Cloning and Copying between GNOME Projects

Jens Krinke, Nicolas Gold, Yue Jia
King’s College London,

Centre for Research on Evolution, Search and Testing (CREST)
{jens.krinke,nicolas.gold,yue.jia} @kcl.ac.uk

Abstract—This paper presents an approach to automatically
distinguish the copied clone from the original in a pair of clones.
It matches the line-by-line version information of a clone to the
pair’s other clone. A case study on the GNOME Desktop Suite
revealed a complex flow of reused code between the different
subprojects. In particular, it showed that the majority of larger
clones (with a minimal size of 28 lines or higher) exist between
the subprojects and more than 60% of the clone pairs can be
automatically separated into original and copy.

I. INTRODUCTION

The duplication of code is a common practice to make
software development faster, to enable “experimental” devel-
opment without impacting the original code, or to enable
independent evolution [1]. Since these practices involve both
duplication and modification, they are collectively called code
cloning and the duplicated code is called a code clone. A
clone group consists of code clones that are clones of each
other (sometimes this is also called a clone class). During the
software development life cycle, code cloning is an easy and
inexpensive (in both effort and money) way to reuse existing
code. However, such practices can complicate software main-
tenance so it has been suggested that too much cloned code
is a risk, albeit the practice itself is not generally harmful
[2]. Because of these problems, many approaches to detecting
cloned code have been developed [3]-[10]. While methods to
identify clones automatically and efficiently are to some extent
understood, it is still disputable whether the presence of clones
is a risk. To better understand why and how code is cloned,
recent empirical studies of cloned code have focused mainly
on examining the evolution of clones, such as whether cloned
code is more stable or changed consistently [11]-[17].

A lot of research has been done on finding and identifying
software clones, but without additional information it is im-
possible to distinguish the original from the copy. Most of the
above empirical studies use version control systems to extract
limited information about the originals and their copied clones;
for example, when a clone appears in some previous version.
However, so far there has been only two approaches [18], [19]
to distinguish originals from copies.

Most version control systems have a ‘blame’ command
which shows author and version information for each line in
a file. This information, which includes the version when the
line was added or last modified, can be used as a line age: if
all lines in one clone have older versions than the lines in the
other clone of a clone pair, then the clone with the older lines

David Binkley
Loyola University Maryland,
Baltimore, MD, USA
binkley @cs.loyola.edu

is most likely the original and the other the copy. However,
usually, it is not that simple because the original and the copy
may have been modified in turn after the copy was created.

This paper makes the following contributions:

« It extends previous work [19] to automatically distinguish
between copy and original by allowing the clones of a
clone pair to be in different systems.

o A case study on the GNOME Desktop Suite subprojects
shows that the majority of larger clones (with a minimal
size of 28 lines or higher) exist between the subprojects
and more than 60% of the clone pairs can be automat-
ically separated automatically into original and copied
clone.

The following section presents background on clones and
clone detection, the retrieval of version information, and
the approach to distinguishing copied clones from original
clones. The case study on the GNOME Desktop Suite is then
discussed in Section 3. Related work is discussed in Section
4 and the last section concludes.

II. BACKGROUND

This section presents the framework in which code clones,
groups of code clones, and changes to code clones are defined.
This is followed by a description of how version information
is retrieved from version control systems and how it is mapped
onto the source code lines.

A. Code Clones

Code clones are usually described as source code ranges (or
fragments) that are identical or very similar. They are grouped
into clone groups (sometime called clone classes) which are
sets of identical or very similar code clones. A code clone
¢ = (s,1, f) is the source code range starting at line s with the
following [lines of code in file f, thus the last line of the code
clone is line number s+1—1. A clone group G = {c1,..., ¢, }
is a set of n code clones cq,...,c,, where each of the code
clones is a clone of the others. A group consisting of two
clones is a clone pair. The clone pairs of a group are generated
by pairing all clones of a group.

For the purpose of this study, the effects of split or frag-
mented code clones are ignored. Such clones would consist of
multiple source code ranges in the same file. An example of
such a code clone is a source code range that is copied and
additional source code subsequently inserted into the copied
code. The code clones do not have to be disjoint: it is possible

(©2010 IEEE. To be published in the Proceedings 7th IEEE Working Conference on Mining Software Repositories, 2010 in Cape Town, South Africa.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the

IEEE.

for two code clones ¢; = (s1,l1,f) and co = (sa,l2, f)
to share a common source range (min(s; + l1,s2 + la) >
max(sy, $2)).

