
An Architectural Evolution Dataset
Michel Wermelinger and Yijun Yu

Computing and Communications Department, The Open University, UK

Abstract—A good evolution process and a good architecture
can greatly support the maintainability of long-lived, large soft-
ware systems. We present AREVOL, a dataset for the empirical
study of architectural evolution. The dataset comprises two
popular systems from the same domain and using the same
component model, to make comparative studies possible. Besides
the original component metadata, AREVOL includes scripts to
obtain simplified models that nevertheless support rich studies of
architectural evolution, as the authors’ previous work has shown.

I. INTRODUCTION

Systematic approaches to software evolution and software
architecture are especially beneficial for systems that are
large, complex, difficult to maintain, and have many users
to continuously satisfy. Architectural design should facilitate
system evolution and the evolution process should be aware
of the system’s architecture and support its conceptual role.
The AREVOL dataset aims to support the empirical study of
the architectural evolution of successful long-lived systems, in
order to help contribute towards the improved understanding
and practice of architectural evolution.

This paper describes the March 2015 release of AREVOL1.
It comprises the architectural data of many releases of two
development environments, Eclipse and NetBeans, that use
and extend the OSGi component model. Including only two
systems may seem too restrictive, but there are advantages to
this choice.

First, Eclipse and NetBeans are long-lived, complex, and
popular platforms on which many other systems are built.
They are what Flyvbjerg [1] calls ‘most likely’ cases, which
for our purposes means case studies that are likely to follow
good architectural evolution principles to help them become
and remain widely adopted platforms. As Flyvbjerg points
out, ‘most likely’ cases are well suited for the falsification
of hypotheses. For example, if the case studies follow some
design principles and evolution laws but not others, one could
argue those not followed may not be as determinant for
achieving good architectural evolution, at least for the class
of systems the case studies represent.

Case studies are also useful as rich narratives of concrete
and context-dependent knowledge, which Flyvbjerg argues is
more valuable than the vain search for non-existent predictive
theories and universals. Our previous work [2] is an example
of the kind of rich narrative that can be extracted from a
case study. We used a subset of AREVOL’s Eclipse dataset
to conduct a detailed assessment of its architectural evolu-
tion against well-known guidelines and principles, including

1Available from bitbucket.org/mwermelinger/arevol.

some of Lehman’s laws [3] and Martin’s guidelines [4], [5].
This not only enabled us to evaluate the relevance of those
guidelines and principles for architectural evolution, but also to
extract lessons from Eclipse’s architectural evolution, e.g. the
observation of a stable architectural core and of a systematic
architectural change process throughout the system’s life.

Second, presenting two datasets from the same domain
allows for future comparative studies which may even go
beyond architectural evolution, e.g. to analyse the ‘feature
race’ between Eclipse and NetBeans. Moreover, their adoption
of the same component model facilitates the reuse of data
extraction and processing scripts. It also allows, for example,
a study on how OSGi is used in practice, because each system
introduced its own extensions to OSGi.

Third, the chosen systems have explicit architectural meta-
data, which supports more accurate studies compared to
those using reverse engineered architectures. In his keynote
at the 2009 Working International Conference on Software
Architecture, Alex Wolf argued that configuration files are an
under-explored source of architectural information. AREVOL,
being a collection of OSGi configuration files that describe the
system’s component architecture, provides such a source in a
format that facilitates its exploration.

II. THE DATA

Eclipse and NetBeans each extend OSGi in a non-standard
way, and thus the terminology varies across the three. We will
use generic terms to achieve a consistent presentation.

In essence, the configuration files of each system state what
are the components, their dependencies, and their provided and
required ports. For example, a component may not depend on
the help component, but may use its ports to add help text. A
component may require its own provided ports. For example,
the Eclipse UI component provides ports for other components
to add menus, buttons, etc. to the GUI, and uses those ports
to create the default interface.

A system goes over time through many builds, which range
from major releases to nightly builds. The system’s archi-
tectural evolution is the observable change of components,
dependencies and ports over snapshots, i.e. builds. We don’t
include nightly and other small builds in AREVOL, as we deem
them of little relevance for architectural evolution.

AREVOL has four folders: bin contains the scripts;
Eclipse and NetBeans contain the configuration files for
various builds of each system, and the corresponding architec-
tural facts (components, dependencies, provided and required
ports) extracted from them; view contains files defining the
build sequences to be analysed. The rest of the section details

https://bitbucket.org/mwermelinger/arevol


the primary data in the Eclipse and NetBeans folders.
Section III explains the format of the extracted facts, and the
relevant files in bin and view.

