary of a pre-
ceded release in the discussion vocabulary of a current re-
lease:

Ni = Di − Di−1. (1)

New topic identifies all the new words that appear in the
release discussion but not in the previous release.

Repeated topic vocabulary described as P, consists of all
the terms found in both discussion vocabulary of the current
release and discussion vocabulary of the previous release. It
is defined as:

Pi = Di

⋂
Di−1. (2)

Repeated topic defines all the common words that dis-
cussion documents share with each other.

3.2. Building the Changed Code Vocabu-
lary

A changed code vocabulary or simply change vocabu-
lary C is a set of identifiers extracted from a delta, C ≤
∆. Changed vocabulary Ci contains all the identifier names
obtained from a ∆i.

Domain knowledge and concepts are embedded in the
source code through identifier names and comments. Iden-
tifiers are textual tokens that name program entities, such
as variables, types, classes, functions, methods, etc. Com-
ments are used in the code mainly to explain developers’
intentions about a certain function or an algorithm. They
are particularly important in open source projects when the
code is shared between many developers who may never
have met. Comments provide a better understanding and
guidance throughout the code.

Therefore, we use identifier names and comments to map
the source code to human communication.

The process of building changed code vocabulary con-
sists of the following steps:

1. Identifier extraction separates the names of identifiers
such as classes, methods, and comments, from the rest
of the source code.

2. Identifier separation splits identifiers into two or more
simple words, for example, a class name DataInput-
Stream would be split into three separate words - Data,
Input and Stream. Identifier separation enriches the
corpus and improves the results for the reason that sep-
arated identifiers are closer in form to natural language
words used in communication.

3. Numbers and punctuation, including special symbols
like #, %, $ etc., removal purges all non-alphabetic
symbols.

4. Letters transformation changes capital letters into
lower case ones.

5. Sorting and duplicate removal gets rid of repeated
words and groups remaining words alphabetically.

6. Stop words removal eliminates useless words from the
vocabulary.

The process of building the changed code vocabulary
slightly differs from the process of building discussion vo-
cabulary. Both processes include text normalization activ-
ities, such as: punctuation and numbers removal, letters
transformation, sorting and removal of duplicates and stop
words. However, when dealing with discussion document
we consider all the words as terms that build a discussion
vocabulary, but for each code document we are interested in
extracting only specific identifiers to build a changed code
vocabulary. Identifiers are names assigned to the program
entities like variables, types, classes and so on. We use such
identifiers to refer to the higher-level concepts found in the
electronic discussions, making correlation process possible.

3.3. Comparison of the Vocabularies

The final stage of the approach deals with comparing two
generated vocabularies. We define a correlation between
discussion vocabulary and changed code vocabulary as a set
of terms that two vocabularies have in common corr(D,C) =
D

⋂
C. Thus, the evidence of correlation or association is

based on the number of common concepts, in other words,
on the presence or absence of terms in the vocabularies.

Di

Cj

sij

Figure 1. Finding correlation between two vo-
cabularies

Figure 1 illustrates the process of comparing two vocab-
ularies and determining their common concepts - terms that
appear in both vocabularies. A box shape represents a dis-
cussion vocabulary D of some release i and a circle repre-
sents a changed code vocabulary C of a release j. A set

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

of common concepts or correlation sij between vocabular-
ies Di and Cj is the intersection of two shapes shown as a
pattern-filled area.

We next propose two more correlation measures as:

corrD(D, C) =
| D

⋂
C |

| D | , 0 ≤ corrD(D, C) ≤ 1 (3)

and

corrC(D, C) =
| D

⋂
C |

| C | , 0 ≤ corrC(D, C) ≤ 1 (4)

where corrD is correlation with respect to D and corrC

is correlation with respect to C.

D1

C1

s11

s13

C2

C3

s12

Figure 2. How
discussion vo-
cabulary affects
future changes

C3

D1

D2

D3

s23

s13

s33

Figure 3. How
many changes
were discussed
earlier

The first correlation corrD corresponds to how much
of the source code changes are discussed by stakeholders,
shown in Figure 2. While the second one corrC deter-
mines how much of the discussed issues are actually found
in changes, demonstrated in Figure 3. The larger area of
the intersection between the box and the circle, the stronger
correlation between the vocabularies.

Next, we examine how new topic relates to the source
code changes. In Figure 4, correlation s22 shows that a new
topic affects more than one third of all the modifications in
the source code.

To determine a correlation between the repeated topic
vocabulary and the changed code vocabulary, shown in Fig-
ure 5, we identify a set of terms that are present in both
vocabularies s22. This type of correlation shows whether
words that are repeated from one discussion to another re-
flect the changes in the source code.

