1703.05615v2 [cs.PL] 31 Mar 2017

arxXiv

Spencer: Interactive Heap Analysis for the Masses

Stephan Brandauer
Uppsala University, Sweden
stephan.brandauer@it.uu.se

Abstract—Programming language-design and run-time-
implementation require detailed knowledge about the programs
that users want to implement. Acquiring this knowledge is hard,
and there is little tool support to effectively estimate whether a
proposed tradeoff actually makes sense in the context of real
world applications.

Ideally, knowledge about behaviour of “typical” programs is 1)
easily obtainable, 2) easily reproducible, and 3) easily sharable.

We present Spencer, an open source web service and API
framework for dynamic analysis of a continuously growing set
of traces of standard program corpora. Users do not obtain traces
on their own, but can instead send queries to the web service
that will be executed on a set of program traces. Queries are
built in terms of a set of query combinators that present a high
level interface for working with trace data. Since the framework
is high level, and there is a hosted collection of recorded traces,
queries are easy to implement. Since the data sets are shared
by the research community, results are reproducible. Since the
actual queries run on one (or many) servers that provide analysis
as a service, obtaining results is possible on commodity hardware.

Data in Spencer is meant to be obtained once, and analysed
often, making the overhead of data collection mostly irrelevant.
This allows Spencer to collect more data than traditional tracing
tools can afford within their performance budget. Results in
Spencer are cached, making complicated analyses that build on
cached primitive queries speedy.

Keywords-tracing; dynamic analysis; heap analysis; tracing

I. INTRODUCTION

Standardised program corpora are commonly used to eval-
uate research on run-time- and compiler optimisations — an
optimisation gets implemented, and a program corpus is used
to demonstrate its merit. Similarly, language abstractions and
novel type systems often use the same corpora: programs from
the corpus are annotated, and if it is possible to get most of the
code to compile without large structural changes, this validates
the utility of the type system [13]], [20]. This work makes these
corpora available earlier in the research process: we want
researchers to be able to know whether — or not — the case
they are optimising for exists in common programs, beyond
artificial examples they have in mind. To this end, we run
program corpora with comprehensive tracing, then preprocess
the traces, and finally make the data available to be queried
using a web interface (and an API that serves data as JSON
formatted objects). Researchers can now implement queries
that test whether — for instance — an optimisation they have
in mind actually optimises a pattern that common programs
encounter frequently.

Compared to traditional dynamic analysis, Spencer’s ap-
proach strikes a novel tradeoff: Spencer caters explicitly to

Tobias Wrigstad
Uppsala University, Sweden
tobias.wrigstad@it.uu.se

the use case where someone wants to know something about
“common programs”, not something about a specific program
of their own. This means that Spencer’s work flow is simpler
than that of traditional tools: a user does not need to locally run
any expensive analysis and can immediately start to work on
analysing data. We hope that making program analysis easier
will increase the chances that it is done, and improve how
thoroughly it is done before research progresses. The tradeoff
is that users can’t easily run analyses on their own programs
(they need to run Spencer locally, or work with the Spencer
developers to have their data set added in this case).

Spencer is the result of scratching our own itch. As research-
ers in programming languages and programming language
designers, we are often in search of data that can confirm or
disprove hypotheses, or influence design decisions. Commonly,
we end up mining existing code bases for answers, or hints
at answers, which is error-prone and scales poorly. Spencer
allows us to interactively explore (so far, Java) programs to
find input to design processes, to gauge usefulness of designs
and uncover their pain points.

While dynamic analysis oftentimes cannot produce a sound
answer (because it is based on some particular runs of some
particular programs for some particular data), the answers
it gives still provide guidance and anectodal evidence that
trancedes “gut feeling” and “folklore truths”. The easy access
to quantifiable data has changed our way of approaching
programming language design.

A. Contributions

— We present Spencer, a web service to query program traces
and visualise results interactively. Spencer’s focus is on
heap analysis: tracing connections between objects, studying
individual objects and groups of objects throughout their
lifetime, and uncovering useful invariant properties such as
uniqueness, immutability and reachability and tying these
invariants to static properties such as classes or source
locations as well as dynamic properties like the span of
time an object was in use.

— We introduce a query language that can be used to query the
Spencer data set. Queries can easily be embedded in papers
to allow readers to obtain an interactive result that is open
to further exploration and refinement.

— To demonstrate its usefulness, we implement several small
case studies in Spencer and show the range of queries that
it can support.

— Since Spencer is a web service, traces are recorded once and

mailto:stephan.brandauer@it.uu.se
mailto:tobias.wrigstad@it.uu.se

analysed often. This fact amortises the tracing overhead and
makes tracing a more comprehensive data set (including the
standard library) reasonable.

II. TRACING AS A SERVICE
A. Design Goals and Tradeoffs

Spencer’s design goals are making knowledge of “typical”
program behaviour easy to obtain, to reproduce, and to share.

Spencer makes one big tradeoff to meet these goals: data in
Spencer is not provided by the user. Instead, the maintainers
of the tool upload datasets that are deemed, by the Spencer
developers, to represent a wide range of application domains,
and users query those. This rules out uses of Spencer as a tool
for analysing custom programs, which precludes its use as a
bug-finding tool. On the other hand, all Spencer code including
the tracing infrastructure is freely available as open source
so nothing stops a user from running their own local Spencer
service on their own data sets.

In the context of the design goals, we argue that this tradeoff
is well justified. The remainder of this section will explain how.

1) Easily Obtainable Knowledge: Putting the data in a
hosted repository is what makes it possible to host the tool
online. Therefore, this makes knowledge available without
setting up any tool chain or configuring any tools.

Since datasets, once uploaded, never change, query results
can be cached. Running the same query again, on its own, or
as a subquery of larger queries, results can be fetched from
the result cache, rather than computed again. As some datasets
are large, caching is fundamentally important. As caching also
speeds up similar queries (as subexpressions of a query might
be already in the cache), this mechanism is also important for
exploring data sets: when exploring a dataset, most often a
query is modified step by step. This means that the sequence
of queries a user looks at commonly share subexpressions —
and these are cached. Anecdotally, a query that selects all
immutable objects from the pmd benchmark takes 65 seconds
if it has never been computed before, S00-800ms if it has
been computed before by any user. The speedup is between
80x-130x.

2) Easily Reproducible Knowledge: Comparing the results
of dynamic analyses can be tricky: different tools implemented
by different researchers for different purposes commonly focus
on tracing just those pieces of information those researchers
need. Comparing the output of these tools can therefore be
hard. One example is that most tracing tools do not record
variable accesses — they are so numerous that the overhead of
logging them is often deemed too high.

Spencer makes its data available to the public and hosts
very comprehensive datasets: since program traces in Spencer
are produced only once, but analysed often (with caching), the
overhead of tracing becomes unimportant. This means that
Spencer aims to record “everything” that happens. Variable
loads and stores, method calls and exits, and field accesses —
all with a range of meta information, such as access times,
field names, calling objects and methods. We hope that this

http://spencer-t.racing/datasets Overview of the available datasets.

http://spencer-t.racing/datasets/|
http://spencer-t.racing/query/| /
http://spencer—nracing/json/select//
http://spencer-t.racing/json/meta/| /

Specific details of one dataset.

Query an existing dataset.

