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Abstract—There exist many approaches that help in pointing
developers to the change-prone parts of a software system.
Although beneficial, they mostly fall short in providing details
of these changes. Fine-grained source code changes (SCC)
capture such detailed code changes and their semantics on the
statement level. These SCC can be condition changes, interface
modifications, inserts or deletions of methods and attributes,
or other kinds of statement changes. In this paper, we explore
prediction models for whether a source file will be affected by
a certain type of SCC. These predictions are computed on the
static source code dependency graph and use social network
centrality measures and object-oriented metrics. For that, we
use change data of the Eclipse platform and the Azureus 3
project. The results show that Neural Network models can
predict categories of SCC types. Furthermore, our models
can output a list of the potentially change-prone files ranked
according to their change-proneness, overall and per change
type category.

Keywords-Software maintenance; Machine Learning; Soft-
ware quality

I. INTRODUCTION

Researchers have developed methods and tools to better
cope with software maintenance and evolution. Some ap-
proaches, e.g., [1], [2], [3], use source code metrics to train
prediction models, which can guide developers towards the
change-prone parts of a software system. The main motivation
for these approaches is that developers can better focus on
these change-prone parts in order to take appropriate counter
measures to minimize the number of future changes [4].
Other approaches, e.g., [5], [6], [7], support developers in
modification tasks that affect different source code locations
by automatically eliciting past changes and change couplings
between these source code entities. Moreover, the sensitivity
to which the design of a system reacts to changes can be an
indicator for its quality [8].

While the results of existing approaches are promising they
fall short in providing insights into the details of changes. In
particular, most of the current prediction models are based
on coarse-grained change measures, such as code churn
(lines added/deleted) or number of file revisions, e.g., [9],
[3]. These measures, however, do not capture the details
about the semantics of changes. For instance, they do not
provide detailed information whether a condition expression
has changed or the declaration of a method was modified.

We explore in this paper to which extent data-mining
models can predict if a source file will be affected by a

certain category of source code change types, e.g., declaration
changes. For that, we leverage the (semantic) change infor-
mation of fine-grained source code changes (SCC) [10]. To
compute the prediction models we focuse on object-oriented
metrics (OOM) [11] and centrality measures from social
network analysis (SNA) [12] computed on the static source
code dependency graph since they showed explicitly well
predicting performance and in some cases achieved better
performance than traditional metrics—both for change [1]
and bug prediction [13].

Being able to predict not only if a file will most likely
be affected by changes but additionally by what types of
changes has practical benefits. For example, if a developer
is made aware that there will be API changes she can plan
accordingly and allocate resources for systemwide integration
tests with dependent modules and, furthermore, she might
account for additional time to update the API and design
documents. In contrast, if only small statement changes are
predicted localized unit tests will be sufficient and no further
change impact can be expected.

In particular, we formulate two hypotheses:

H 1: OOM and SNA measures correlate positively with fine-
grained source code changes.
H 2: OOM and SNA measures can predict categories of source
code changes.

We investigate these hypotheses by a quantitative and
manual analysis of 19 Eclipse plug-in projects as well as
the Azureus 3 project. The results of our studies show that
OOM and SNA metrics can be used to compute models to
predict the likelihood that a source file will be affected by a
certain category of source code changes. For instance, the
models for predicting changes in the method declarations
of Java classes obtained a median precision of 0.82 and a
recall of 0.77. In all our models, the complexity of classes
as well as the number of outgoing method invocations show
the highest correlation and predictive power for our change
type categories.

The remainder of the paper is organized as follows:
Section II describes the process of data collection. Section III
contains the empirical study with respect to our hypotheses
and the manual analysis. Section IV provides a discussion
of the findings. We describe related work in Section VI.
Section VII points out possible future work.
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II. DATA COLLECTION

In this section we describe our approach, and the methods
and tools we used in this paper. We need four kinds of
information to prepare the dataset for our experiments in
Section III: (1) Source code dependency graph; (2) Centrality
measures from social network analysis [12] based on the
dependency graph; (3) object-oriented source code metrics
[11]; (4) and fine-grained source code changes [10].
Dependency Graph. The dependency graph of a software
system depicts the relational structure between individual
source code entities. We use the EVOLIZER suite [10] to
extract the dependency information based on the version of
the source code checked out from the trunk at the end of the
timeframes listed in Table III for each project. We consider
the following set of dependencies for our study: Method
invocation, field access, inheritance, type cast, and instance-
of check. We aggregated all dependency information on file
level granularity. Hence, the nodes in the graph represent
files and the edges indicate the existence of a dependency
between two files. Similar to Zimmermann et al. [13], we
distinguish between in- and outgoing connections and allow
for self-connections, i.e., a file can have dependencies to
itself. In contrast to [13], however, we include weighted
connections defined by the number of dependencies between
two files. We choose weighted edges since centrality measures
computed from an unweighted dependency graph showed
lower correlation with SCC in our dataset. The result is a
file-based, directed dependency graph in which edges are
labeled with the number of dependencies.
Centrality Measures (SNA) stem from social network
analysis and characterize the concept of centrality that
identifies nodes in ”favored positions” with more power
[12]. Therefore, files having more ties to other files are
”more central” and can be interpreted as more important. In
practice, several approaches exist to measure the concept of
centrality, see Table I. Centrality measures computed on the
static dependency graph performed explicitly well for (bug)
prediction purposes, e.g., [14]. Moreover, in some cases they
achieved better results than traditional metrics, e.g., LOC,
[13]. Hence, regarding H 1 and H 2, we hypothesize that files
which are more central and have more connections to others
files are more change-prone.