B. Version Information

Most current version control systems can track changes to
a file line-by-line to show for each line the version when the
line was last changed. CVS has an “annotate” command and
subversion names the command “blame” because it shows the
version and the author (‘to be blamed’). These commands give
crude information about the origins of the code based on when
it was last changed and who made that change.

Usually, the blame command retrieves the version informa-
tion for the current version or for a specific version for one file
or a list of files. In the following, the existence of a function
V(f,n), which retrieves the version (age) of source code line
n from source file f of the current version of the program is
assumed. This function can be used to retrieve the version of
each source line in a clone ¢ = (s,1, f) present in the current
version of the program.

C. Classification of Clones

The version information can be used to classify a clone
pair ci,ce with ¢ = (Sl,ll,fl) and ¢y = (Sg,lg,fg) into
specific patterns. First, it is assumed that both clones have the
same length (I; = l3). How to classify pairs with different
lengths will be addressed later. A clone pair is copied if the
versions of all lines in c; are either larger or smaller than the
corresponding lines’ versions in ca:

Vieo..1,—1V(f1,81 + 1) < V(fa2,s2 +1)

or
Vieo..1,—1V(f1,51 + 1) > V(fa,52 + 1)

If the first condition holds, c¢; is likely to be the original and
co the copy. If the second condition holds, it is the other way
round.

The above classification can only be applied to clones of
equal length and does not allow for small differences of a few
lines. In the following an extension is introduced that allows
some tolerance. To do this, a limited number of source lines
in the clones of a pair may be removed.

The clones of a clone pair ¢;, ¢ with ¢; = (s1,11, f1) and
co = (82,12, f2) are said to be copied with a tolerance of t if
after removing ¢ source lines the resulting pair can be classified
as copied according to the above classification. The removal
of the same line in ¢; and ¢ will count as one removal.

III. CASE STUDY

To discover interesting patterns in the history of the
GNOME desktop suite, the scheme presented above was used
to classify clone pairs in the subprojects of the GNOME
Desktop suite as provided by the MSR Challenge'. It is first
evaluated based on how many clone pairs can automatically
be classified as ‘copied’. Second, the result of the automatic

Ihttp://msr.uwaterloo.ca/msr2010/challenge/

100000

not classified (between systems)

14) . .
§ 10000 not classified (within a system)
o ¥ copied between systems
8 1000 H copied within a system
k]
5
g 100
=]
P4
10
1
0 0 % o % % 0 % 0 9 Ty R S B T % %
Minimum Clone Size in Lines
Fig. 1. Number of Clone Pairs

100%

N%

80%

70%
4
& 6%
()
C
S 5% e
o not classified (between systems)
o v agp e
5 A% not classified (within a system)
£ ¥ copied between systems
5 % p Y
P4

B copied within a system
20%

10%
0%

00 % % % % 0% D 9% % S B Y S %0
Minimum Clone Size in Lines

Fig. 2. Number of Clone Pairs (Percentages)

classification is used to study the flow of copied code between
subprojects.

The approach uses Simian? (version 2.2.24) to identify the
clones in a system and then applies the classification based on
the version information available from the system’s subversion
repository. Simian was used to identify the clones in all C files
of all subprojects. It has been used with the default settings
except that the minimal size of a clone was set to 10 source
code lines.

Simian identified 3096 clone groups, containing 8003 clones
leading to 12512 clone pairs. Figure 1 shows the number of
clone pairs for an increasing minimum clone size (x-axis, 10—
200 source code lines) and how they are classified. The two
lower landscapes with the darker colors show the number of
clone pairs which could be classified as “copied” and separated
into original and copy. The figure clearly shows that the
number of clone pairs within a project drops much faster with
increasing minimal clone size than the clone pairs between
systems. The two upper landscapes with the lighter colors
show the number of clone pairs that could not be classified
(the light gray landscape is for clone pairs in between projects
and the very light gray for clone pairs within a project).

Zhttp://www.redhillconsulting.com.au/products/simian

evolution-exchange

gnome-system-tools

-~ 1]
nautilus-cd-burner 1 @

Fig. 3.

The figure suggests that the majority of the smaller clones
are clone pairs within a project and the majority of the larger
clones are clone pairs between projects. Indeed, a look at the
raw data reveals that this is true: The majority of clone pairs
with minimal clone sizes of 28 and above are clone pairs
between projects (383 pairs within a project vs. 397 pairs
between project for a minimal clone size of 28 lines).