A. Eclipse

The data is from several builds of the Eclipse Software
Development Kit (SDK), the main ones being the major or
minor releases (e.g. 2.0 or 2.1) and the service releases that
follow them (e.g. 2.0.1). In parallel to the maintenance of the
current release, the preparation of the next one starts, going
through some milestones followed by some release candidates.

We downloaded, for each available build, the entire SDK
from archive.eclipse.org or its mirrors. AREVOL contains all
4 major, 13 minor, and 30 service releases since the start of
the project, and 34 milestones and 20 release candidates. In
total, the Eclipse dataset spans a period of 14.5 years from
November 2001 to February 2015.

The Eclipse archives only keep the latest milestones and
release candidates. Therefore AREVOL only includes those
available now and 4 years ago, at the time of our Eclipse study
mentioned in the introduction, for which we fortunately kept
a local copy. To obtain the missing builds, one would have
to use directly the version control repository, which poses its
own challenges to accurately retrieve the public releases.

Each build of Eclipse (except for the initial release 1.0)
provides one or more high-level features, which are used by
Eclipse’s update manager to allow users to selectively and
incrementally upgrade their installation of Eclipse. A feature
may be composed of other more specialised features, i.e. fea-
tures are organised hierarchically. Each feature is implemented
by a set of components. Features and components may have
the same name.

For each feature there is a metadata file feature.xml that
lists the feature’s sub-features and the components that imple-
ment it. For each component there are one or two metadata
files (plugin.xml and, since release 3.0, MANIFEST.MF)
that list the component’s provided and required ports and the
components it depends on. Initially, the dependencies were
described in both files, but after a short transition period, they
are now in MANIFEST.MF, whereas port information is in
plugin.xml.

We wrote a Bash script that goes through each build and
extracts the required configuration files, keeping Eclipse’s
folder structure. The result is put in one folder per build.
The extract below from AREVOL’s folder structure shows that
features were introduced in 2.0, manifest files in 3.0, and that
a component may be described by one or two files.

Eclipse/
1.0/
plugins/

org.eclipse.webdav/plugin.xml
2.0/

features/
org.eclipse.jdt/feature.xml

plugins/
org.apache.ant/plugin.xml

3.0/
features/

org.eclipse.jdt/feature.xml
plugins/

org.apache.ant/plugin.xml
org.eclipse.core.runtime/plugin.xml
META-INF/MANIFEST.MF

org.eclipse.osgi.util/
META-INF/MANIFEST.MF

B. NetBeans

The data was extracted from multiple NetBeans sta-
ble source releases, obtained from download.netbeans.org.
AREVOL includes all 28 major, minor and service releases
from 3.5.1 (July 2003) to 8.0.2 (November 2014), spanning
roughly 11.5 years.

Unlike Eclipse, NetBeans doesn’t group components into
features, but like Eclipse it describes components with a text
(manifest.mf) and an XML file (project.xml). Con-
trary to Eclipse, the port information is in manifest.mf and
the dependencies are in project.xml. NetBeans also organ-
ises the files differently: manifest.mf is in the component’s
root folder, while project.xml is in a nbproject sub-
folder.

Like for Eclipse, we wrote a Bash script that creates one
folder per build and copies into it the configuration files
and their enclosing folders. The extract below illustrates the
resulting AREVOL folders and files.

NetBeans/
3.5.1/
netbeans-src/

jarpackager/manifest.mf
beans/manifest.mf
web/manifest.mf
taglibed/manifest.mf
servletapi23/manifest.mf

j2eeserver/manifest.mf
4.0/
nbbuild/manifest.mf

misc/manifest.mf
nbproject/project.xml

beans/manifest.mf
nbproject/project.xml

web/manifest.mf
servletapi24/manifest.mf
project/manifest.mf
nbproject/project.xml

jspdebug/manifest.mf
nbproject/project.xml

III. THE ARCHITECTURAL MODELS

Besides providing the original configuration files, so that
other researchers are not restricted in their studies, we include
in AREVOL basic architectural facts for each build, extracted
from those files, and a script that users can adapt to construct a
simple architectural evolution model over a sequence of builds
of their choice.

