
On the Interplay between Non-Functional
Requirements and Builds on Continuous Integration

Klérisson V. R. Paixão∗, Crícia Z. Felício†, Fernanda M. Delfim∗ and Marcelo de A. Maia∗
∗Universidade Federal de Uberlândia – Uberlândia (MG), Brazil

{klerisson, fernanda, marcelo.maia}@ufu.br
†Instituto Federal do Triângulo Mineiro – Uberlândia (MG), Brazil

cricia@iftm.edu.br

Abstract—Continuous Integration (CI) implies that a whole
developer team works together on the mainline of a software
project. CI systems automate the builds of a software. Sometimes
a developer checks in code, which breaks the build. A broken
build might not be a problem by itself, but it has the potential
to disrupt co-workers, hence it affects the performance of the
team. In this study, we investigate the interplay between non-
functional requirements (NFRs) and builds statuses from 1,283
software projects. We found significant differences among NFRs
related-builds statuses. Thus, tools can be proposed to improve CI
with focus on new ways to prevent failures into CI, specially for
efficiency and usability related builds. Also, the time required to
put a broken build back on track indicates a bimodal distribution
along all NFRs, with higher peaks within a day and lower peaks
in six weeks. Our results suggest that more planned schedule for
maintainability for Ruby, and for functionality and reliability for
Java would decrease delays related to broken builds.

Index Terms—Software repository mining; Continuous integra-
tion; Topic models; Non-functional requirements;

I. INTRODUCTION

“In general the answer to how to stay efficient when
a build is almost always broken is: stop breaking
the build.” – Anonymous1

This excerpt from an online Question and Answer community
lays out competing concepts of Continuous Integration (CI)
in the software industry. CI means that a whole developer
team works together on the mainline of a software project [1].
CI build-process automatically takes source code commits,
compiles the code, and then progresses through a pipeline of
testing. Sometimes one developer checks in the source code
repository something that breaks the build, i.e. checks in code
which does not compile or pass unit or code analysis tests. If
on one hand, it may disrupt colleagues’ work, on the other, it
prevents breakages going unnoticed.

The build of a system is one of the first steps of moving
software from development to customers. A failure in the build
may not only disrupt the co-workers, but also the business [2].
Hence, as important as avoiding broken builds is the time taken
to fix the build. Longer times mean more wasted developer
time. Understanding for what reasons a set of source code
changes broke the build is hard without developer’s advice and
becomes crucial to prevent problems [3]. Also, relying on the
developer for such analysis it is feasible on small-scale cases.

1https://perma.cc/NS8Z-3GX8

A growing body of work in software engineering uses
topic analysis to make sense of textual data in software
repositories [4]. As we gain access to larger datasets, it becomes
important to scale our ability to conduct such analyses [5].
In this direction, Hindle et al. established a link between
topics computed from commit messages and non-functional
requirements (NFRs) [6]. Their technique enables large-scale
topic analysis over such artifacts, because NFRs are widely
spread across software projects. Furthermore, that work shed
some light on what a set of commit messages means in terms
of NFRs. Therefore, if failed CI builds are related to certain
NFRs, then developers can use topics to prevent failures.

In this study, we examine the NFRs categories computed
from the list of all commits that were built in a given build
job from Travis-CI (a CI platform for open-source software
development [7]) in 1,283 projects from GitHub repository.
By studying a large corpus of projects, we aim to empirically
investigate the interplay of NFRs and Travis-CI builds statuses.

Our research is guided by two main research questions:
RQ1. Which NFRs occur more frequently in failed Travis-

CI builds than successful ones?
RQ2. How long do NFR-related builds remain broken?
We found significant differences among NFRs related-builds

statuses. Thus, tools can be proposed to improve CI with
focus on new ways to prevent failures into CI. Further, our
results suggest that more planned schedule for maintainability
for Ruby, and for functionality and reliability for Java would
decrease delays related to broken builds.

The paper outline is standard: literature review, material and
method description, results, and conclusions.

II. RELATED WORK

Our study inherits from a rich ecosystem of tools and
applications for software repository mining, and draws on
the insights of prior work in NFRs and topic modeling.