Select all objects (JSON API).

Get object meta information (JSON API).

Figure 1: The available URLs that users can interact with.

wide range of information will allow different researchers and
collaborators to compare each other’s results reliably.

3) Easily Sharable Knowledge: In Spencer, every query is
expressed as a URL. A query that returns all mutable objects
in the dataset called “test” is expressed by this URL:

http://spencer—-t.racing/query/test/
MutableObi ().

Naturally, queries can be much more complex, leading to
longer URLs.

Since queries are URLs, sharing research results is just a
matter of sharing a link; and since results are cached on the
server, sharing is efficient. Because results are interactive, they
serve as starting points for exploration. A reader that wants
to dig deeper to verify or dispute a hypothesis that is not
immediately addressed by the paper in which it appears may
experiment with adding or removing one particular data set
from the results, or check what objects cause a certain outlier,
etc. This also makes it harder to skew results by omitting data.

B. The User Interface and Usability

Spencer is a web service that lets users enter queries which
will select sets of objects (explained in more detail in Sec. [[TI)
and see information about these selected objects. For the user,
this means that they can use the tool without any installation
process or even downloads of data. For developers, this makes
it easy to add new visualisations, new data sets, or new primitive
queries.

The user interface aims to be self documenting and the
landing page,http://spencer-t.racingl presents links
to example queries in a tutorial style. Figure [I] gives a brief
overview of the sub pages that are available.

1) Visualising Selections: The ability to select objects (as
covered in Section alone is not useful for analysis of
program traces — these objects have to be tagged with meta
information, and this information needs to be visualised for a
user. Spencer provides a growing set of object variables:

Name Description
klass Class of an object.
allocationSite | Allocation site (file, line).
thread Allocating thread.
firstusage Allocation time.
lastusage Last field access time.
lifeTime Duration from allocation to
lastUsage.

The object variables are used to visualise selection results.
For instance, the classes are visualised for a selection of objects

http://spencer-t.racing/query/test/MutableObj()
http://spencer-t.racing/query/test/MutableObj()
http://spencer-t.racing

30k

20k

10k

o)

nsqy'bue| eael
2.435qY°|13N " _AR|
dxes-uaxe[*bio
Jaxayoede’bio
y'Jo1°Bue| eael
11z*diz* |13 eael
AUSEH"[1AIN"eAR
‘qo’bue|eael
23Ul |13N " eAE|
3|14°01"_AE|
Jdxa-uaxe(bio

s bue| eael
293Ul 1IN BAR|

(a) The classes and number of instances (zoomed in).
15k
10k

5k

o

L0zeAel*bulis
<uoljewJojul Juasge>
68eAe("1ap|ingbulins
“Jap|ingbuiinsioensqy
ZvTeARl ISPl
696TeAR[BULIAS
9/eAR['3sI30R1SqY
g/eAael*1epondiz
68eAel1apondiz
Loveneluaplingbulis
otgeAelaj4diz
911eAR[IayNgbulls
6,eAel*buipopbulils
preeael*buipodbuliis
€/9eAeluayngbulis
T/9enel uayngbulis
peeAe(-aoualajay|euly
cecenela)4diz
gogeAe(-3srpaxur]
ceeTeARBUIS

(b) The allocation sites (zoomed in).

1 2 3 4 5 6 7

(c) The variable 10og10 (lifeTime).

(d) The variable loglO (lifeTime)

(box plot).
Figure 2: The query |Obj() selects all objects. Figures (a) and
(b) show visualisations of the categorical variables klass
and allocationSite. Subfigures (c) and (d) show two
visualisations for the numerical variable 10g10 (1ifeTime).
The lifetimes of objects appears to be a uni-modal distribution,
with most objects being very short lived and few objects live
very long.

in the form of a bar chart that shows how many objects were
created from a certain class. Spencer distinguishes between
categorical and numerical variables and the user interface picks
visualisations accordingly.

Figure [2a) shows an example, summarising the classes of
the objects selected by the query Obj() (in other words: all
objects).

III. SELECTION USING QUERIES

Analyses in Spencer are written as high level queries. A
query is a selection: it returns as its result a set of object IDs
(a unique integral value that identifies each object).

The fact that there is a high level language of queries means
that caching can be effective: if queries in Spencer would be
written, for instance, in a much more expressive programming

language, then many different programs could express the same
query. The cache system, however, would not be able to prove
that differently phrased (but equivalent) implementations of a
query are in fact equivalent. Caching would therefore speed
up much fewer queries. The tradeoff the design with the high
level query language makes is that the queries a user can run
must be supported by the system explicitly — it is possible that
Spencer does not support a certain query from being run. If
a query algorithm can not be expressed in Spencer, users can
contribute the algorithm to the open source service and thereby
make it available for other users as well.

In Spencer, there are primitive queries, a set of basic
selections that the backend implements, and query combinators
that users can use to combine queries into more fine grained
selections. Table [[shows an overview of the available queries.
For example, the query MutableObj() returns a set of object
IDs that were mutated during a particular program’s run. The
query ReachableFrom(g)| returns the set of objects that are
reachable (via the heap, or via stack variables) from any
object returned by the query ¢. The query CanReach(g)| returns
all objects that reach an object returned by ¢. Combined,
the query CanReach(ImmutableObij())| returns all objects that
are “indirectly mutated”, meaning all objects that are either
mutated themselves, or objects that have fields referring to
indirectly mutated objects. The variants HeapReachableFrom(q)
and CanHeapReach(g) only consider reachability through fields,
i.e., it excludes stack variables.

The |Deeply(q) selects all objects that are dominated by the
objects selected by ¢ in the object graph. For example, if o is in
¢, and o’ is an object which can only be reached from o (directly
or indirectly), and o is an object which can be reached from o
by also from outside of o, then o’ will be selected by Deeply(q)
but not o”. Similarly, HeapDeeply(q) only considers fields, not
stack variables. Sec. [V-B] has an example for its usage.

IV. COMPARISONS AND QUERY REFINEMENT

We have, so far, shown how to use queries that select objects.
When exploring data sets, it is often useful to interactively
compare several queries with each other and see whether — or
not — the objects selected by several queries have large overlaps.
Several subqueries, separated by a slash form a composite query:
ImmutableObj()/HeapUniqueObj()/TinyObj(). The result of this
query shows — amongst other things — the percentage of all
objects in a particular data set that satisfied each query, but
also the intersections of the queries, e.g., all objects which are
both immutable and tiny. Figure [3(a) shows this information
in form of a matrix.

A. Exploring Selections

All information that the matrix of a query shows could have
been obtained using the And query combinator. However, query
compositions are useful because they form the starting point
of exploration of data. A user can execute operations on either
of the subqueries. These operations are exposed by the user
interface as hyperlinks, facilitating speedier interaction with the
system. Being able to modify these queries, in our experience,

http://spencer-t.racing/query/test/Obj()
http://spencer-t.racing/query/test/Obj()
http://spencer-t.racing/query/test/MutableObj()
http://spencer-t.racing/query/test/ReachableFrom(MutableObj())
http://spencer-t.racing/query/test/CanReach(MutableObj())
http://spencer-t.racing/query/test/CanReach(ImmutableObj())
http://spencer-t.racing/query/test/Deeply(MutableObj())
http://spencer-t.racing/query/test/Deeply(MutableObj())
http://spencer-t.racing/query/test/HeapDeeply(MutableObj())
http://spencer-t.racing/query/test/ImmutableObj()/HeapUniqueObj()/TinyObj()

Primitive Query Selects all objects that are. . .