For an overview of social network analysis we refer to [12].
We computed the centrality measures on the afore extracted
file dependency graph with UCINET [15]. All measures were
obtained at file level.
Object-Oriented Metrics (OOM) are a set of well estab-
lished metrics measuring the size and complexity of object-
oriented systems [11], see Table II. Prior work demonstrated
their usefulness for building prediction models: For defect
prediction, e.g., [16], as well as change prediction models,
e.g., [1], [9]. The underlying rationale for our work is that
more complex parts of a system are more likely to face

Table I
DESCRIPTION OF NETWORK CENTRALITY MEASURES (SNA)

Network Centrality Measures
Approach Measure (n=normalized [0-1])

Degree Centrality mea-
sures the concept of cen-
trality based on the im-
mediate ties of a file, i.e.,
the more ties the more
central a file is.

Freeman Degree counts the number of
immediate ties a file has with other files.
We distinguish between outgoing (nOutDe-
gree) and incoming (nInDegree) ties [17].
Bonacich’s Power (nPower) computes
centrality based on the number of imme-
diate ties of a file, and on the number of
immediate ties of its neighbors [18].

Closeness Centrality in-
cludes the indirect ties
and focuses on the dis-
tance of an individual file
to all other files in the
dependency graph.

Freeman shortest path closeness is the
reciprocal of the sum of the lengths of all
shortest paths from a file, i.e., outCloseness
(or to a file, i.e., inCloseness) to all other
files in the graph [17].
Reachability is the number of files reach-
able from a file (nOutReach) or which can
reach a file (nInReach) within 1..n hops
[15].

Freeman Betweenness (nBetweeness) determines how often a file
is part of the shortest path between two other files [17].

Table II
DESCRIPTION OF THE OBJECT-ORIENTED METRICS (OOM)

Object-Oriented Metrics [11]
Weighted methods per class (WMC) is the sum of the cyclomatic
complexity of all methods of a class.
Coupling between object classes (CBO) counts the coupling to
other classes.
Lack of cohesion in methods (LCOM) counts the number of
pairwise methods without any shared instance variables, minus
the number of pairwise methods that share at least one instance
variable.
Depth of inheritance tree (DIT) denotes the maximum depth of
the inheritance tree of a class.
Number of children (NOC) is the number of direct subclasses of
a class.
Response for class (RFC) counts the number of local methods
(including inherited methods) of a class.

changes. Again, the object-oriented metrics were computed
on the version of the source code checked out from the trunk
at the end of the timeframes listed in Table III for each
project using UNDERSTAND (http://www.scitools.com/). We
aggregated all metrics on file level.
Fine-Grained Source Code Changes (SCC). Version Con-
trol Systems (VCS) such as CVS, SVN, or GIT handle source
files as pure text files ignoring their implicit code structure.
Therefore, change measures such as lines added/deleted
are rather imprecise since they can indicate code changes
although no source code entities were changed, e.g., in case
of text formatting. Furthermore, they can not distinguish
between different types of changes; changing the name of a
class or the parameter list of a method declaration will both
likely result in ”+1 line changed”. Another problem is that
recording changes solely on file level, i.e., revisions, can be
too coarse grained: In our dataset around 8 distinct source
code entities of the same file were changed per revision. Fluri
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et al. developed a tree differencing algorithm to extract fine-
grained source code changes (SCC) [19]. They leverage the
implicit structure of source code by comparing two different
versions of the abstract syntax tree (AST) of a program and
can track source code changes down to statement level, e.g.,
method invocation statements.

Their algorithm matches nodes between two AST versions
using string similarity measures for leave nodes and tree
similarity measures for subtrees. Finding such node matches
between two versions of an AST is necessary to determine
wether a node was inserted, deleted, update, moved, or did
not experience any change at all. Inserting, deleting, updating,
and moving nodes constitute the basic tree edit operations that
can possibly alter the structure of an AST (or any tree like
structure in general). Next, a (minimal) set of such basic tree
edit operations transforming one version of the AST into the
other is generated. Each tree edit operation for a given node
is then combined with the semantic information about the
particular source code entity that the node represents within
the AST. This allows to classify a basic tree edit operation
using the taxonomy of source code changes presented in
[10]. For instance, consider two AST nodes, A and B, that
were inserted. A represents a method invocation statement
within the AST structure and B an else-part. Accordingly,
these two basic insert operations are classified as statement
insert and else-part insert respectively.

The algorithm is implemented in CHANGEDISTILLER [10].
This tool compares the ASTs of each pair of subsequent
revisions of all files of a system provided by its VCS. We
applied CHANGEDISTILLER to the VCSs of all projects and
extracted all SCC that occurred during the timeframes listed
in Table III for each file.

III. EMPIRICAL STUDY

This section presents the empirical study we carried out
to investigate our hypotheses formulated in Section I. We
describe the dataset, the statistical methods we applied, and
report on the results and findings.

A. Dataset

We conducted our study with 19 plugin projects of the
Eclipse platform and the Azureus 31 project. They are well
established in their domains, have a maintenance history of
several years, and were often subject to prior research, e.g.,
[20], [21], [22], [14], [23].