Non-functional requirements. While a functional require-
ment describes what a system should do, NFRs place constraints
on the performance of the system, i.e. how it will do so [8].
NFRs may also describe aspects of the system related to its
evolution over time, e.g., maintainability, extensibility, and
documentation, to name a few. Unfortunately, there are a
lot of disagreements on what NFRs really are. Mairiza et al.
found 114 different NFRs classes [9], which contrasts with

ar
X

iv
:1

70
3.

09
60

2v
2 

 [
cs

.S
E

] 
 2

9 
M

ar
 2

01
7



Fig. 1. The automatic non-functional requirement labeling computes commit messages topics from over 3 million Travis-CI build jobs.

the international standard ISO 9126 quality model [10], where
NFRs are defined by six high-levels classes: maintainability,
functionality, portability, efficiency, usability, and reliability.
Eckhardt et al. analyzed NFRs taken from industrial require-
ments specifications to better understand their nature [11]. Their
results suggest that NFRs are buried in functional requirements,
insofar as we should not make any distinguish between them.
Despite the aforementioned discussion, whether NFRs are
correctly categorized, we cannot deny that NFRs concepts
pervade all modern software projects, therefore, we can use
such definitions to compare projects.

Topic Modeling. The history of topic models in academic
research related to Software Engineering is long. For a
comprehensive survey on this matter, we refer to Chen et al. [4].
Herein, we focus on topic analysis applied to commit messages.
Hindle et al. mined commits in a windowed time fashion [12].
They applied latent dirichlet allocation (LDA) [13] technique
in a 30-day period of commit messages to identify topic trends.
Their technique allows the automated summarization of “what
has been done” in a given time. In another work [14], those
authors also used topic analysis to annotate commit messages,
among other software artifacts, and map the results onto
software project phases. Their idea is to propose an alternative
approach to monitor software process compliance. With respect
to the study of CI builds statuses, there are some common
themes between our work and Santos and Hindle’s work [15]. In
that work, a n-gram language model was proposed to compute
how “unusual” is a commit message. The results suggest a
positive correlation between unusualness messages and builds
failures.

In comparison, our goal is to investigate the correlation
between NFRs developers were working on and CI builds
statuses. We rely on the method of Hindle et al. that links
a set of commits messages to NFRs [6]. However, since we
are interested in system-wide builds statuses, our NFR related
topics are extracted from all commits reported in CI builds.

III. MATERIAL AND METHOD

A. TravisTorrent Dataset
TravisTorrent [7] is a synthesis of software projects from

GitHub that have Travis-CI enabled. Version 8.2.2017 compre-
hends 3,702,595 builds from 1,283 projects. For our particular
interest, the structure of the build entries involves the job id,
project name, status, builds duration, started timestamp, and
all commits that were built.

Regarding the status of a build, there are five values in the
dataset. We consider in this study three of them: passed, which

means a project has been built and passed its test suite; failed,
a project failed to build or failed in its tests; and errored,
a misconfiguration was found in the project. The last two
statuses were grouped. Ultimately, they both mean that the
build is broken. We discard the other two statuses (started and
canceled), because we either do not know the process outcome
and the reasons behind its cancellation.

Additionally, with the project name, we fetch (clone) the
repository from GitHub. Then, with the commit list, all
messages are taken.

B. NFR Labeling

The overall NFR automatic labeling process is illustrated as
Fig. 1. First, for each GitHub project we clone the repository.
Then, we select the commits that were built for each build job.
With the commit we fetch the associated messages.

Such messages, per project, are given as input to the topic
modeling phase. We use the Mallet toolkit [16] to generate 20
topics with 10 words per topic. To automatically label each
build job with a topic, we use the exp3 word-list, please refer
to the work of Hindle et al. [6] for the details on the word-list
generation. This word set consists of keywords separated by
each NFR (maintainability, functionality, portability, efficiency,
usability, and reliability).

The motivation to choose this word-list instead of others
(exp1 or exp2) is because it contains more words per NRF
category. Since we aim to contrast diverse projects a broad
list of words might be better representative. Recall that this
process is done per project. So, the topic computing of one
project is not affected by the topics from others.

Finally, with each build job and its associated topic, we
labeled our build job with an NFR where there was a match
between the topic’s word and the word-list.

IV. RESULTS AND DISCUSSION

This section reports our results. For replication purposes,
raw data used for our analyses is available for download2.

RQ1. Which NFRs occur more frequently in failed Travis-CI
builds than successful ones?