A. The snapshot model

The architectural facts were extracted by AWK and XSLT
scripts we wrote and ran on the text and XML configu-
ration files. The result is one text file per build, in the
relational Rigi Standard Format [6]. The files are named
system/build.txt with system being Eclipse or

http://archive.eclipse.org
http://download.netbeans.org


NetBeans, and build being the build number. Each line
of those files is one of the following tuples:

• FEATURE featureName
• COMPONENT componentName
• CONTAINS_FEATURE featureName featureName
• CONTAINS_COMPONENT featureName componentName
• PROVIDES componentName portName
• REQUIRES componentName portName
• DEPENDS componentName componentName

The above capture which features and components exist in
each build, their hierarchical relations, their dependencies
and their ports. We need two containment relations because
components and features may have the same name: a tuple
CONTAINS feature name wouldn’t tell whether the second
name refers to a feature or a component. Note that only Eclipse
has features, and hence the FEATURE and CONTAINS_...
relations don’t exist for NetBeans.

We also provide, for each system, an RSF file
view/system-all.txt that lists the builds included in
AREVOL. The files have in each line a tuple

BUILD buildNumber buildDatetime
with buildDatetime of the form YYYYMMDDHHMM.

B. The evolution model

The first stage towards an architectural evolution model
is to define the sequence of builds to be considered. For
example, one may wish to study how the architecture was
transformed from one particular release to the next through the
corresponding sequence of milestones and release candidates.
To specify such a sequence, the user simply makes a copy
of the system-all.txt file and removes the tuples about
the builds to be ignored. The sequence is determined by the
builds’ dates, not their numbers. As an example we provide,
for each system, a file view/system-major.txt that
only includes its major releases.

The second decision is how to map the snapshot model to
Briand et al’s simple structural model [7] that forms the basis
for an axiomatic software metric framework. In their model,
a system consists of modules, elements and relationships. A
system is represented as a directed graph, with elements as
nodes and relationships as directed edges, and a module is a
subset of the elements, and all the existing relationships among
that subset.

The model is very flexible: by choosing what are the
modules, elements and relationships, the same system can
be analysed at different levels of granularity, provided the
data is available, and those analyses can be compared. For
example, if source code is available, modules may be Java
packages, elements may be classes and relationships may
be calls between classes. In our architectural context, the
elements are always components, but relationships can rep-
resent component dependencies or the usage of ports, i.e.
an edge from A to B states that A provides a port that B
requires. Modules can be features, name spaces, or any other
grouping of components, and different modularisations can be

Fig. 1. An architectural evolution model

compared, e.g. with clustering analysis or by measuring the
modules’ average coupling and cohesion.

The graph of elements and relationships and the contain-
ment of elements in modules can both be represented in a
relational way, similar to the snapshot model. We therefore
use the freely available relational calculator Crocopat [8] to
transform the snapshot model to Briand et al’s model. The
transformation is defined by scripts bin/system.rml, one
for each system. As provided, both scripts map a component
to an element and a dependency to a relationship. The script
for Eclipse maps a feature to a module, whilst the script
for NetBeans creates two modules, one with components
named org.netbeans..., and the other with third-party
components like Ant. To generate a different relationship or
modularisation, the user has to edit the scripts.

Once the build sequence and the model transformation have
been defined, the user runs the evolution Bash script in
the bin folder. This script takes the RSF file with the build
sequence as argument, calls the user-edited Crocopat script,
and generates to standard output a list of RSF tuples:

• BUILD system build
• NEXT previousBuild nextBuild
• MODULE build name
• NODE build name
• CONTAINS build moduleName nodeName
• EDGE build fromNodeName toNodeName
• PROVIDES build nodeName portName
• REQUIRES build nodeName portName
The first relation captures which builds are collected in this

file, with system being either Eclipse or NetBeans and
build being a build number. The NEXT relation captures the
build sequence. The first build in the sequence is the one
never appearing as the second argument of NEXT. All other
tuples then refer to a build from the sequence, so that a single



file captures the whole evolution in a self-contained way. The
following four relations capture Briand et al’s model. Note that
ELEMENT and RELATION are reserved words in Crocopat,
so we use NODE and EDGE instead. Lastly, the PROVIDES
and REQUIRES tuples are copied from the snapshot model
for each build, so that the evolution of provided and required
ports can be analysed.

To illustrate the architectural evolution model, AREVOL
includes in the view folder the result of running
bin/evolution view/system-major.txt for each
system.

IV. USAGE SCENARIOS

Besides the comparative analysis suggested in Section I,
the architectural evolution tuples extracted for a given build
sequence can be used for a variety of analyses, for example:

• What is the stable core, i.e. which elements and relations
exist throughout all builds in the sequence?

• Are there any cycles in the relations (strong coupling)
and are they removed over time?