Table III gives an overview of our dataset: #Files denotes
the number of unique *.java files we obtained when checking
out the source code version at the end of the timeframe (Time)
from the trunk of the version control system. #Rev denotes
the total number of revisions of the given source files within
the timeframe, #LM denotes the total number of lines added

1http://www.vuze.com, CVS-Path: azureus.cvs.sourceforge.net:/cvsroot/
azureus Module: azureus3

Table III
DATASET USED IN THIS STUDY (DB=DEBUG)

Project #Files #Rev #LM #SCC Time[M, Y]
Compare 154 2’953 111’749 17’263 May01-Sep10
jFace 378 5’809 304’744 22’203 Sep02-Sep10
JDT DB Jdi 144 1’936 63’602 6’121 May01-July10
JDT DB Eval 105 1’610 27’337 6’091 May01-July10
JDT DB Model 98 2’546 78’225 12’566 May01-July10
Resource 274 6’558 260’298 28’948 May01-Sep10
Team Core 169 1’995 38’317 4’607 Nov01-Aug10
CVS Core 188 5’448 157’176 23’301 Nov01-Aug10
DB Core 187 3’033 76’594 12’342 May01-Sep10
jFace Text 312 4’980 107’461 23’633 Sep02-Oct10
Update Core 275 6’379 151’823 27’465 Oct01-Jun10
DB UI 788 10’909 281’485 57’075 May01-Oct10
JDT DB UI 381 5’395 108’920 28’956 Nov01-Sep10
Help 110 999 20’661 5’919 May01-May10
JDT Compiler 322 19’466 1’099K 171’915 Jun01-Sep10
JDT Dom 157 6’608 233’105 32’699 Jun01-Sep10
JDT Model 420 16’892 596’320 90’128 Jun01-Sep10
JDT Search 115 5’475 201’876 44’372 Jun01-Sep10
OSGI 395 6’455 239’430 38’203 Nov03-Oct10
Azureus 3 368 6’327 187’869 46’232 Dec06-Apr10

Table IV
CATEGORIES OF CHANGE TYPES USED IN THIS STUDY.

Category Description

cDecl Combines all changes that modify the declaration of a
class, e.g., changing the class name.

func Combines the insertion and deletion of functionality, i.e.,
adding or removing methods.

oState Combines the insertion and deletion of object states, i.e.,
adding or removing class attributes.

mDecl Combines all changes that modify the declaration of a
method, e.g., changing the method name.

stmt Combines all changes that modify executable statements,
e.g., changing the name of local variable.

cond Combines all changes that modify the condition expres-
sion in control structures.

else Combines the insertion and deletion of else-parts.

and deleted, and #SCC is the total number of fine-grained
source code changes.

An initial investigation of the dataset revealed large
differences in how often certain SCC types occurred. In order
to have higher frequencies for our experiments we combined
several change types into one change type category according
to their semantics (see Table IV). Some change types such as
adding attribute modifiability (removing the keyword final
from an attribute declaration) account—even if combined—
for less than one percent of all changes and are left out in
our analysis (see [10] for a list of all change types).

B. Correlation Analysis

We use the Spearman rank correlation to analyze the
correlation of SNA and OOM metrics with #SCC (H 1). We
choose the Spearman over Pearson correlation because it
does not make any assumptions about the distribution of
the data and measures the strength of a monotonic relation
(rather than linear) between two variables [24]. The Spearman
correlation obtains values between +1 and -1: +1 represents
a high positive and -1 a high negative correlation between
two variables. We consider values below -0.5 and above +0.5
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as substantial correlations [25], and values below -0.7 and
above 0.7 as strong correlations [2], [25]. We first examine
the correlation between #SCC and centrality measures (SNA)
and then analyze the correlation between #SCC and object-
oriented metrics (OOM).
Centrality Measures: The left columns of Table V list
the results of the correlation analysis per project. With a
median correlation of 0.66 and exhibiting the largest value
for 16 projects nOutDegree shows the strongest correlation
of all centrality measures. For 8 projects we can observe
strong correlations; 2 out of them have values of 0.8 and
above. Only 3 projects are below 0.5. nPower is close to
nOutDegree with the second highest median (0.65). 8 projects
have strong correlations and 4 are below the level 0.5. The
third highest median (0.61) has nInDegree. With a median
of 0.53 nOutReach has a substantial correlation with #SCC
on average.

outCloseness and nBetweenness both do not have a
substantial correlation on average, but their values above
0.4 indicate an existing positive correlation that might have
discriminatory power when building prediction models [13].
With an average of 0.02 and 0.19 inCloseness and nInReach
do not exhibit any correlation and will be excluded from the
prediction experiments.

The values in Table V indicate that there are differences
regarding the correlations of certain centrality measures and
#SCC. To investigate these differences, we first performed
the Related Samples Friedman Test that was significant at
α = 0.05. We then used pair-wise post-hoc tests to statisti-
cally investigate the differences between individual centrality
measures. We adjusted the α-level using the Bonferroni
Procedure [24] for all post-hoc tests. Although the decisions
are borderline, the post-hoc tests confirmed that measures
based on outgoing connections, i.e., nOutDegree, nOutReach,
and outCloseness have significantly higher correlations than
their corresponding measures based on incoming connections,
i.e., nInDegree, nInReach, and inCloseness.
Object-Oriented Metrics: The columns on the right hand
side of Table V show the Spearman rank correlation values
between object-oriented metrics and #SCC for each project.
With a median of 0.73 WMC shows the highest correlation
of all metrics for each project. For more than half of the
projects it shows values of 0.7 and above. CBO has the second
strongest correlation with a median of 0.64. It still has a
substantial correlation on average, however, it is significantly
lower than WMC. LCOM and RFC have a median correlation
below 0.5. DIT shows a weak correlation with a median of 0.3.
NOC shows no correlation with #SCC and will be excluded
from the prediction experiments.