~10bj() Any object.
MutableObj() mutated outside the constructor.
ImmutableODj() not mutated outside the constructor.
InstanceOf(c) instances of the given class c.
StationaryQObj() never written to after being read the first

time.

11Ny Obj() never referring to any other objects.
UniqueObj() never aliased.
HeapUniqueObj() referred to from two fields at the same

time.

7Query Combinator Selects all objects that are. . .

RefersTo(q) All objects that ever have a variable or
field referring to an object in q.

HeapRetersTo(q) All objects that ever have a field refer-
ring to an object in q.

Reterredrrom(q) All objects that are ever referred to from
a variable or field of an object in q.

HeapReterredFrom(q) All objects that are ever referred to from
a field of an object in q.

ReachableFrom(q)" All objects selected by g, and all
objects that are referred to from
fields or variables of objects that are
ReachableFrom(g).

HeapReachableFrom(q)f All objects selected by g, and all objects
that are referred to from fields of objects
that are HeapReachableFrom(qg)!

CanReach(q)" All objects selected by g, and all objects
that held variables or fields pointing at
objects that CanReach(q)!

CanHeapReach(q)t All objects selected by g, and all objects
that held fields pointing at objects that
CanHeapReach(qg)!

Deeply(q)f All objects in g that CanReach only
objects also in gq.

HeapDeeply(q)ft All objects in g that CanHeapReach
only objects also in q.

Not(q) All objects that are not in g.

And(q1 -..qn) All objects that are in all queries.

Or(q1 ...qn) All objects that are in at least one query.

Table I: Queries and their Meaning. See Section |[II| for detailed
descriptions. Tthese queries are recursively defined, this means
that these selections effectively “walk the memory graph”.

improves user experience and the browser’s browsing history
makes it natural to go back and revisit queries that a user has
seen before.

1) Focusing on a Subquery: To focus on a subquery means
to constrain the other subqueries to only select a subset of
the focused query’s selection. Given the composite query
InstanceOf(java.lang.String)/HeapUniqueObj(), then to focus on
the query for the heap unique objects would produce the
resulting query that selects all strings that are also heap-unique:
And(HeapUniqueObj() InstanceOf(java.lang.String)).

Figure [3{a) shows a query that consists of three subqueries,
and subfigure (b) illustrates the effects of focusing on one of
them. Table [II| depicts the focus operation’s transformation of
composite queries.

2) Hiding a Subquery: To hide a subquery means to constrain
the other subqueries to never select objects in the subquery’s
selection. It can be thought of set subtraction. Given the same
composite query as before, (InstanceOf(java.lang.String)/Heap-+
UniqueObj(), to hide the subquery for the heap unique objects

would produce the resulting query that selects all strings that
are not heap-unique: |And(Not(HeapUniqueObj()) InstanceOf(+
java.lang.String)).

Hiding a query g is equivalent to negating the query first —
Not(g)| — and then focusing on the negated query.

Figure [3(a) shows a query that consists of three subqueries,
and subfigure (c) illustrates the effect of hiding one of them.

3) Splitting a Subquery: For a number of composed queries
with a subquery gy, a common question is often whether the
queries q; . ..qn—1 yield different results for objects that are
selected by ¢y and objects that are not — a case analysis of
sorts. To split a subquery qn means to first, eliminate this
query from a query comparison, and to replace each of the
other subqueries g by two new subqueries And(q gn) and And(g
Not(gn)), see Table

To give an example, consider age ordering of objects. An
object is age-ordered if it is younger than all objects it has field
references to. An object is reverse age-ordered if it is older
than all objects it has field references to.

Starting with the query comparison AgeOrderedObj()/Rev-+
erseAgeOrderedObj()/InstanceOf(j.I.String), and splitting on |In+
stanceOf(java.lang.String) gives the resulting query comparison:
And(InstanceOf(j.|.String) AgeOrderedObj()) /

And(InstanceOf(j.|.String) ReverseAgeOrderedObj()) /
And(Not(InstanceOf(j.l.String)) AgeOrderedObj()) /
And(Not(InstanceOf(j.I.String)) ReverseAgeOrderedObj()

This comparison makes it evident that strings are more

commonly reverse age-ordered than other classes.

V. CASE STUDIES

This section describes two cases that highlight how Spencer
can be used. Unless otherwise noted, all graphs that are shown
here are renderings that the web user interface produces.

A. Case 1: Exploring the Layout of Strings

Our first case study highlights how Spencer can be used to
explore a data set with a potential run-time optimisation in
mind. The goal here is not to propose a run-time optimisation,
but to show how a researcher could leverage the platform in
practise.

Strings (and the character arrays that store their data) are the
class with the highest memory usage in many Java programs
[14]. As the page for the java.lang.String class codeE]
shows, Strings in Java are objects with only one reference
type field: the field value holds a reference to an array of
characters that contains the string’s data. Listing [1| shows an
excerpt of the pretty printed Java bytecode that a user can find
on this page.

A Spencer query that selects the arrays that are reachable
from Strings can be written thus:

Al: HeapReferredFrom(InstanceOf(j.l.String))

'A reader running this composite query might notice that some objects are
both age ordered and reverse age ordered. The objects that are selected by
both are tiny objects, which can be verified by filtering out tiny objects, which
yields the empty set.