• Is the system increasingly open for extension, i.e. is the
number of provided ports growing?

• Is the architectural change process restricted to only
certain types of builds?

• Do modules become more cohesive and less coupled over
time?

• Are the defined modules a good modularisation of the
architecture, e.g. are architectural co-changes mostly en-
capsulated within modules?

We have addressed these and many other questions in our
assessment of Eclipse’s architectural evolution [2], using 2
different build sequences and 3 different modularisations of
Eclipse. We refer the interested reader to that work to see
examples of what can be inferred from the evolution model
presented in the previous section.

V. ADVANTAGES

We adopted the RSF format for various reasons: it is plain
text and thus universally readable; it can be easily converted
into CSV, by replacing spaces by commas, for processing by
a spreadsheet application; it is a popular format in software
engineering tools; it can be processed by powerful and freely
available tools, like awk, sed, and Crocopat [8]. By relying on
such a simple text format and writing scripts for those tools,
we make it easier to integrate AREVOL with other researchers’
own software repository mining tool chains.

The snapshot model is very general. It can be generated
from the meta-data of the installation tar balls (as in our case),
from the result of applying an architectural reverse engineering
tool to the source code, or even from specifications written in
some architecture description language. It is therefore possible
to obtain evolution models with the same module-element-
relation structure for systems that have radically different
primary data available. The ‘front-end’ scripts that compute
metrics and visualisations from those models can then be
reused without change.

Working at architectural level has the benefit of reducing the
memory and computational power needed, because there are
far fewer nodes and edges than at implementation level. For
example, Beyer et al applied Crocopat to the Eclipse 2.1.2
graph of 7,081 classes and their 59,344 call dependencies
[8], whereas each build’s architectural graph of Eclipse has
only hundreds of nodes and arcs. Scripts can thus run quickly
even though data is in RSF text files, and not in a relational
database. Moreover, Beyer et al report that Crocopat is much
more efficient than MySQL for computing transitive closures
of relations, which is important for structural analysis of
design in general.

VI. CONCLUDING REMARKS

AREVOL is a data set for empirical studies of architectural
evolution. We chose Netbeans and Eclipse as examplars of
systems for which a sustained evolution of a good architecture
is key to their success as a platform for many third-party
projects. Moreover, their use of the OSGi component model
allows us to efficiently and accurately extract their architecture.
We suggested various studies that AREVOL can support.

Previously we had only published secondary data (the met-
rics used for architectural assessment) resulting from analysing
some of the Eclipse builds. Now we have substantially ex-
panded the primary data, by adding Netbeans and 4 more years
of Eclipse builds, and published it, together with new scripts
that allow for user-defined sequences and modularisations to
ease further studies. Those scripts generate a simple archi-
tectural evolution model that can be measured, analysed and
visualised. Our previous work is evidence that rich studies can
be made from such a model.

We have published AREVOL as a Git repository (see the
footnote on the first page), so that scripts can be versioned,
future incremental additions to the dataset can be downloaded
more efficiently, and other researchers can contribute addi-
tional case studies and scripts through pull requests.

REFERENCES

[1] B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-
itative Inquiry, vol. 12, no. 2, pp. 219–245, Apr. 2006.

[2] M. Wermelinger, Y. Yu, A. L. Rodriguez, and A. Capiluppi, “Assessing
architectural evolution: a case study,” Empirical Software Engineering,
vol. 16, no. 5, pp. 623–666, 2011.

[3] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Turski, “Metrics and laws of software evolution - the nineties view,” in
Proc. Symp. on Software Metrics. IEEE, 1997, pp. 20–32.

[4] R. C. Martin, “Granularity,” C++ Report, vol. 8, no. 10, pp. 57–62, Nov.-
Dec. 1996.

[5] ——, “Large-scale stability,” C++ Report, vol. 9, no. 2, pp. 54–60, Feb.
1997.

[6] K. Wong, The Rigi User’s Manual, Version 5.4.4, June 1998.
[7] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software

engineering measurement,” IEEE Trans. Software Eng., vol. 22, no. 1,
pp. 68–86, 1996.

[8] D. Beyer, A. Noack, and C. Lewerentz, “Efficient relational calculation
for software analysis,” IEEE Trans. Software Eng., vol. 31, no. 2, pp.
137–149, 2005.


	Introduction
	The data
	Eclipse
	NetBeans

	The Architectural Models
	The snapshot model
	The evolution model

	Usage scenarios
	Advantages
	Concluding remarks
	References