When comparing the object-oriented metrics with the
network centralities, we observe that the median values
of WMC and nOutDregree—both have the highest median
correlation in their respective metric set—differ by 0.07
towards WMC. A Wilcoxon Signed Rank Test showed that

this difference is significant. Not surprisingly, CBO showed
no significant difference with nOutDegree, nInDegree, and
nPower; according to their definitions in Table I and II, these
metrics measure the immediate relation to other source files.
To summarize our results: The degree centrality measures
nOutDegree, nInDegree, and nPower, and the object oriented
metrics WMC and CBO showed substantial to strong corre-
lation with #SCC measured for source files. WMC showed
the strongest correlation with a median of 0.73. Furthermore,
centrality measures based on outgoing connections are
significantly stronger correlated than measures based on
incoming connections. This is similar to the findings in
[13] where outgoing connections of the dependency graph
were more related to bugs than incoming connections. In
both metric sets we observed measures that show very weak
or no correlations at all. Based on these findings we accept
H 1—OOM and SNA correlate positively with #SCC.

C. Predicting Change Type Categories

We first performed a series of classification experiments to
investigate if network centrality measures and object-oriented
metrics can be used for computing models to predict change-
prone files. We then analyze whether those classification
models can be refined towards our change type categories
(H 2).
Experimental set-up: Prior to classification, we binned the
files of each project into change-prone or not change-prone
using the median of the total number of SCC per file (#SCC).
These bins represent the observed classes when assessing the
performance of the classification models later on. The median
is a more robust measure, especially for highly skewed values
as in our case.

Regarding the calculation of the classification models, we
followed the advice by Lessmann et al. who found that more
sophisticated classifiers might outperform others [26]. We
therefore selected the 8 different classifiers. So far we could
not consistently observe significant differences between all
those classifiers in our experiments. However, Neural Net-
work (NN) and Bayesian Network (BNet) achieved slightly
better results. Hence, we only report on the classification
performance of these two learners.

Concerning the evaluation of the classification models,
we use the area under the receiver operating characteristic
curve statistic (AUC), and also report the median precision
(P) and recall (R) values. AUC represents the probability,
that, when choosing randomly a change-prone and a not
change-prone file the trained model then assigns a higher
score to the change-prone file [26]. AUC is a robust
measure to assess and compare the performance of classifiers
since it is independent of prior probabilities and is also
the recommended performance measure in [26], [27]. All
models were trained using 10 fold cross-validation and AUC,
precision, and recall were computed by evaluating each model
on the same dataset it was computed from. We consider AUC
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Table V
SPEARMAN RANK CORRELATION BETWEEN DIRECTED NETWORK CENTRALITY MEASURES, OBJECT-ORIENTED METRICS, AND #SCC AT THE LEVEL OF

SOURCE FILES. * MARKS SIGNIFICANT CORRELATIONS AT α = 0.01. THE LARGEST VALUE PER METRIC SET IS PRINTED IN BOLD.

Project nOutDegree nInDegree nPower outCloseness inCloseness nOutReach nInReach nBetweenness WMC CBO LCOM DIT NOC RFC
Compare 0.77∗ 0.67∗ 0.74∗ 0.49 ∗ -0.20 0.68∗ 0.06 0.68∗ 0.7∗ 0.67∗ 0.67∗ 0.57∗ -0.19 0.66∗

jFace 0.75∗ 0.64∗ 0.74∗ 0.51∗ -0.12 0.59∗ 0.02 0.42∗ 0.77∗ 0.61∗ 0.65∗ 0.55∗ 0.02 0.61∗

JDT DB Jdi 0.72∗ 0.77∗ 0.72∗ 0.08 0.31∗ 0.17 0.26∗ 0.4∗ 0.75∗ 0.44∗ 0.37∗ -0.21 0.17 0.02
JDT DB Eval 0.45∗ 0.41∗ 0.44∗ -0.02 0.12 0.11 0.12 0.33 0.65∗ 0.65∗ 0.49∗ -0.15 0.11 0.06
JDT DB Model 0.6∗ 0.71∗ 0.57∗ 0.42∗ 0.07 0.52∗ 0.44∗ 0.56∗ 0.7∗ 0.65∗ 0.52∗ 0.32 0.1 0.45∗

Resource 0.68∗ 0.64∗ 0.65∗ 0.45∗ -0.08 0.56∗ 0.35∗ 0.55∗ 0.75∗ 0.63∗ 0.46∗ 0.33∗ -0.18∗ 0.65∗

Team Core 0.45∗ 0.50∗ 0.35∗ 0.23∗ 0.21∗ 0.29∗ 0.25∗ 0.35∗ 0.51 ∗ 0.46∗ 0.32∗ 0.28∗ 0.15 0.45∗

CVS Core 0.76∗ 0.62∗ 0.75∗ 0.26∗ 0.13 0.64∗ 0.28∗ 0.55∗ 0.76∗ 0.66∗ 0.51∗ 0.31∗ 0.01 0.48∗

DB Core 0.45∗ 0.49∗ 0.42∗ 0.21∗ 0.03 0.37∗ 0.25∗ 0.35∗ 0.62∗ 0.58∗ 0.49∗ 0.33∗ -0.11 0.53∗

JFace Text 0.66∗ 0.64∗ 0.65∗ 0.57∗ -0.22∗ 0.58∗ -0.18∗ 0.41∗ 0.75∗ 0.66∗ 0.6∗ 0.56∗ -0.16∗ 0.71∗

Update Core 0.62∗ 0.60∗ 0.61∗ 0.42∗ 0.02 0.49∗ 0.13 0.37∗ 0.72∗ 0.64∗ 0.41∗ 0.23∗ -0.06 0.48∗