Zhttp://spencer-t.racing/source/test/java.lang.String

http://spencer-t.racing/query/test/Obj()
http://spencer-t.racing/query/test/MutableObj()
http://spencer-t.racing/query/test/ImmutableObj()
http://spencer-t.racing/query/test/InstanceOf(c)
http://spencer-t.racing/query/test/StationaryObj()
http://spencer-t.racing/query/test/TinyObj()
http://spencer-t.racing/query/test/UniqueObj()
http://spencer-t.racing/query/test/HeapUniqueObj()
http://spencer-t.racing/query/test/RefersTo(MutableObj())
http://spencer-t.racing/query/test/HeapRefersTo(MutableObj())
http://spencer-t.racing/query/test/ReferredFrom(MutableObj())
http://spencer-t.racing/query/test/HeapReferredFrom(MutableObj())
http://spencer-t.racing/query/test/ReachableFrom(MutableObj())
http://spencer-t.racing/query/test/HeapReachableFrom(MutableObj())
http://spencer-t.racing/query/test/HeapReachableFrom(MutableObj())
http://spencer-t.racing/query/test/CanReach(MutableObj())
http://spencer-t.racing/query/test/CanReach(MutableObj())
http://spencer-t.racing/query/test/CanHeapReach(MutableObj())
http://spencer-t.racing/query/test/CanHeapReach(MutableObj())
http://spencer-t.racing/query/test/Deeply(MutableObj())
http://spencer-t.racing/query/test/HeapDeeply(MutableObj())
http://spencer-t.racing/query/test/Not(MutableObj())
http://spencer-t.racing/query/test/InstanceOf(java.lang.String)/HeapUniqueObj()
http://spencer-t.racing/query/test/And(HeapUniqueObj()%20InstanceOf(java.lang.String))
http://spencer-t.racing/query/test/In\discretionary {-}{}{}stance\discretionary {-}{}{}Of(java\discretionary {-}{}{}.lang\discretionary {-}{}{}.String)/Heap\discretionary {-}{}{}UniqueObj()
http://spencer-t.racing/query/test/In\discretionary {-}{}{}stance\discretionary {-}{}{}Of(java\discretionary {-}{}{}.lang\discretionary {-}{}{}.String)/Heap\discretionary {-}{}{}UniqueObj()
http://spencer-t.racing/query/test/And(Not(HeapUniqueObj())%20InstanceOf(java.lang.String))
http://spencer-t.racing/query/test/And(Not(HeapUniqueObj())%20InstanceOf(java.lang.String))
http://spencer-t.racing/query/test/Not(MutableObj())
http://spencer-t.racing/query/test/AgeOrderedObj()/ReverseAgeOrderedObj()/InstanceOf(java.lang.String)
http://spencer-t.racing/query/test/AgeOrderedObj()/ReverseAgeOrderedObj()/InstanceOf(java.lang.String)
http://spencer-t.racing/query/test/In\discretionary {-}{}{}stanc\discretionary {-}{}{}eOf(java.lang.String)
http://spencer-t.racing/query/test/In\discretionary {-}{}{}stanc\discretionary {-}{}{}eOf(java.lang.String)
http://spencer-t.racing/query/test/And(InstanceOf(java.lang.String)%20AgeOrderedObj())/And(InstanceOf(java.lang.String)%20ReverseAgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20AgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20ReverseAgeOrderedObj())
http://spencer-t.racing/query/test/And(InstanceOf(java.lang.String)%20AgeOrderedObj())/And(InstanceOf(java.lang.String)%20ReverseAgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20AgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20ReverseAgeOrderedObj())
http://spencer-t.racing/query/test/And(InstanceOf(java.lang.String)%20AgeOrderedObj())/And(InstanceOf(java.lang.String)%20ReverseAgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20AgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20ReverseAgeOrderedObj())
http://spencer-t.racing/query/test/And(InstanceOf(java.lang.String)%20AgeOrderedObj())/And(InstanceOf(java.lang.String)%20ReverseAgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20AgeOrderedObj())/And(Not(InstanceOf(java.lang.String))%20ReverseAgeOrderedObj())
http://spencer-t.racing/source/test/java.lang.String
http://spencer-t.racing/query/test/HeapReferredFrom(InstanceOf(java.lang.String))
http://spencer-t.racing/source/test/java.lang.String

59%
37%

Immulab]eObj()- 30% -

49
30% - 27%

48%

HeapUniqueObj()

TinyObj()__37% o

1ot IeOP0 L niqueO®i0 000

(a) No query focused, no query hidden.

And(Not(TinyObj()) ImmutableObj())
22% P
0

And(Not(TinyObj()) HeapUniqueObj())
15%

30) 1e0bj0)
Umq
(NI mg&q 0‘ Ob 0\

(c) After hiding tiny objects.

And(TinyObj() ImmutableObj()) 37%

23%

And(TinyObj() HeapUniqueObj()) 23% 27%

)) Obj0)
Unique
And(TinY i { d(Tm‘Job 0 .

(b) After focusing on tiny objects.

And(TinyObj() ImmutableObj()) 23%

And(TinyObj0 HeapUniqueObj) 0 2%

And(Not(TinyObj()) ImmutableObj
nd(Not(TinyObj()) ImmutableObj() - »

And(Not(TinyObj()) HeapUniqueObj())
7% 15%
——

00 fique Obi0)
AT OO I o\no “e‘lpu Tnyoni0) ™

o

mut m?;;(z?“_\» nigqueOPiO)
+(TinyOP)

(d) After splitting by tiny objects. The top-left group of
values contains tiny objects, the bottom right group contains
non-tiny objects. The information here is the combination
of subfigures (b) and (c).

Figure 3: Comparing the three queries ImmutableObj()/HeapUniqueObj()/TinyObj(), we modify this composite query by: focusing

(b); hiding (c); or splitting (d)—the tiny objects.

a / .../ gN-1 / gN
And (Not (gn) q1) / ... / And (Not (¢gn) gnN—_1) hiding gn
And(gn q1) / .../ And(gnN gN-—1) focusing on g
And(gny q1) / And(Not(qn) q1) / ... / BAnd(gn qn—1) / And(Not (qny) gN_1) splitting on qn

Table II: Refining a composite query

public final class java/lang/String

implements
java/io/Serializable
java/lang/Comparable
java/lang/CharSequence {

//

private final

private I hash

//

[C value

}

Listing 1: An excerpt of the definition of the class
Jjava.lang.String, reachable under the view
http://spencer—t.racing/source/test/java.
lang.String. [C in Java bytecode denotes an array of
primitive characters and I denotes a primitive integer.

Strings in Java are, according to the documentation, immut-
able [1]]. Arrays, however, are typically not immutable since
they are constructed empty and must be populated with values.
Arrays in strings could however be stationary, meaning that
they are fully initialised before being read. To test whether this
intuition is true, we add a new sub query to compare stationary

q1/. . /g, by focusing or hiding qn.

objects versus the character arrays from before:

Al.1: |(A1)/StationaryObj()]

The matrix visualisation of this composite query (shown
in Fig. @) shows that 75% of objects are stationary, that 16%
of objects are heap-referred from strings (top left), and that
also 16% of objects are both heap-referred from strings and
stationary (top right, bottom left). This suggests that all objects
referred to from fields in string objects are also stationary — as
a sanity check, we hide stationary objects and confirm that this
selection indeed returns no objects:

A1.2: And(Not(StationaryObij()) (A1))

The query Al.2 returns no instances, meaning that these
arrays are all stationary. Thus the the trace data on which these
queries are run indicate a strong possibility of a static invariant
that these arrays are stationary. This might be verifiable from
the source code (available directly from Spencer), but it may
not be the case that Java is able to express this, or that the
actual classes involved in an aggregate are known statically.

Stationary data is safe to share from many objects. To detect
whether this fact is leveraged by the string class we can go

3For clarity we use the abbreviation (A1) to stand in for its definition above.
Actual Spencer query syntax would repeat the query Al there.

http://spencer-t.racing/query/test/ImmutableObj()/HeapUniqueObj()/TinyObj()
http://spencer-t.racing/source/test/java.lang.String
http://spencer-t.racing/source/test/java.lang.String
http://spencer-t.racing/source/test/java.lang.String
http://spencer-t.racing/query/test/HeapReferredFrom(InstanceOf(java.lang.String))/StationaryObj()
http://spencer-t.racing/query/test/And(Not(StationaryObj())%20HeapReferredFrom(InstanceOf(java.lang.String)))

HeapReferredFrom(InstanceOf(java.lang .String))
16% 16%

75%

StationaryObj()

%o

String))
1avalang: .
edFrom(“‘s"““ce()fUfgmt'\o“""‘yObj
ferr
HeapRe

Figure 4: Objects that are heap reachable from strings vs.
stationary objects. The coloured cells on the main diagonal
show the percentage of objects that are selected by the query,
the objects off the main diagonal show the percentage that
fulfill both queries.

back to query Al, and add a subquery to look for objects that
have at most one reference from the heap:

A2: |(A1)/HeapUniqueObj())

The matrix visualisation of this composite query is shown in
Fig. [6] and tells us that there are 14% of objects that are heap
reachable from strings and also heap unique, meaning a 1:1
mapping from string objects to character arrays. This means
there are shared character arrays in the program, but we do not
yet know whether they are shared by strings. To investigate,
we want to focus on the remaining 2% of objects reachable
from strings, but that are not unique: hiding the heap unique
objects does precisely that, yielding the query:

A3: And(Not(HeapUniqueObij()) (A1))

To see if all of these objects are strings, we select the objects
that hold field references to shared objects by applying the
HeapRefersTo query combinator (Fig. [5] shows an illustration
of what it means to nest a HeapReferredFrom query inside a
HeapRefersTo query.):

A4: |HeapRefersTo((A3))

To further select the objects (if any) that are not strings, we
add a composite query to select all strings, and hide those:

AS5: |And(Not(InstanceOf(java.lang.String)) (A4))

We can inspect the class of the objects that are now
selected and find that these objects are instances of the class
java.lang.StringBuffer!