We calculate correlation values between changed code
vocabularies and discussion vocabularies of different types
such as regular, new topic, repeated topic, for the complete
release history of a system. To store the generated data we
use matrices.

A correlation matrix is computed to indicate the strength
of the relationships between discussion vocabularies and
changed code vocabularies for the complete release history
of a system.

A correlation matrix is a k × k matrix S = (sij), where
(sij) is corr(Di,Cj). A correlation matrix S is an upper or
lower triangular matrix, which is shown in 5, where entries
below or above, for lower triangle, the main diagonal are
zeros sij = 0 if i > j :

s11 s12 s13 . . s1k

0 s22 s23 s2k

0 0 s33 .
. . .
. . .
0 . . . 0 skk

(5)

Zero values are explained by the fact that every correlation
matrix has a mirror-image quality above or below the diag-
onal, where the correlation between release i and release j is
always equal to the correlation between release j and release
i.

Several correlation matrices are generated. Each matrix
is characterized by the correlation measure and the type of
a discussion vocabulary used at the comparison stage.

4. Two Case Studies

We apply the proposed correlation method in two case
studies. The goal is to assess how well our approach of
correlating software changes with the social interactions
among stakeholders performs on systems with different
characteristics. As shown in Table 1, the studied systems
have different sizes of both the release history and email
interactions.

N2 C2N2

C2s22

Figure 4. Correla-
tion of new topic
vocabulary with
changed code
vocabulary

P2

C2

P2

s22

Figure 5. Corre-
lation between
repeated topic
and changed
code vocabular-
ies

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

System # of Releases # of Email Messages
LSEdit 118 495

Apache Ant 16 67377

Table 1. Size of release history and discus-
sion archives for LSEdit and Apache Ant

The first case study was a freely available graph visual-
ization tool, called LSEdit [11], developed by the Software
Architecture Group at the University of Waterloo. LSEdit
(the name stands for Landscape Editor) is a tool used in re-
verse engineering to display and explore graphs represent-
ing software architecture. LSEdit is a Java-based system.
Over the three and half years, its size has grown from 137
files in release 6.0.1 up to 144 files in release 7.1.25, and
LSEdit still continues to evolve. We examined only 91 se-
quential released versions starting from release 6.0.1 to re-
lease 7.1.25.

Due to poor email communication during the develop-
ment process of LSEdit, the size of its discussion vocabu-
lary for each release is quite small. It varies from a mini-
mum of 0 to a maximum of 969 terms per vocabulary. An
average discussion vocabulary contains about 252 terms.
Zero-sized vocabularies are quite common for the LSEdit
case study, because such a large number of versions were
released during the three and half year time interval. Dis-
cussion vocabulary for each release mostly contains new
terms. This can be explained by the fact that the size of
a typical discussion of LSEdit is very small. Thus, discus-
sion archives contain interactions about the issues on new
functionality, rather than on various problems and their fixes
which would result in repetition of the same words. The
size of the changed code vocabulary that ranges from 0 to
1797 keywords per vocabulary. The average vocabulary for
LSEdit consists of 229 terms. The number is not large, but
neither is LSEdit, being a small-size system.

The software system used for the second case study is
Apache Ant [4]. Apache Ant is a Java build tool. Ant is as
an evolving software system of a medium-size, which con-
tains 666 files) and written in Java. We have chosen this sys-
tem because it is a open source software under the Apache
Software License of Version 1.1 and Version 2.0, and there-
fore all the development information is publicly available.
We investigated the complete release history of Ant consist-
ing of 16 versions. Discussion archives accumulated during
the development process of Ant tool, are of significant size,
67377 emails. We considered electronic communications
among developers only.

Releases are almost evenly distributed over three years of
Ant’s lifecycle. After one and half year there was a longer
time interval, which is expected in the case of delivering
a major release. In fact, release 1.5 includes significant

LSEdit
Regular New Repeated

corrD corrC corrD corrC corrD corrC

avg 11% 17% 9% 11% 15% 6%
max 50% 60% 43% 40% 65% 47%
min 0% 0% 0% 0% 0% 0%

Apache Ant
Regular New Repeated

corrD corrC corrD corrC corrD corrC

avg 17% 71% 5% 9% 28% 63%
max 49% 89% 14% 33% 62% 88%
min 0% 42% 0% 0% 0% 39%

Table 2. Comparison of the results for LSEdit
and Apache Ant

amount of new features-tasks. A new naming convention
for Ant’s releases was introduced also in release 1.5.