Because the number of clone pairs decreases asymptotically
with an increased minimal clone size, it is reasonable to
compare the data using percentages as shown in Figure 2.
Again, it is clear that the number of clone pairs within
a project decreases fast with increased minimal clone size.
Indeed, there is only one single clone larger than 145 lines
that appears within a single project. What is more important,
is that the percentage of clone pairs between projects where it
is possible to distinguish original and copy, is increasing fast
with increased minimal clone size (although it is decreasing
slowly for even larger minimal clone sizes). For all minimal
clone sizes larger than 27 lines, at least 60% of the clone
pairs can be separated into original and copied clone. A look
at the raw data reveals that there exist 116 clone pairs between
projects with a minimal size of 100 lines and only 14 clone
pairs of that size within a project. For only 23 of the 116
clone pairs it was not possible to identify copy and original.
This clearly shows that there are a lot of large clones in the
GNOME Desktop Suite and the approach can automatically
decide if a clone is a copy of another clone.

The large number of clone pairs where such an automatic
classification is possible suggests that there is a lot of code
reuse between the different projects in the GNOME Desktop
Suite. Figure 3 shows the flow between the different projects.
Solid directed edges show that code has been copied from one
project to another and dashed edges show that there is shared
code between projects where it was not possible to distinguish
between copy and original. The edge labels show the number
of code clones that are copied or shared. For example, eight
clones have been copied from gnome-session to gedit. It is

gnome-control-center ’

==

gnome-keyring

B>

(=
=3

; 1
gnome-system-monitor

gnome-panel gtksourceview

gnome-session

Flow between Projects

interesting to see that cycles in the graph are possible: For
example, two clones are copied from gedit to file-roller, two
clones are copied from file-roller to gdm, and two clones are
copied from gdm to gnome-session.

Overall, the project gedit has the highest number of
cloning relations with other projects: Eleven clones have
been copied to evince, two to gnome-utils and file-roller,
one from fotem, and eight from gnome-session. Also, there
are clones shared with gnome-control-center, gnome-system-
monitor, sound-juicer, and evince where it was not possible to
distinguish between copy and original. The graph also shows
clusters of copying between projects: The projects gnome-
control-center, tomboy, deskbar-applet, and gnome-mag build
a cluster; projects evolution-exchange, gnome-system-tools,
evolution-data-server, libsoup, and evolution build a cluster;
projects evince, eog, epiphany, nautilus, and seahorse build a
cluster.

The visualization as a graph clearly show the flow of code
between projects in the GNOME Desktop Suite. It helps to
understand the code reuse relationships between the different
projects.

IV. RELATED WORK

German et al. [18] used version information to identify
the version where a clone has been introduced. For a clone
pair between two systems it was then possible to identify the
system where the cloned code appeared first. Together with
license mining and classification they analyzed how copied
code flows between Linux, FreeBSD and OpenBSD. Their
approach used clone detection between the versions to track
a clone as a clone pair between the current and previous
versions. In contrast, the presented approach only uses a single
invocation of a clone detector and utilizes the fine-grained line-
by-line version information available in version repositories.

There are some studies on cloning across systems which
are discussed below. None of them distinguished copies
from originals. Al-Ekram et al. [20] studied the source code
cloning across 17 systems (nine text editors and eight window

managers). They found very little cloning between systems
and most of the cloning was accidental clones rather than
real reuse of code. Unlike the above study, their study did
not distinguished between large and small clones. Antoniol
et al. [21] studied the extent and the evolution of code
duplications in the nineteen releases of the Linux kernel.
They found that the Linux system does not contain a relevant
fraction of code duplication. Furthermore, code duplication
tends to remain stable across releases, thus suggesting a fairly
stable structure, evolving smoothly without any evidence of
degradation. Kamiya et al. [10] studied the cloning between
Linux, FreeBSD and NetBSD. They found a large number of
clones between FeeBSD and NetBSD, but only a small number
between Linux and the other two.

There are a lot of studies on the evolution of clones
within projects. For example, Kim et al. [11] investigated
the evolution of code clones and defined several evolution
patterns to classify all possible changes during the clone
evolution. Aversano et al. [12] did a similar empirical study
with a slightly refined framework. Similar to Kim et al., they
analyzed so called co-changes that are changes committed by
the same author, with the same notes, and within 200 seconds
(into a CVS repository). A similar framework and experiment
was also presented by Krinke [14] to study the evolution
of code clones with respect to consistent and inconsistent
changes. The changes were reconstructed from data stored in a
version control system (subversion or CVS). He found that the
number of consistent and inconsistent changes were similar.
In a second study, Krinke [15] investigated whether cloned or
non-cloned code is more stable with respect to the number
of changes applied to cloned and non-cloned code. Again, he
reconstructed the changes from version control systems.