If we want to know where those arrays were allocated, we
can go back to query A3, and click inspect on the allocation
sites. This reports that all of them were allocated in file
StringBuffer. java, on line 671. inspecting the source
code of the class StringBuffer (link: StringBuffer),
we find that this line corresponds to the method toString ()
(see Listing [2).

B. Case 2: Uncovering Safety Properties of Objects

The advent of multicore has renewed the interest in immut-
ability, and caused mutable state to be criticised. Mutable state
that is shared across threads is a risky programming pattern, and
immutable state is suggested as a safe alternative. A reasonable
question then is to investigate how easy it might be to retrofit

// access flags 0x21
public synchronized toString()Ljava/lang/
String;
LO
LINENUMBER 670 LO
ALOAD O
GETFIELD java/lang/StringBuffer.
toStringCache : [C
IFNONNULL L1
L2
LINENUMBER 671 L2
ALOAD 0
ALOAD 0
GETFIELD java/lang/StringBuffer.value : [
C
ICONST_O
ALOAD O
GETFIELD java/lang/StringBuffer.count : I
INVOKESTATIC java/util/Arrays.copyOfRange

([CII) [C
PUTFIELD java/lang/StringBuffer.
toStringCache : [C

Ll

Listing 2: Instances of the class ShallowImmutable
can never be changed, yet it is still not safe to share
ShallowImmutable instances accross threads — the heap-
reachable Mutable instance could cause data races.

abstractions like immutability or uniqueness (references that can
never be aliased) into object-oriented programming as realised
in Java. In order to make such a judgement, we will construct a
query that selects all safe objects, and then analyse the objects
that are not thread-safe.

We start with immutability:

B1: ImmutableObj()

In our trace data, we find a large number of immutable
objects (59%). Our notion of immutability is however shallow,
and although an object stays the same, if its aggregate values
change, it is arguably not immutable. Listing [3] illustrates this.

final class ShallowImmutable {
private final Mutable m;
public ShallowImmutable (Mutable m) {
assert (m != null);
this.m = m;
}
public Mutable getMutable () {
return this.m;
}
}

Listing 3: Instances of the class ShallowImmutable
can never be changed, yet it is still not safe to share
ShallowImmutable instances across threads — the heap-
reachable Mutable instance could cause data races.

In order to only select objects whose transitive closure of
reachable state is immutable, we modify the query:

B2: HeapDeeply((B1))

Instances of the class ShallowImmutable in Listing [3]

http://spencer-t.racing/query/test/HeapReferredFrom(InstanceOf(java.lang.String))%20/HeapUniqueObj()
http://spencer-t.racing/query/test/And(Not(HeapUniqueObj())%20HeapReferredFrom(InstanceOf(java.lang.String)))
http://spencer-t.racing/query/test/HeapRefersTo(And(Not(HeapUniqueObj())%20HeapReferredFrom(InstanceOf(java.lang.String))))
http://spencer-t.racing/query/test/And(Not(InstanceOf(java.lang.String))%20HeapRefersTo(And(Not(HeapUniqueObj())%20HeapReferredFrom(InstanceOf(java.lang.String)))))
http://spencer-t.racing/source/test/java.lang.StringBuffer
http://spencer-t.racing/source/test/StringBuffer
http://spencer-t.racing/query/test/ImmutableObj()
http://spencer-t.racing/query/test/HeapDeeply(ImmutableObj())

!
E
!

J 0

) 0O

O U

00

\

U
U

0O O

\

(a)[Some query ¢’s selection,

(b) HeapReachableFrom(g)).

U
U

)]

O

o

(c) HeapRefersTo(HeapReachableFrom(q)).

&

Figure 5: Gray objects are selected. HeapRefersTo and HeapReferredFrom are not inverse operations, as this example shows.
Case study A in Sec. [V-A] uses such i similar query to find all objects that have a reference to non-unique character arrays in
strings to find which objects have reference to these arrays (these figures were not created using Spencer).

HeapReferredFrom(InstanceOf(java.lang.String))

16% 14%

HeapUniqueObj() 42%

14%

tring))

. Strins
(e alang 0‘0)0

av :
<O apUniaue

Figure 6: Query A2: Most objects that are heap-referred to
from strings are heap unique, but not all (16% are heap-referred
to from strings, but 14% are both heap-referred to and heap
unique).

would not be selected by B2 because they contain a heap
reference to mutable objects of the class Mutable. In our
dataset, the fraction of deeply immutable objects is 53% — most
objects that are immutable (B1) are also deeply immutable (B2),
only 6% of objects are immutable but not heap-deeply so.

We can investigate those 6% of objects by constructing a
composite query of Bl and B2, and hiding B2. This yields:

B2.1: |And(Not((B2)) (B1))

According to the classes of the selected objects, strings are
by far the most common objects of those that are not deeply
immutable, but immutable. But in the previous case study in
Sec.[V-Al we have learned that strings are — even though they do
not fulfill the requirements of the MutableObj() query — “morally
immutable”. We account for this fact by including them, and
their value arrays:

B3: |Or(InstanceOf(j.l.String)

HeapReferredFrom(InstanceOf(j.I.String))
(B2)

)

Stackbound objects (objects that are never referenced from
fields) are also thread safe, as in order to share an object across
threads, it needs to pass through a field at some point (threads
can not access each other’s stacks directly). Similarly, unique

objects are safe even if they are touched by several threads —
after all, the objects can not be touched by several threads at
the same time, as there is only one active reference at each
time:

B4: Or(StackBoundObj() UniqueObj() (B3)))

In programming language design, a possible pitfall is to
design abstractions that fit simple cases well but that are not able
to support real world use cases. Imagining we’re implementing
a type system for a Java-like language that has type abstractions
for stack-boundedness, uniqueness, and immutability (there are
many such works in the literature e.g,. [[L1], [S], [6], [16]], (18],
[O). We would like to understand what are the objects that
are not “safe”, — to see the potential usefulness of our type
system, and also understand the objects that are unlikely to fit
our abstractions:

B5: Not((B4))

Looking at the classes of these “unsafe objects”, we see
the bar chart in Fig. /| It tells us, for instance, that Nodes of
linked data structures are problematic for such a type system
design: the class |java.util.LinkedList$Node is the
most commonly used unsafe class. This result is correct: nodes
are aliased from the heap and nodes are referenced both from
the previous and from the following node (linked lists in Java
are doubly linked [2]). Nodes are also mutable, as building a
list requires changing the next field of the nodes. And, since
it is a linked data structure, these objects are not stackbound
either. Were we developing such a type system, we would now
have identified a possible shortcoming that we would need to
address, given how central linked lists are to many programs.