The largest discussion document, about release 1.5, con-
sists of over 20K email messages, while the smallest one,
about release 1.6.5, has 565 emails. On average, without
accounting the highest peak of email distribution, the size
of a discussion document is about 3K emails. The largest
discussion vocabulary contains 16508 terms and belongs to
the release 1.5. On average, a discussion vocabulary has
7571 terms. Comparing to LSEdit, having 252 terms in an
average discussion vocabulary, it is extremely large. We ob-
served that for most releases discussion vocabularies con-
tain repeated topic vocabulary rather than new topic. It is
expected from extensive discussions with large vocabularies
to involve repetition of words. Changed code vocabularies
range in size, starting from 12 to almost 6000 keywords per
vocabulary. The average vocabulary contains about 2200
words, which is ten times bigger than the average size of
changed code vocabulary for LSEdit.

4.1. Comparison of Case Studies

We are unable to present the complete results [2] due to
space limitations. Rather, we summarize the results for both
case studies. Comparing the two case studies, the obvious
difference is in the data used to validate our approach: the
release history of Ant consists of only 16 versions, while
the size of discussion archives is very significant, shown in
Table 1. On the contrary, LSEdit has a very big release his-
tory containing 91 released versions and a poor collection
of emails.

Table 2 summarizes the correlation results for both case
studies, LSEdit and Apache Ant. The best results are
achieved on correlating regular and repeated topic discus-
sion vocabularies in Ant case study. The average values of
corrC for these vocabularies are 71% and 63% respectively,
while maximum values hit the 88-89% level. Even their bot-
tom level exceeds 39%. This tells us that there are a lot of

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

changes in the source code that were actually discussed in
the emails. And that the repeated topic, not new one, of
the discussion vocabulary is implemented in the changes.
These findings can be used in the case when there are a lot
of modifications in the code but the discussion surrounding
these changes is not large. Then we can justify that these
changes were actually discussed earlier, in previous discus-
sions.

For both studies, the correlation values corrD are very
low for any type of the discussion vocabulary. This shows it
would be very difficult, almost impossible, to predict code
modifications from the content of the discussion archives.

The conclusion of the results is that issues which are re-
peated the most, are the ones that will be implemented in the
code. Our understanding of repeated topic originally was
the following: we considered these words to be trivial as
they were about everyday maintenance tasks like bug fixes.
A new interpretation of the topic vocabulary goes other way
around. These are the words that carry importance of the is-
sues discussed. If the matter is talked about again and again,
it might be of big concern.

4.2. Correlation Patterns

Table 3 presents a list of correlation patterns identified
from the case studies on LSEdit and Ant. We observed these
patterns from the correlation matrices computed for various
types of discussion vocabularies, thus we grouped the pat-
terns according to the vocabulary type. The list of corre-
lation patterns includes five patterns for the regular vocab-
ulary, three patterns for the new topic vocabulary and four
patterns for the repeated topic vocabulary.

Applying our correlation patterns on both systems, we
observed that some releases considered as minor in fact, are
similar to the characteristics of major releases for the fol-
lowing reasons:

• they all have correlation values similar to those of most
of the major releases in the system,

• they do not conform to the same correlation patterns as
the rest of the minor releases.

We believe that these releases should be analyzed in details
and later be treated as major ones.

The Table 4 summarize the releases for both LSEdit and
Ant, that we believe should be labeled as major ones.

5. Conclusions

This paper describes our approach of attaching electronic
communication history to the change history of a software
system to help developers identify architectural changes

Correlation Pattern Ant LSEdit

Correlation between discussion and changes
is higher in major releases than in minor ones

! !

Discussions of minor releases affect changes
of major releases

!

Longer discussions predict more changes !
Discussions contain more new topic than re-
peated one

!

Discussions contain more repeated topic than
new one

!

New topic is implemented in changes of ma-
jor release

! !

Most changes are related to new topic of the
longest discussion

!

Big changes are discussed in longer interac-
tions prior to the current release

!

Repeated topic is higher correlated with
small changes and thus more found in minor
release

! !

Code modifications implement new topic vo-
cabulary

!

Code modifications implement repeated topic
vocabulary

!

Big discussions contain less repeated vocab-
ulary than smaller ones

!

Table 3. Correlation Patterns

System Release
LSEdit 6.0.13, 7.0.12, 7.0.28, 7.1.6, 7.1.13, 7.1.15

Ant 1.6.3

Table 4. “Major” minor releases for LSEdit
and Ant

based on the similarity of these two artifacts. We have vali-
dated our research question that conceptual correlation can
provide useful recommendations about source code modi-
fications by applying the approach to two open-source sys-
tems, LSEdit and Apache Ant. Although the correlation
ratio between public interactions and change history is not
very high, we can yet reveal valuable findings that human
interactions can be very useful to propagate future changes
in the source code.