DB UI 0.65∗ 0.54∗ 0.40∗ 0.21∗ 0.14∗ 0.47∗ 0.19∗ 0.46∗ 0.61∗ 0.56∗ 0.49∗ 0.29∗ -0.08 0.35∗

JDT DB UI 0.56∗ 0.52∗ 0.56∗ 0.31∗ 0.15∗ 0.34∗ 0.17∗ 0.31∗ 0.54∗ 0.48∗ 0.37∗ 0.32∗ -0.13∗ 0.31∗

Help 0.52∗ 0.45∗ 0.5∗ 0.42∗ -0.20 0.52∗ 0.09 0.42∗ 0.47∗ 0.47∗ 0.47∗ 0.29∗ -0.27∗ 0.3∗

JDT Compiler 0.85∗ 0.63∗ 0.85∗ 0.63∗ 0.06 0.70∗ 0.40∗ 0.63 ∗ 0.84∗ 0.75∗ 0.52∗ 0.25∗ 0.17∗ 0.51∗

JDT Dom 0.76∗ 0.67∗ 0.75 ∗ 0.51∗ 0.01 0.58∗ 0.13 0.36∗ 0.85∗ 0.73∗ 0.39∗ 0.28∗ -0.23∗ 0.46∗

JDT Model 0.66∗ 0.54∗ 0.66∗ 0.52∗ -0.25∗ 0.53∗ 0.32∗ 0.44∗ 0.73∗ 0.68∗ 0.51∗ 0.23∗ -0.05 0.49∗

JDT Search 0.8∗ 0.71∗ 0.76∗ 0.55∗ -0.01 0.56∗ 0.25∗ 0.65∗ 0.76∗ 0.61∗ 0.61∗ 0.35∗ -0.08 0.42∗

OSGI 0.52∗ 0.48∗ 0.52∗ 0.34∗ -0.09 0.38∗ 0.18∗ 0.41∗ 0.56∗ 0.52∗ 0.41∗ 0.29∗ -0.15∗ 0.49∗

Azureus 3 0.71∗ 0.59∗ 0.71 0.55∗ -0.01 0.58∗ 0.06 0.49∗ 0.77∗ 0.67∗ 0.52∗ 0.55∗ -0.17∗ 0.67∗

Median 0.66 0.61 0.65 0.42 0.02 0.53 0.19 0.42 0.73 0.64 0.49 0.3 -0.08 0.48

Table VI
MEDIAN CLASSIFICATION RESULTS OVER ALL PROJECTS PER CLASSIFIER

AND PER MODEL

SNA OOM SNA&OOM

AUC P R AUC P R AUC P R

BNet 0.86 0.84 0.78 0.86 0.86 0.74 0.88 0.87 0.84
NN 0.87 0.88 0.82 0.86 0.89 0.81 0.86 0.87 0.83

values above 0.7 to have adequate classification power [26].
We used Rapid Miner for all prediction experiments.2

Discriminating change-prone and not change-prone files:
The first set of experiments is concerned with calculating
models that are able to classify source files into change-
prone and not change-prone. Table VI lists the median
AUC, precision, and recall values across all projects when
discriminating files into change-prone and not change-prone.
SNA and OOM refer to the models that were trained
when using centrality measures and object-oriented metrics
separately as independent variables. SNA&OOM refers to the
combined model using both metric sets in combination.

From the median performance values in Table VI we see
that the AUC values of the trained models are all above
the limit of 0.7, hence show adequate classification power.
BNet based on SNA&OOM shows the best performance with
a median AUC of 0.88, a median precision of 0.87, and a
median recall of 0.84. Similarly good results are obtained
by NN.

For SNA and OOM separately and for the joint model all
AUC values are close. This means that centrality measures
as well as object-oriented metrics can predict changes in files
equally well. The combination of both metric sets improves
the prediction performance slightly but not significantly. A

2http://rapid-i.com/

Table VII
MEDIAN AUC, PRECISION, AND RECALL OF ACROSS ALL PROJECTS AND

PER CATEGORY BASED ON NEURAL NETWORKS (NN)

Project cDecl func oState mDecl stmt cond else
Median AUC 0.69 0.81 0.84 0.78 0.89 0.86 0.87
Median Precision 0.71 0.82 0.77 0.82 0.9 0.72 0.71
Median Recall 0.73 0.77 0.86 0.77 0.87 0.89 0.88

comparison of the values at project level showed that in
cases where centrality measures have a comparably lower
correlation with changes, prediction models can gain more
from using object-orient metrics. For example, JDT DB Eval
and DB Core show the largest correlation difference between
SNA and OOM (see Table V).
Discriminating change-prone and not change-prone files
according to change type categories: Based on the promis-
ing results from the first set of experiments, we next refine our
models in order to classify source files into change-proneC
and not change-proneC given a change type category C
defined in Table IV. Analogously to the previous experiment,
we binned the files of each project into the observed classes
change-proneC and not change-proneC using the median of
the total number of changes for a given category C in a file:
cDecl, func, oState, mDecl, stmt, cond, or else.

We trained Bayesian Networks (BNet) and Neural Net-
works (NN) in this experiment using SNA and OOM in
combination as input variables. We could not observe a
consistently significant performance difference across all
categories between both classifiers. However, NN showed a
better performance in the case of cDecl. We therefore only
report on the median results of NN in Table VII and skip the
results of BNet for readability and space reasons. Except for
cDecl all other categories have an average AUC value above
0.7. A One Sample Wilcoxon Signed-Ranks Test showed that
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except for cDecl all other categories have significantly higher
median AUC values than 0.7. oState, stmt, cond, and else
perform significantly higher than 0.8.