VI. INTERNAL DETAILS

Spencer, the web based tool requires a tool chain behind the
scenes to function. This tool chain includes three key programs:

1) A tool, called spencer—trace, to modify all code
loaded in a running Java virtual machine to emit event
logs (see Sec. [VI-A).

2) A tool, called spencer—1load, to load these event logs
into a data base (see Sec. [VI-B).

http://spencer-t.racing/query/test/InstanceOf(java.lang.String)
http://spencer-t.racing/query/test/HeapReachableFrom(InstanceOf(java.lang.String)
http://spencer-t.racing/query/test/HeapRefersTo(HeapReachableFrom(InstanceOf(java.lang.String)))
http://spencer-t.racing/query/test/And(Not(HeapDeeply(ImmutableObj()))%20ImmutableObj())?vis=klass
http://spencer-t.racing/query/test/MutableObj()
http://spencer-t.racing/query/test/Or(InstanceOf(java.lang.String)%20HeapReferredFrom(InstanceOf(j.l.String))%20HeapDeeply(ImmutableObj()))
http://spencer-t.racing/query/test/Or(InstanceOf(java.lang.String)%20HeapReferredFrom(InstanceOf(j.l.String))%20HeapDeeply(ImmutableObj()))
http://spencer-t.racing/query/test/Or(InstanceOf(java.lang.String)%20HeapReferredFrom(InstanceOf(j.l.String))%20HeapDeeply(ImmutableObj()))
http://spencer-t.racing/query/test/Or(InstanceOf(java.lang.String)%20HeapReferredFrom(InstanceOf(j.l.String))%20HeapDeeply(ImmutableObj()))
http://spencer-t.racing/query/test/Or(StackBoundObj()%20InstanceOf(java.lang.String)%20HeapReferredFrom(InstanceOf(j.l.String))%20HeapDeeply(ImmutableObj()))
http://spencer-t.racing/query/test/Not(Or(StackBoundObj()%20InstanceOf(java.lang.String)%20HeapReferredFrom(InstanceOf(j.l.String))%20HeapDeeply(ImmutableObj())))
http://spencer-t.racing/source/test/java.util.LinkedList%24Node

5000
4000
3000
2000
1000
0
i O e i e e e e e § O S e O 1 () S O
Q o 0 -0 00 0 0 Qo Q Q Q
<0g<ccf"ecccccddcs<<adt5<a8<tb
Q o0 g Y 00000 OO0, Y0P
c Tcpcd cscs5s588ccc®as3dcdced
& Xa%a. 529329098 facaxX_.Faxand
= 0O =g —o - m Mmoo =S85 S8 =8
E 2ES T3 PFMFraIlshnZEooo ol
3 0S5 goaQ 3 'UUO.“’.“’m'DUf'D'IDmmmn
= mx_hmo Q R ><><m--><m n X un O
o XoqnmZg < N2SooxNNTRPIITT I
2 a8 C TATI3ITT_ 5885
C aCzgoa 4 MmMIcppoll10z5cUoQ
@ oo LT QO o ST T nn==0 4 =>m00T 0
& TneT Te0? P S0 KL g0 ST
o o N> JocaaQZ>HHs oo ©“ o =]
zZ 9 oZ2 <SgoosNNCEgmc 3
S 3 a v33gcTcogE 25 o
a @) 2 - T o & m p
- SpogIlgas 2z B
o oo 50050 o o

Figure 7: Query BS5: Classes of objects that are “unsafe”, a
programming language design that deals with the abstractions
in case study B (Sec. must be careful to be able to express
these classes.

3) Spencer, the web application that has been presented
above.

A. Tracing with spencer-trace

The spencer-trace tool is a wrapper for the Java
HotSpot™ VM. It is intended to understand all arguments
that HotSpot™ understands and therefore to serve as a drop-in
replacement for it. When spencer-trace runs a compiled
program, additionally to executing Java bytecode, it will inter-
cept loading of any bytecode (whether from disk, or dynamically
generated, or via other sources), and transform the loaded
code. The implementation of this is backed by a JVMTI JVM
Tool InterfaceEb agent. JVMTI makes it possible to intercept
loading of classes by implementing a handler. In this handler
implementation, spencer-trace sends the code of the class
to a code transformation library that modifies the code as shown
in Listing @ The transformation inserts calls to methods into
the code that will write events in a standardised format to disk.
The tool takes care to not instrument data that are used during
instrumentation (like the code that instruments classes itself)
by doing the transformation and logging in native (C-code)
implementations and by running the class transformation in a
separate JVM process. Listing] shows a description of the
inserted instrumentation. From this listing, it is easy to see that
the overhead the tracing incurs is substantial. This is a problem
for programs who have built-in time outs, but our experience
with generating trace data is that albeit slow, it works solidly.
The fact that the data from one trace can be used to perform
many analyses also mitigates the slowdown.

Additionally, spencer—trace stores both the original and
the transformed version of the class file into a log directory. The
transformed version of the class file permits running programs
with only some classes of interest being instrumented which
boosts performance considerably.

4http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

One issue spencer—trace faces is actions taken by meth-
ods implemented natively — these methods not be instrumented
currently. One such method is System.arraycopy, a native
implementation that copies a range from one array into another
array. One effect this has is that character arrays of strings
often will appear to be immutable, when in fact they were not
— because the writes that arraycopy generates are missing
in the data. We are considering wrapping the most common
native methods to overcome this problem.

public int hashCode () {

+ try {
+ NI.methodEnter (.."hashCode"..);
+ NI.read(.."hash"..);

int h = this.hash;

+ NI.loadFieldA(..this, "value",
this.value, ..);
if (h == 0 && this.value.length > 0) {
+ NI.storeVar(..2, this.value..);
char val[] = this.value;

+ NI.loadFieldA(..this,
for (int 1i=0;
i<this.value.length;
i++) |
+ NI.loadArray(..val, i,
h =31 « h + vall[il];
}
+ NI.modify(..this,
this.hash = h;

"value"..);

this..);

"hash"..);

}
NI.methodExit (.."hashCode"..)
return h;

} catch (Throwable t) {
NI.methodExit (.."hashCode"..);
throw t;

+

-+ + + +

Listing 4: The instrumentation adds calls to record what
a method was doing. This listing shows the effect of
code transformation on the method hashCode of the class
java.lang.String. The transformation works on Java
bytecode, not Java code, this presentation in Java is therefore
just for illustration. Lines that start with + are added by the
transformation. Variables of reference type (classes, arrays)
are instrumented, primitive variables are currently not. The
NativeInterface interface (abbreviated as NT) is added
by spencer-trace, the method implementations write the
data to disk.