We compare and analyze the results of two case stud-
ies to determine correlation patterns between two artifacts.
These patterns support our hypothesis that discussions, in
particular those that include a newly introduced topic, are
more likely to affect major revisions of a system than mi-
nor ones, while a repeated topic, issues that are constantly
discussed, is implemented in minor releases, indicating that
bugs are likely to be fixed as soon as possible by issuing a
minor revision.

We observed that a typical source code change is a func-

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

tion of the type of the discussion vocabulary. A new topic
has a higher correlation with the code modifications for
small discussion corpus than a repeated topic has, while a
repeated topic is more related to the changes of a system
with a large amount of discussion documents than to the
changes of a system with poor discussion corpus.

Identified correlation patterns demonstrated the evidence
of similarity between code modifications and discussion
archives. These patterns can be used to predict software
changes by monitoring the interactions among developers.

6. Future Work

There are several future directions that can be followed
to improve the results of our work.

The first immediate extension would be to implement our
approach as a tool. Right now our implementation is a set
of scripts.

Although the results are promising to support future re-
search in correlating social interactions and code changes,
the correlation model needs to be further validated in dif-
ferent types of software systems to assess its performance.
We should apply our approach on various case studies ana-
lyzing systems written in different programming languages,
with different quality and quantity of discussion archives.

In the process of building changed code vocabulary we
extract identifiers of only program entities like class decla-
rations, method names and comments. In future case stud-
ies, we should add variable names to the list of identifiers to
enrich vocabulary of code changes. Enlarging change code
vocabulary might improve the results of our correlation ap-
proach.

Our correlation method is lightweight: it currently as-
sumes no semantic information when extracting keywords
from the source code or email messages. This informally
avoids bias in the relationship between technical discourse
and language use in source, but ignores elementary facts
about natural language morphology. We will experiment
with applying stemming and/or synonym correlation to in-
crease (but also render less precise) the amount of correla-
tion.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineer-
ing, 28(10):970–983, 2002.

[2] O. Baysal. Attaching Social Interactions Surrounding Soft-
ware Changes to the Release History of an Evolving Soft-
ware System. Master’s thesis, University of Waterloo, Wa-
terloo, ON, Canada, 2006.

[3] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
Proceedings of the 15th International Conference on Soft-
ware Engineering, pages 482–498, Los Alamitos, CA, USA,
1993. IEEE Computer Society Press.

[4] T. A. S. Foundation. Apache ant. http://ant.apache.
org/.

[5] A. E. Hassan and R. C. Holt. Predicting change propagation
in software systems. In ICSM ’04: Proceedings of the 20th
IEEE International Conference on Software Maintenance,
pages 284–293, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[6] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhanc-
ing an artefact management system with traceability recov-
ery features. In ICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenance, pages
306–315, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[7] A. Marcus and J. I. Maletic. Recovering documentation-
to-source-code traceability links using latent semantic in-
dexing. In ICSE ’03: Proceedings of the 25th Interna-
tional Conference on Software Engineering, pages 125–135,
Washington, DC, USA, 2003. IEEE Computer Society.

[8] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In ICSM ’00: Proceedings
of the International Conference on Software Maintenance
(ICSM’00), pages 120–130, Washington, DC, USA, 2000.
IEEE Computer Society.

[9] E. S. Raymond. O’Reilly & Associates, 1999. Originally
appeared online in 1999.

[10] J. Sayyad-Shirabad, T. Lethbridge, and S. Matwin. Min-
ing the maintenance history of a legacy software system. In
ICSM, pages 95–104, 2003.

[11] U. o. W. Software Architecture Group (SWAG). Lsedit.
http://www.swag.uwaterloo.ca/lsedit/
index.html.

[12] Q. Tu. On navigation and analysis of software architecture
evolution. Master’s thesis, University of Waterloo, Water-
loo, ON, Canada, 1992.

[13] Q. Tu and M. W. Godfrey. The build-time software architec-
ture view. In ICSM, pages 398–407, 2001.

[14] C. J. van Rijsbergen. List of english stop words.
http://www.dcs.gla.ac.uk/idom/ir_
resources/linguistic_utils/stop_words.
[Online; accessed 25-August-2006].

[15] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development. IEEE
Trans. Softw. Eng., 31(6):446–465, 2005.

[16] P. Weissgerber and S. Diehl. Mining version histories
to guide software changes. IEEE Trans. Softw. Eng.,
31(6):429–445, 2005. Student Member-Thomas Zimmer-
mann and Member-Andreas Zeller.

[17] J. Wu. Open Source Software Evolution and Its Dynam-
ics. PhD thesis, University of Waterloo, Waterloo, Ontario,
Canada, 2006.

[18] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Trans. Softw. Eng., 30(9):574–586, 2004.

Fourth International Workshop on Mining Software Repositories (MSR'07)
0-7695-2950-X/07 $20.00 © 2007