The median AUC indicates that prediction performance
might vary based on how changes affect source code entities:
Categories that aggregate changes within method bodies (MB
categories), i.e., stmt, cond, and else are above 0.8 and rank
as the top three regarding the median AUC values; class
body changes (CB categories), i.e., func and oState have
median AUC values close to 0.8; and declaration changes (D
categories), i.e., cDecl and mDecl show the lowest median
AUC values around 0.7. We used a Related Samples Friedman
Test and post-hoc tests with the Bonferroni Procedure to
statistically investigate the AUC values of the different
categories. The tests confirmed aforementioned observations:
Within MB, CB, and D the performance differences of the
respective change type categories are not significant. However,
there are significant differences across MB, CB, and D.
To summarize our results: The first set of experiments
showed that SNA and OOM metrics can be used to train
models to accurately identify change-prone source files. With
a median AUC of 0.88, BNet with SNA and OOM metrics
as predictor variables showed the best performance. Second,
we refined our models to identify change-prone source files
according to a given change type category. For each change
type category, except cDecl, the NN learner obtained models
with good predictive power using the SNA and OOM metrics
as independent variables. An analysis of the AUC values
among these categories revealed that the performance of the
models differs between the types of changes that affect the
declaration or body of a class or method. Based on these
findings we accept H 2—SNA&OOM measures can predict
categories of source code changes.

D. Manual Analysis of Changes

The correlation analysis and our prediction models showed
that coupling to other classes is strongly related with changes.
Method invocation statements are part of the stmt category
and typically account for most of the coupling. To further
investigate this potential relationship between coupling and
changes, we carried out an initial analysis in which we
manually analyzed a sample set of methods and their changes
in our dataset. The goal is to find evidence that outgoing
dependencies (i.e., method invocations) are indicators for
the change-proneness of a method and class, respectively. In
particular, we searched for specific instances of invocation
statements that changed multiple times in a series of revisions.
Such invocations caused maintenance effort over an extended
time period rather than only once.

We selected different methods from each project according
to the following two criteria: (1) The method was changed
frequently in the past (relative to the other methods in the
project). (2) A relatively large portion of the changes in a
method affected method invocations. After having selected

Table VIII
nOutDegree, CBO, THEIR MEDIANS AT PROJECT LEVEL, AND THE
PROBABILITY BY WHICH BNET MODELS USING SNA AND OOM AS

PREDICTORS CORRECTLY CLASSIFIED A FILE AS change-prone.

File nOutDegree Median CBO Median BNet Prob
LaunchConfiguration 0.3 0.003 19 2 1.0
ComparePreferencePage 0.1 0.007 25 2 1.0
EclipseSynchronizer 0.9 0.04 32 6 1.0

the candidate methods, we manually inspected all subsequent
revision-pairs of each method (in total over 350 revisions).

In the following, we report on three representative method
examples that we found during the manual inspection. These
examples include methods of the classes LaunchConfigura-
tion, ComparePreferencePage, and EclipseSynchronizer of the
projects DB Core, Compare and CVS Core, respectively. All
these classes exhibit large values of the metrics nOutDegree
and CBO compared to the project specific median values.
Moreover, our BNet model classified those classes as change-
prone with a probability of 1.0 (see Table VIII).

In the remainder, R[rt−rt+1] denotes the subsequent (file)
revision pair in which a method changed, e.g., R[1.6-1.7]. For
each change we state the change type category in brackets.
LaunchConfiguration.launch(...):3 26% of all changes over
20 revisions were method invocation changes. Between revi-
sions R[1.18-1.19] the method call initializeSource-
Locator(...) was added to the method body (1 x stmt).
In the following, this method invocation changed in 7
revisions. Between R[1.20-1.21], the invocation statement
was moved to an if-statement that performs null-checks of its
parameters (1 x stmt). From R[1.22-1.23] the invocation
statement was moved to the else-part of the parent if-
statement (1 x stmt, 1 x else). From R[1.41-1.42] the
condition of the if-statement was changed (1 x stmt, 1 x cond).
From R[1.45-1.46] the invocation was moved to a different
location within the method body and its else-part was deleted
(1 x stmt, 1 x else). For a better exception handling it was
then moved into a try-catch block between R[1.46-1.47]
(1 x stmt). From R[1.51-1.52] the method invocation was
removed and then re-inserted at the same source location in
the subsequent revision R[1.52-1.53] (2 x stmt). After R1.53,
it was not changed anymore.
ComparePreferencePage.createGeneralPage(...):4 62% of
all changes over 18 revisions were method invocation changes.
In this example, a group of similar invocation statements
experienced multiple changes over several revisions. From
R[1.11-1.12] a new instance of the method invocation add-
CheckBox(...) was added next to two existing ones (1
x stmt). It was the beginning of a series of insertions and
deletions of instances of this particular invocation spanning

3org.eclipse.debug.internal.core.LaunchConfiguration.launch (String, IPro-
gressMonitor)

4org.eclipse.compare.internal.ComparePreferencePage.createGeneralPage-
(Composite)
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over 13 out of 18 revisions of the method. In particular,
from R[1.51-1.52] a ”commented” instance of the method
invocation was inserted (1 x stmt); the comment was removed
from R[1.52-1.53] (1 x stmt).
EclipseSynchronizer.endOperation(...):5 30% of all
changes over 14 revisions were method invocation changes.
This is an example where even after refactoring changes
occurred. From R[1.12-1.13] existing source code was
refactored into the new method commitCache() and
replaced by a corresponding delegate invocation and an
if-statement (1 x stmt, 1 x func). Between R[1.16-1.17]
status handling was added to the invocation statement
(1 x stmt). It was then moved into a try-finally block in
R[1.20-1.21] (1 x stmt). The condition expression of the
if-statement around the invocation and the finally-part were
changed from R[1.21-1.22] (1 x cond, 4 x stmt). Again, the
condition expression was changed from R[1.59-1.60] (1 x
cond, 1 x stmt). The finally-part was changed again one
revision later, i.e., R[1.60-1.61] (1 x stmt).
To summarize our results: All three files of the above
described methods exhibit a large number of method invoca-
tions in our dataset, i.e., they exhibit nOutDegree and CBO
values significantly above the median of their respective
project and were all correctly classified as change-prone
by our models. These findings support the meaningfulness
of our models for predicting change-prone files based on
their (outgoing) coupling properties. However, a more in
depth analysis over time is necessary to validate if an early
awareness of the upcoming changes in a particular file raised
by our models could have prevented the above observed
changes. For instance, in case of the second example by
redesigning the initial UI design and behavior.