With a similar setup where changes are extracted from
version control systems, Gode [16] presented a model for
clone evolution where he tracked the evolution of individual
clones throughout the history of a program. Thummalapenta
[17] used an automatic approach to classify the evolution of
source code clone fragments and investigated to what extent
clones are consistently changed or evolve independently. Clone
fragments were also tracked individually and the evolution of
clones were classified into patterns.

V. CONCLUSIONS

The presented approach is able to separate the majority of
clone pairs that occur within a system or between systems into
the original and the copied clone. For the GNOME Desktop
Suite the approach revealed a complex flow of reused code
between the different subprojects. In particular, it showed that
the majority of larger clones (with a minimal size of 28 lines
or higher) exist between the subprojects and more than 60%
of the clone pairs can be automatically separated into original
and copied clone.

ACKNOWLEDGEMENT

This work is funded in part by Hewlett Packard and the
FOSSology Project.

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

J. Cordy, “Comprehending reality — practical barriers to industrial adop-
tion of software maintenance automation,” in /Ith IEEE International
Workshop on Program Comprehension, 2003, pp. 196-205.

C. Kapser and M. W. Godfrey, ““Cloning considered harmful” con-
sidered harmful,” in /3th Working Conference on Reverse Engineering
(WCRE), 2006, pp. 19-28.

J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
International Conference on Software Maintenance (ICSM), 1996, pp.
244-254.

1. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in International Conference on
Software Maintenance (ICSM), 1998, pp. 368-378.

B. S. Baker, “On finding duplication and near-duplication in large soft-
ware systems,” in Second Working Conference on Reverse Engineering,
1995, pp. 86-95.

S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in International Conference
on Software Maintenance (ICSM), 1999, pp. 109-118.

K. Kontogiannis, “Evaluation experiments on the detection of program-
ming patterns using software metrics,” in Fourth Working Conference
on Reverse Engineering, 1997, pp. 44-54.

R. Komondoor and S. Horwitz, “Using slicing to identify duplication in
source code,” in Eigth International Static Analysis Symposium (SAS),
ser. LNCS, vol. 2126, 2001.

J. Krinke, “Identifying similar code with program dependence graphs,”
in Proc. Eigth Working Conference on Reverse Engineering, 2001, pp.
301-309. [Online]. Available: citeseer.nj.nec.com/krinke(lidentifying.
html

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
Jul. 2002.

M. Kim, V. Sazawal, and D. Notkin, “An empirical study of code clone
genealogies,” in Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international sympo-
sium on Foundations of software engineering (ESEC/FSE), 2005, pp.
187-196.

L. Aversano, L. Cerulo, and M. D. Penta, “How clones are maintained:
An empirical study,” in /1th European Conference on Software Main-
tenance and Reengineering (CSMR), 2007.

R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger, “Relation of code clones
and change couplings,” in 9th International Conference of Funtamental
Approaches to Software Engineering (FASE), ser. LNCS, no. 3922.
Springer, Mar. 2006, pp. 411-425.

J. Krinke, “A study of consistent and inconsistent changes to code
clones,” in 14th Working Conference on Reverse Engineering (WCRE),
Oct. 2007.

——, “Is cloned code more stable than non-cloned code?” in Eighth
IEEE International Working Conference on Source Code Analysis and
Manipulation. 1EEE Computer Society, September 2008, pp. 57-66.
N. Gode, “Evolution of type-1 clones,” in Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation. 1EEE
Computer Society, 2009, pp. 77-86.

S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,” Empirical
Software Engineering, March 2009.

D. M. German, M. Di Penta, Y.-G. Gueheneuc, and G. Antoniol, “Code
siblings: Technical and legal implications of copying code between
applications,” in 6th IEEE International Working Conference on Mining
Software Repositories. 1EEE Computer Society, May 2009, pp. 81-90.
J. Krinke, N. Gold, Y. Jia, and D. Binkley, “Distinguishing copies from
originals in software clones,” in International Workshop on Software
Clones, May 2010.

R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey, “Cloning by accident:
an empirical study of source code cloning across software systems,” in
International Symposium on Empirical Software Engineering, 2005.

G. Antoniol, U. Villano, E. Merlo, and M. Di Penta, “Analyzing cloning
evolution in the linux kernel,” Information and Software Technology,
vol. 44, no. 13, pp. 755-765, Oct. 2002.