The tracefiles are written in a standardised format, using
a specification compatible with the Cap’n Proto tool. Cap’n
Proto accepts record-like specifications as input and generates
libraries in a number of languages (the supported languages
include C, C++, Java, C#, Go, OCaml, Ruby, Javascript, and
others) that can be used to write these records to disk or read
them back. Using this approach, users could implement their

http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

own tools that generate trace files (perhaps for languages that
are not running on the JVM at all) and spencer could then host
these traces just as well.

struct VarStoreEvt {

callermethod @0 :Text;
callerclass @1 :Text;
callertag @2 :Int64;
newval @3 :Into64;
oldval @4 :Inté64;
var @5 :Int8;
threadName @6 :Text;

Listing 5: A specification for an event that represents a variable
assignment in the Cap’n Proto’s input language. Cap’n Proto
can use such specifications to generate optimised libraries in a
range of languages that will write these events to disk or read
them back into memory.

B. Loading Traces with spencer-1oad

Program traces can be loaded into a local database using
the spencer-1load tool. The tool reads the logs from a file
produced by spencer-trace (Sec. and loads them
into a PostgreSQL database.

This database contains tables to track: objects (identified by
a unique ID) containing the object’s class, the event number of
their first appearance in the trace, and the event number of their
last appearance; references between objects (including when
the reference was established; whether stored in a variable
or in a field; when the reference ended), and method calls
(including which object was being called, name and signature
of the method, when the method was called, and when the call
returned).

C. Available Data

Spencer currently hosts traces of 9 of the programs in the

DaCapo program corpus version 9.12 [4] (c.f http://www,

spencer-t.racing/datasets) comprising more than 3 billion events
and over 2.000 loaded classes including libraries. The selection
of programs currently only features Java programs but will
eventually grow to include programs in other languages (like
Scala, Clojure, and Ruby), too. The number of current programs
is limited by the hard drive capacity that the current server has
and we are working on increasing the available space and their
size is limited by available RAME} In principle, Spencer can
instrument any application running on the JVM. A common
problem, however, is asynchronously communicating software
that puts bounds on reply latencies. The slowdown of Spencer
can, in such cases, cause time-outs to happen. Such software
may — where possible — need to be run with changed parameters
in order to account for the slowdown.

5To reviewers: The current server provides only 16GB of RAM, which is not
sufficient to run some queries on the larger benchmarks like avrora and h2,
but we hope that the amount of RAM will be at least doubled in the next few
weeks. Additionally, we will implement optimisations that conserve memory.

Name Objects Log
luindex 81,158 5.8GB
pmd. 131,462 2.7GB
fop 521,789 10GB
batik 526,945 21GB
xalan 1,133,391 43GB
lusearch 1,212,743 61GB
sunflow 2,419,900 91GB
h2 6,655,852 207GB
avrora 932,085 236GB
Total: 13,615,325 ~680GB

Table III: Currently loaded benchmarks, a similar list can be
found in the tool: http://spencer-t.racing/datasets.

VII.

Many tools for dynamic analysis have been developed in the
past. The JVM, historically has been a good basis, due to tools
like JVMTI that we also rely on.

What sets Spencer apart from the previous work is that
Spencer is — mostly — a collection of data with tools to analyse
them in ways that makes it easy to explore data, unearth
knowledge about a running program, and share the results
or collaborate. Previous work on dynamic tracing focus on
collecting the data. In this regard, Spencer contributes the
inclusion of variable events in traces, which previous state-
of-the-art tools like ROADRUNNER [10] does not do.

RELATED WORK

A. Snapshotting for Heap Analysis

Snapshotting is a sampling-based dynamic analysis technique
that regularly stops a running program and writes all contents
of the heap to disk. The snapshots can then be analysed offline.

The advantages of snapshotting include that the amount of
data generated generally is lower; the disadvantages include
that it is unknown what happened to an object in between
snapshots. Having continuous data about an object’s execution
permits Spencer to provide convincing results in cases where
snapshots would not be able to do this: if many object have
only one incoming reference in a heap snapshot, that does
not mean that unique variables are a useful type abstraction —
because they might be aliased before and after the snapshot.
Temporary violations of uniqueness, or ABA-style updates to
objects will be invariable by caught by spencer, and this is
part of the implementation of uniqueness and immutability. An
advantage of snapshotting is its ability to deal with native code.

Potanin et. al’s Fox [[17]] relies on snapshotting and also
uses a query language. Potanin et. al used Fox to look for
uniqueness in the heap of Java programs. The proportion of
aliased objects found in their corpus was 13.6% on average.
This is roughly in line with values that we observe for the
query Not(HeapUnique() but, as stated above, the measuring
methodology differs as Spencer is able to track all events on
an object. While the results are similar, it is unclear whether
the objects reported as e.g., unique are the same across both
tools.

Interestingly, the case study about strings in Section
is similar to approaches used in real world development of
programming language run-times: heap snapshots (also called

http://www.spencer-t.racing/datasets
http://www.spencer-t.racing/datasets
http://spencer-t.racing/datasets/avrora
http://spencer-t.racing/datasets/h2
http://spencer-t.racing/datasets/luindex
http://spencer-t.racing/datasets/pmd
http://spencer-t.racing/datasets/fop
http://spencer-t.racing/datasets/batik
http://spencer-t.racing/datasets/xalan
http://spencer-t.racing/datasets/lusearch
http://spencer-t.racing/datasets/sunflow
http://spencer-t.racing/datasets/h2
http://spencer-t.racing/datasets/avrora
http://spencer-t.racing/datasets
http://spencer-t.racing/query/test/Not(HeapUnique()

heap dumps) have been used to gain insights into run-time
optimisations — before implementing. One example is work
by Oracle on compressed strings in Java (strings can only
use one byte per character, rather than two, in case they only
contain ASCII characters). There, heap dumps of strings have
been used to estimate how much application memory could
be saved by implementing such an optimisation (“We have a
large corpus of heap dumps [..] that can be used to estimate
the heap occupancies for some frequent classes. So, we have
crafted a simple simulator that introspected what Strings are
there, [..] and how compressible those characters are.” [S]ﬂ
Spencer can, right now, not deal with this case, as we do not
store what primitive values are assigned into arrays. As noted
in the section on future work (Sec. [VIII), we plan to extend
tracing of primitive values, and also record sizes of arrays to
support such use cases.

Chis et al. analyse heap snapshots, focusing on memory
bloat in Java programs and identifies common problems
that are specific to Java programs [7]. These problems in-
clude implementation-specific issues: for example, they find
many empty java.util.ConcurrentHashMap objects
that contain few or no elements but use considerable amounts
of memory each and suggest practical fixes to get rid of this
overhead. Mitchell et al. [15]], summarises heap snapshots in
ways that programmers may comprehend with a different goal
than ours—to identify memory bloat.

B. Trace-Based Tools

The ROADRUNNER tracing framework [[10] is a state-of-
the-art tracing tool developed by Flanagan et. al. The goal of
ROADRUNNER to simplify obtaining trace data by facilitating
rapid prototyping of dynamic analyses for concurrent Java
programs. ROADRUNNER is in this respect similar to the
spencer—-tracing tool, but does not have any counterparts
to the remaining Spencer tool-chain. ROADRUNNER and
spencer—tracing export a similar feature set, but the latter
importantly include variable events in its traces.

One similarity that Spencer and ROADRUNNER have is
extensibility: ROADRUNNER supports combining several
analyses using analyses as a “chain of filters” where each
filter reduces the number of objects that the subsequent filter
has to analyse. Spencers query combinators are more powerful
than that, one example being the ability to walk the heap using
query combinators like CanReach(g).