In this manual analysis we focused on method invocations
for two reasons: (1) nOutDegree showed the strongest
correlation out of all centrality measures. (2) Using CHANGE-
DISTILLER we can map changes directly to invocation
statements as they are part of the AST. Complexity (WMC)
on the other hand is based on the control flow graph. Hence,
relating fine-grained changes to the concept of complexity is
less clear.

IV. DISCUSSION

In the following we discuss the possible scenarios and
practical implications that emerge from being able to predict
the type of changes (rather than changes in general) in the
context of the software development process, testing, and
release planning.
Software development process. The additional information
provided by our models about change type categories can help
developers in systematically classifying the predicted change-
prone files according to the expected change impact and

5org.eclipse.team.internal.ccvs.core.resources.EclipseSynchronizer.end-
Operation(IProgressMonitor)

development effort. For example, statement changes (stmt)
are locally limited to their proximate context and typically
do not induce changes at other locations in the source
code. In contrast, changes in the API, e.g., denoted by the
method declaration (mDecl) and functionality (func) change
type categories, typically have a higher impact and induce
more work. For instance, changes in the API also require
developers to update the API and design documentation, and
to synchronize with other developers using the API. Hence,
the ability to predict the ”type” of changes that will occur
in source files helps to estimate and anticipate in advance
the kind and dimension of effort related to that change type.
Testing. Predicting the type of changes is of practical interest
for software testing as different changes require different tests:
While for small changes (stmt) unit-tests are mostly sufficient,
API changes, such as indicated by the categories mDecl
and func, might require integration-tests which are more
expensive. Adding an else-part (else) or changing conditional
expressions (cond) require new branch-testing procedures
that cover the modified structure of the control flow graph.
Hence, knowing which types of changes will most likely
occur in a source file can help to optimally plan and develop
tests, and (in case of limited resources) prioritize among
different types of testing.
Release planning. Early awareness regarding the type of
changes can help to plan development tasks when facing
upcoming release dates. Typically, statement changes are
more frequently integrated through small patches, whereas
API changes are only released in major steps or not until the
final agreement of quality assurance or senior developers.

Furthermore, by applying our models to the source code of
a legacy system, they can warn developers if a certain critical
threshold for nOutDegree or WMC is reached. For example,
in our dataset the median of these two metrics is roughly
such a threshold regarding the change type category cond.
Hence, exceeding it will significantly raise the probability of
a file to be affected by that category. Based on our models we
can provide such simple rules of thumb to developers. This
explicit empirical quantification between a particular category
of changes and the coupling and complexity structure of a
file enables systematic re-factorings to prevent specifically
such control flow changes in the future rather than (textual)
changes in general.

The basic tools, such as CHANGEDISTILLER and
EVOLIZER, exist. As future work we plan to integrate
them together with our models into Eclipse or a continuous
integration environment, e.g., Hudson, allowing automated
model building, e.g., during work, nightly builds, or before
committing a new version.

V. THREATS TO VALIDITY

Despite the promising results a careful discussion of the
validity of our work is needed.
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Our correlation analysis and prediction models indicate
the potential existence of relations of OOM and SNA with
#SCC, but do not provide a solid causal proof and explanation
for it. There might be other reasons that impose changes
to a software system as indicated, for instance, by commit
messages, bug reports, or patches. Additional work is needed
that includes these potential change indicators as well.
Moreover, we treated this relation as directional in our work,
i.e., using SNA and OOM to predict #SCC. However, the
examples in Section III-D indicate that it might be mutual.
For instance, when inserting an invocation statement (stmt),
the coupling structure is altered by changes themselves. This
possibly threatens the content validity. We chose OOM and
SNA since they proofed their usefulness in prior work for
various prediction tasks. We are aware that other features,
e.g., LOC, and feature selection methods, e.g., Information
Gain [27], exist in literature. For that, further experiments
are needed to guarantee optimal performance and models
with the most predictive (sub-)set of features. An extensive
comparison study with a richer set of features is part of our
future work. A threat to external validity stems from the fact
that our work is dominated by data from the Eclipse platform.
This imposes a certain bias caused by characteristics typical
to the Eclipse maintenance process, e.g., specific commit
behavior. Therefore, the generalizability of the findings and
conclusions of this paper might be influenced and have to be
verified for other projects. As a matter of fact, any result from
empirical work is threatened by the bias of its datasets [27].
Software development is influenced by a variety of factors,
both internally and externally, that differ across domains and
projects. However, Eclipse and Azureus are relatively large
and established systems; both projects have been subject
of numerous studies, e.g., [20], [21], [22], [14], [23], [28],
before. As such we can benefit from and continue upon prior
findings. Replication is central to empirical research and
can—even if not carried out identically—enhance existing
knowledge [29]. Therefore, we are convinced that our findings
can add to existing work, sustain current hypotheses and raise
new results.