While a common best practice on continuous integration is
to have all the tests passing at all times, build breakage happens.
The primary endpoint of the study is to identify patterns of
failure that might help developers prioritize their efforts on
preventing such failures.

2https://doi.org/10.6084/m9.figshare.2279505.v1



TABLE I
PAIRWISE CHI-SQUARE COMPARISON OF NFRS.

Portability
Usability 3.399654e-18 Usability

Efficiency 2.919159e-09 2.834015e-06 Efficiency
Reliability 5.381500e-179 5.705839e-281 1.193036e-260 Reliability

Maintainability 4.084665e-29 1.919558e-40 8.737777e-37 0.38027170 Maintainability
Functionality 0.000000e+00 0.000000e+00 0.000000e+00 0.01699222 0.05420935

(a) Ruby projects.

Portability
Usability 4.189831e-84 Usability

Efficiency 1.615018e-110 6.077951e-03 Efficiency
Reliability 3.806572e-191 7.352944e-77 5.284936e-72 Reliability

Maintainability 4.564365e-87 1.090704e-39 6.556727e-37 7.532970e-06 Maintainability
Functionality 5.678315e-12 9.714129e-188 9.305286e-240 7.173664e-288 1.335613e-117

(b) Java projects.

Main
tain

abilit
y

Functio
nalit

y

Porta
bilit

y

Efficie
ncy

Usab
ilit

y

Relia
bilit

y

Unnam
ed

0

10

20

30

0.27

9.38

6

27.27

19.82

1.87 2.5

0.1

3.51 2.94

13.7

10.09

0.71
1.76

%
bu

ild
s

Passed
Broken

(a) Ruby.

Main
tain

abilit
y

Functio
nalit

y

Porta
bilit

y

Efficie
ncy

Usab
ilit

y

Relia
bilit

y

Unnam
ed

0

10

20

30

0.36

7.75
6.21

34.85

17.52

2.37
4.14

0.23
1.94 1.75

13.34

6.55

1.23 1.69

%
bu

ild
s

Passed
Broken

(b) Java.

Fig. 2. Passed vs. Broken builds. Figures on bars indicate percentages.

Fig. 2 show, for each NFR and for different programming
language (Ruby and Java), the percentage of passed and
broken builds. Unnamed indicates the number of builds the
approach was not able to classify automatically, as explained
in Section III-B. Therefore, we do not consider this category
in our statistical analysis.

To test the presence of a significant difference among
proportions of builds we perform a Pearson Chi-Square pair-
wise test on a contingency table, where columns represent the
builds per NFR and rows builds statuses (H0: the proportion of
builds having different statuses does not change among NFRs).
P values < 0.05 were considered statistically significant. Table I
shows the P values of paired NFRs.

For Ruby projects, analyses revealed significant differences
in 10 out of the 15 pairwise comparisons. There are no
significant differences between efficiency and portability or
usability. The same is observed with functionality and reli-
ability or maintainability. With Java projects, all pair-wise
comparisons were significant except between efficiency and
usability, functionality and portability, and maintainability and
reliability.

RQ2. How long do NFR-related builds remain broken?
Here, we investigate the impact of broken builds considering

the time elapsed until the build is fixed. Although is not
desirably to face build failures, they play an important role to
the development process. For example, a broken build denotes
a bug caught earlier [17]. However, since the developers base
their work on project branches, if they remain broken for longer
times they affect the project’s performance.

Table II shows the average time elapsed between a broken
build and a sequent passed one group by NFR. Fig. 3 shows
the graphical distribution of broken builds for each setting.

Discussion. The goal of RQ1 was to examine whether
providing comparison between NFR related builds statuses
had an impact on continuous integration builds. The study
revealed significant results. For Ruby projects, despite the
absolute number of builds related to efficiency, it holds the
same proportion of passed and broken builds as usability
group. Together they represent around 70% of the builds.
However, RQ2 results exposes that a broken build related
to efficiency NFR takes 1.6x more time on average to be fixed
than a usability broken build. We observe similar scenario for



(a) Ruby. (b) Java.

Fig. 3. Graphical distribution of broken builds along the time group by NFR.

TABLE II
AVERAGE DURATION OF BROKEN BUILDS IN MINUTES.