C. Static Analysis

Hackett and Aiken use static analysis on C programs [12].
They are able to uncover some static invariants of C programs,
but are not able to gauge e.g., how common certain kinds of
objects are at run-time. Following their static analysis approach
is less feasible in Java programs because of the additional

In general, it is hard to translate application memory savings to virtual
memory savings, as JVMs use sophisticated memory optimisations, that depend
on runtime settings. We do not know of runtime optimisations that can
automatically reduce the size of arrays, so savings obtained by using smaller
arrays are likely to translate directly to virtual memory savings.

10

problems that must be solved, such as dealing with dynamic
dispatch and dynamic code generation.

Unkel and Lam [18] use static analysis on Java benchmarks
and open source programs to detect the number of stationary
fields. Nelson et. al later study the same property using dynamic
analysis [[16]. They find the number of stationary fields to be in
the range of 55-82% in a variety of programs (the static analysis
giving the lower bound and the dynamic analysis giving the
upper bound). Spencer measures a stronger property — stationary
objects, which are objects with only stationary fields.

Vanciu et al. [19] use static analysis on hand-annotated
programs to extract Object Ownership Graphs (OOG). It is
a conservative whole-program analysis that shows all possible
objects and all possible communication between objects. These
graphs do not scale well to large programs.

VIII. FUTURE WORK

Future work on Spencer can be divided into four main
categories. First, extending the data sets with more programs
and more traces of single programs with varying inputs. Second,
the Spencer feature set will be extended by more queries,
including thread-locality, access patterns, etc. Third, we will use
Spencer to validate designs, both our own, and those of others.
For example, there exist many proposals (e.g., [6], [8]], [1L1I,
[9]) for type system designs to rule out certain classes of errors
that include unique references, immutable objects, etc. It would
be interesting to see the extent to which such systems could
describe the shapes of existing programs. Fourth, improsed
user interface, improved visualisation and object interaction.
For example, a currently missing feature is the ability to select
objects from the visualisations. For example, we are often
interested in the outliers of a statistic — where are the objects
that live the longest allocated? What are their classes? To answer
such questions, one must download Spencer data dumps and
write one’s own analyser. This is suboptimal.

IX. CONCLUSION

We have presented Spencer, a web based tool for easy,
reproducible heap analysis for programs running on the JVM.
Spencer, we believe, will be useful for researchers in the field
of programming languages like ourselves, who want input to
design decisions, and rule out ideas on an early stage, and for
researchers who wish to understand and quantify Java heaps.
What sets Spencer aside from previous work is its aim to
simplify exploration of a particular kind of data set to answer
a more narrow set of questions, rather than provide a tracing
solution that “fits all”. This limits its usefulness as a general-
purpose tool, but greatly simplifies the user experience.

The nine programs that make up the Spencer tool-chain
comprise approximately 10,000 LOC in a mixture of Java,
C++, and Scala. They are all open-source and available on
GitHub, but more imprortantly Spencer is provided as a free
service hosted by Uppsala University. The continously growing
data set currently weights in at 680GB.

[2]
[3]

[4

=

[5

=

[6

=

[7

—

—
x

[9

—

[10]

REFERENCES

Java Documentation: java.lang.String. http://docs.oracle.com/javase/8/
docs/api/java/lang/String.html. Accessed: 2017-02-09.

Java Documentation: java.util.LinkedList. http://docs.oracle.com/javase/
7/docs/api/java/util/LinkedList.html. Accessed: 2017-02-09.

Q&A with Aleksey Shipilev on Compact Strings Optimization
in OpenJ]DK 9. https://www.infoq.com/news/2016/02/
compact-strings-Java-JDK9. Accessed: 2017-02-08.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
Benchmarks: Java Benchmarking Development and Analysis. In OOPSLA
"06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
Oriented Programing, Systems, Languages, and Applications, pages 169—
190, New York, NY, USA, October 2006. ACM Press.

John Boyland. Alias burying: Unique variables without destructive reads.
Softw., Pract. Exper., 31(6):533-553, 2001.

John Boyland, James Noble, and William Retert. Capabilities for sharing.
In ECOOP 20010bject-Oriented Programming, pages 2-27. Springer,
2001.

Adriana E. Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick
O’Sullivan, Trevor Parsons, and John Murphy. Patterns of Memory Ineffi-
ciency. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6813
LNCS:383-407, 2011.

Dave Clarke and Tobias Wrigstad. External Uniqueness Is Unique Enough.
In Luca Cardelli, editor, ECOOP 2003 Object-Oriented Programming,
volume 2743 of Lecture Notes in Computer Science, pages 176-200.
Springer Berlin Heidelberg, 2003.

Dave Clarke, Johan stlund, Ilya Sergey, and Tobias Wrigstad. Ownership
Types: A Survey. In Dave Clarke, James Noble, and Tobias Wrigstad,
editors, Aliasing in Object-Oriented Programming. Types, Analysis and
Verification, volume 7850 of Lecture Notes in Computer Science, pages
15-58. Springer Berlin Heidelberg, 2013.

Cormac Flanagan and Stephen N. Freund. The roadrunner dynamic
analysis framework for concurrent programs. In Proceedings of the 9th

11

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE °10, pages 1-8, New York, NY, USA,
2010. ACM.

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield,
and Joe Duffy. Uniqueness and Reference Immutability for Safe
Parallelism. SIGPLAN Not., 47(10):21-40, October 2012.

Brian Hackett and Alex Aiken. How is Aliasing Used in Systems
Software? In Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, SIGSOFT ’06/FSE-
14, pages 69-80, New York, NY, USA, 2006. ACM.

Philipp Haller and Martin Odersky. Capabilities for Uniqueness and
Borrowing. 24th European Conference on Object-Oriented Programming
(ECOOP 2010), (June):354-378, 2010.

Kiyokuni Kawachiya, Kazunori Ogata, and Tamiya Onodera. Analysis
and reduction of memory inefficiencies in java strings. SIGPLAN Not.,
43(10):385-402, October 2008.

Nick Mitchell. The Runtime Structure of Object Ownership. ECOOP
20060bject-Oriented Programming, pages 74-98, 2006.

S Nelson, D J Pearce, and J Noble. Profiling Field Initialisation in
Java. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7687
LNCS:292-307, 2013.

Alex Potanin, James Noble, and Robert Biddle. Checking ownership
and confinement. Concurrency Computation Practice and Experience,
16(7):671-687, 2004.

Christopher Unkel and Monica S. Lam. Automatic Inference of Stationary
Fields: A Generalization of Java’s Final Fields. In Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL °08, pages 183-195, New York, NY,
USA, 2008. ACM.

Radu Vanciu and Marwan Abi-Antoun. Object graphs with ownership
domains: An empirical study. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7850:109-155, 2013.

Edwin Westbrook, Jisheng Zhao, Zoran Budimli, and Vivek Sarkar.
Practical permissions for race-free parallelism. In James Noble, editor,

ECOOP 2012, volume 7313 of LNCS, pages 614-639. Springer, 2012.

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
https://www.infoq.com/news/2016/02/compact-strings-Java-JDK9
https://www.infoq.com/news/2016/02/compact-strings-Java-JDK9