A threat to construct validity might be caused by how
we measured SNA and OOM compared to SCC. SCC reflect
the maintenance activities during a given period. In contrast,
SNA and OOM are based on the source code and represent
the dependency and complexity structure at a specific point
in time. For this study, the dataset was composed of all SCC
regarding the timeframes in Table III. On the other hand,
SNA and OOM were measured on the latest source code
version available at the end of those timeframes. Our method
does not take into account this time gap, i.e., that the relation
between SNA and OOM with SCC can change over time.

VI. RELATED WORK

This section discusses related work about social network
techniques in software engineering and change prediction.

Social Network Analysis. Work on this subject stems from
the emerging perception that todays software projects are
complex networks in which people, technologies, and artifacts
show manifold interactions. The idea is to shift to the socio-
technial aspects of a project.

Bird et al. found out that sub-communities can emerge
among the members of open-source (OS) projects [30].
Social network analysis was applied to CVS information
to investigate the structure and evolution of OS projects
[31]. Huang et al. used a Legitimate Peripheral Participation
model to describe the interactions between developers in OS
projects and divide them into core and peripheral teams [32].
OS teams often consist of a small number of developers
who seek knowledge beyond their own. Ohira et al. used
collaborative filtering and social network analysis to locate
expertise and knowledge across different projects [33].

Duchenaut investigates the process of newcomers becom-
ing a core member in the Python project [34]. The success
of this socialization process is determined by two factors:
(1) An individual learning process where newcomers acquire
technical skills and project related knowledge. (2) A political
process where newcomers have to gain reputation among the
senior developers by demonstrating their skills and following
certain established rites within the project. A study about
the process of people joining OS projects was carried out in
[35].

Our approach focuses solely on source code and its
dependency structure rather than the relation of people
participating in a certain project. Closer to our work are
studies that relate social network analysis to the quality of
a software system. In [13], social network measures based
on the static dependency graph of Windows Server 2003
binaries turned out to be good indicators for defect-prone
binaries. Recently, this work was replicated with data from
the Eclipse platform [14]. Pinzger et al. related centrality
measures computed on the developer contribution network
of Windows Vista to post-release failures [25]: More central
binaries tend to be more failure-prone. In contrast, our goal
is to predict categories of changes rather than defects.
Change Prediction builds models to guide and understand
maintenance. Rombach was among the first to study the
relation between the structure of a system and maintenance
[36]. In particular, they showed that architectural design
measures capturing the interconnectivity between components
influence maintainability. The same object-oriented metrics
as in our work were used to predict maintenance in terms
of lines changed [1]. The results show that these metrics
can significantly improve prediction model compared to
traditional metrics, e.g., number of semicolons. Their dataset
was re-applied in [9] with the focus on comparing the
performance of several learning models. Object-oriented
metrics and SCC were not only successfully applied for
maintenance but for defect prediction as well, e.g., [16], [37],
[23]. In [38] an approach is presented to predict maintenance
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measured as lines changed using a regression model and
a neural network based on size and complexity metrics. A
study to predict different maintenance types, e.g., preventive
maintenance, is given in [2]. Several regression models were
build based on object-oriented metrics and an extended set of
coupling metrics. Similar to our observations, the study states
that (immediate) coupling metrics are good predictors while
inheritance related metrics are not. To introduce an analogy
to meteorology the term Yesterdays Weather was coined [4]:
Classes that changed recently will likely change again in
the future. Dynamic instead of static coupling information
was used—collected at runtime and from dynamic UML
models—to predict changes in terms of lines changed [3].
In [39] and [40], two approaches were presented that focus
on the probability that a source code change will introduce
a failure.

A complementary branch of change prediction is the
detection of change-couplings between code entities. Such
dependencies are often logical and implicit and can not be
detected by static analysis alone. Shirabad et al. used a
decision tree to identify files that are change-coupled [41].
They showed that models built on text features, i.e., words
extracted from source code comments and problem reports,
performed the best. Tsantalis et al. calculated the change-
proneness of a class by determining the probability by which
it is affected when features in a system change [8]. The
idea is to quantify the quality of an object-oriented design
that ideally should not be sensitive to changes. Ying et al.
used association rule mining to recommend additional classes
that are potentially relevant for modification tasks [6]. The
ROSE tool suggests change-coupled source code entities to
developers at a fine-grained level, e.g., instance variables
[5]. Robbes et al. used fine-grained source changes to detect
several kinds of distinct logical couplings between files [7].
CHANGEDISTILLER was used to detect changes that are
irrelevant (non-essential) to change tasks [28]. Our work is
complementary in the way that we explored the feasibility
to predict categories of changes.

VII. CONCLUSIONS & FUTURE WORK

We showed that centrality measures from social network
analysis (SNA) computed on the static source code depen-
dency graph and object-oriented metrics (OOM) positively
correlate with fine-grained source code changes (SCC). Our
models can output a list of the potentially change-prone files
ranked according to their change-proneness, overall and per
change type category. In summary, the results of our work
are:

• SNA and OOM positively correlate with #SCC. More-
over, Degree Centrality measures and complexity
(WMC) show particularly strong correlations (accepted
H 1).

• Neural Networks based on SNA and OOM can predict
categories of code change types. For instance, the model

for predicting changes in method declarations of classes
obtained a median precision of 0.82 and a recall of 0.77
(accepted H 2).

• A manual analysis of a subset of changes confirmed
the empirical findings regarding the relation between
coupling and changes.

Re-running our experiments with different timeframes,
e.g., release based, could give insights into how the relation
between the position in the dependency graph of a file,
its complexity and fine-grained changes evolves over time.
Currently our dataset is Eclipse dominated. We plan to
replicate our study with other systems including other labeling
values in addition to the median. Our models were successful
by means of quantitative criteria, e.g., AUC. As future work
we will conduct user studies to validate their usefulness for
software maintenance, e.g., preventing changes.
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