NFR Ruby Java
Maintainability 403 37

Functionality 144 58
Portability 121 34
Efficiency 118 40
Usability 73 36

Reliability 191 64
Unnamed 143 19

Total average 170 41

Java. Broken builds from reliability group has no significant
proportional differences with maintainability group, but an
issue from the former group takes 1.7x more time on average
regarding the last group.

Fig. 3 shows the distribution of the time taken of broken
build until a sequent successful build per NFR. Note that the
distribution is bimodal along all NFRs. That is, it has two
peaks, showing that most broken builds are either fixed within
a day (higher peak) or takes around six weeks (lower peak),
which is a common release methodology adopted in industry
(rapid release cycles).

Our design decisions suggest a set of limitations, many
of which we hope to address in future work. We did not
measure accuracy of the NFR labeling method. Further, we
study the association of builds with only one topic, but there
might be cases where they can be linked with multiple topics.
Although our approach can be seen as a replication of the
work Hindle et al. [6], further evaluation is needed. Finally,
we only consider NFRs in our study. Thus, we refrain to only
discuss about the relationship of NFRs and builds statuses.
Future work could use/propose other classification of builds.

V. CONCLUSION

We examined a large set of projects to expose the relationship
between NFR and CI builds statuses. Certain categories of
NFR related builds are more prevalent, such as efficiency
and usability, regardless if Ruby or Java. So, recommendation

systems to help avoiding breakages on those kind of builds
would produce overall larger impact on the whole process.

Moreover, maintainability for Ruby projects, and functional-
ity together with reliability for Java, take longer times to be
fixed. So, they could be postponed to whenever developers
are available to watch the builds, avoiding conflicts among
themselves.
Acknowledgment. We thank the Brazilian agencies CAPES,
CNPq, and FAPEMIG. REFERENCES

[1] M. Fowler and M. Foemmel, “Continuous integration,” 2006, accessed
3-February-2017. [Online]. Available: http://www.thoughtworks.com/
ContinuousIntegration.pdf

[2] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break?
an empirical study,” in Proc. ICSME, 2014, pp. 41–50.

[3] B. Adams and S. McIntosh, “Modern release engineering in a nutshell –
why researchers should care,” in Proc. SANER, 2016, pp. 78–90.

[4] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use
of topic models when mining software repositories,” Empir Softw Eng,
vol. 21, no. 5, pp. 1843–1919, 2016.

[5] L. B. L. De Souza and M. D. A. Maia, “Do software categories impact
coupling metrics?” in Proc. MSR, 2013, pp. 217–220.

[6] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, “Automated
topic naming,” Empir Softw Eng, vol. 18, no. 6, pp. 1125–1155, 2013.

[7] M. Beller, G. Gousios, and A. Zaidman, “Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration,” in
Proc. MSR, 2017.

[8] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional
requirements in software engineering. Springer, 2012, vol. 5.

[9] D. Mairiza, D. Zowghi, and N. Nurmuliani, “An investigation into the
notion of non-functional requirements,” in Proc. SAC, 2010, pp. 311–317.

[10] ISO/IEC, ISO 9126. Software engineering – Product quality, 2001.
[11] J. Eckhardt, A. Vogelsang, and D. M. Fernández, “Are "non-functional"

requirements really non-functional?: An investigation of non-functional
requirements in practice,” in Proc. ICSE, 2016, pp. 832–842.

[12] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and what’s not:
Windowed developer topic analysis,” in Proc. ICSM, 2009, pp. 339–348.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J Mach Learn Res, vol. 3, p. 993–1022, 2003.

[14] A. Hindle, M. W. Godfrey, and R. C. Holt, “Software process recovery
using recovered unified process views,” in Proc. ICSM, 2010, pp. 1–10.

[15] E. A. Santos and A. Hindle, “Judging a commit by its cover: Correlating
commit message entropy with build status on travis-ci,” in Proc. MSR,
2016, pp. 504–507.

[16] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002.

[17] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs,
and benefits of continuous integration in open-source projects,” in Proc.
ASE, 2016.

http://www.thoughtworks.com/ ContinuousIntegration.pdf
http://www.thoughtworks.com/ ContinuousIntegration.pdf

	I Introduction
	II Related Work
	III Material and Method
	III-A TravisTorrent Dataset
	III-B NFR Labeling

	IV Results and Discussion
	V Conclusion
	References

