
Impact of Continuous Integration on Code Reviews
Mohammad Masudur Rahman Chanchal K. Roy

Department of Computer Science, University of Saskatchewan, Canada
{masud.rahman, chanchal.roy}@usask.ca

Abstract—Peer code review and continuous integration often
interleave with each other in the modern software quality man-
agement. Although several studies investigate how non-technical
factors (e.g., reviewer workload), developer participation and
even patch size affect the code review process, the impact
of continuous integration on code reviews is not yet properly
understood. In this paper, we report an exploratory study using
578K automated build entries where we investigate the impact of
automated builds on the code reviews. Our investigation suggests
that successfully passed builds are more likely to encourage new
code review participation in a pull request. Frequently built
projects are found to be maintaining a steady level of reviewing
activities over the years, which was quite missing from the rarely
built projects. Experiments with 26,516 automated build entries
reported that our proposed model can identify 64% of the builds
that triggered new code reviews later.

I. INTRODUCTION

Quality assurance is one of the most important steps of
software change management which is often done using a
combination of manual (i.e., code reviews) and automated
processes (i.e., continuous integration). GitHub, one of the
most popular software ecosystems, offers a set of features for
software quality management through pull requests (i.e., for
code reviews) and automatic build supports (e.g., collaboration
with Travis-CI). While peer code reviews involve manual
checking of coding standard violations and simple logical
errors in a submitted patch by the developers, continuous
integration prevents the regression of a system by ensuring that
the patch passes all the unit tests and merges with the system
successfully. In the pull-based modern software development,
automatic builds are often interleaved with or followed by
code reviews by the developers [3]. Fig. 1 shows a growing
trend for adopting automated software builds and code reviews
by 1000+ open source projects from GitHub over the last
six years. Peer code reviews are reported to be effective
for improving coding standards [9], design quality [8] and
overall quality [7] of a software system. There have been also
several studies on how non-technical factors [2], developer
participation [5] and even patch size [4, 10] affect the code
reviews. Unfortunately, the impact of continuous integration on
code review process is not yet properly understood given that
they are interleaving steps in the software quality management.
In particular, how automated software builds and tests might
influence the participation or overall quality of code reviews
is not substantially studied.

In this paper, we report an exploratory study where we
analyze the recorded logs of the thousands of automated builds
performed on the open source projects at GitHub, and find
out how they might affect the peer code review activities on

Fig. 1. Automated software build status and code reviews over the years

the same projects. In particular, we investigate whether the
status and frequency of the automated builds correlate to the
participation or quality of the code reviews. Such findings are
likely to help us better understand how the manual code review
process could be complemented with automatic tool supports.
We thus answer three research questions as follows:
• RQ1: Does the status of automated builds influence the

code review participation in open source projects?
• RQ2: Do frequent automated builds help improve the

overall quality of peer code reviews?
• RQ3: Can we automatically predict whether an auto-

mated build would trigger new code reviews or not?
Exploratory study using 578K automated build entries from

1000+ open source projects suggested important correlations
between continuous integration and code review activities.
First, automated build status has a notable impact on code
review participation in the projects. Passed builds are more
likely to trigger new code reviews for a pull request than the
other builds. Second, automated build frequency has a major
role in improving code reviews of the open source projects.
Our investigation suggests that frequently built projects are
likely to maintain a steady level of reviewing activities over the
years, which was quite missing from the rarely built projects.
Experiment using 26,516 build entries reported that our model
can identify 64% of the builds that triggered new code reviews
later, which is promising. Our model can offer automatic
supports in the code reviews and software quality management
by identifying the appropriate pull requests for code reviews.

II. DATA COLLECTION

We collect a total of 578K automated build entries from
MSR challenge dataset [3] for our study. Since we are inter-
ested to investigate possible relationships between automated
builds and peer code reviews, the collected entries should be
associated with code reviews. In GitHub, pull requests are
generally used for code reviews. Hence, we collect only such
entries where each of the corresponding builds was triggered
by a pull request (i.e., gh is pr=true) submitted by the
developer. We also identify whether the commits in each

ar
X

iv
:1

80
7.

01
85

1v
1 

 [
cs

.S
E

] 
 5

 J
ul

 2
01

8



TABLE I
DATASET FOR EXPLORATORY STUDY

Build Status Automated Build Only Build + Code Review Total
Entry Project Entry Project Entry Project

Canceled 2,616 135 1,368 85 3,984 207
Errored 51,729 2,138 27,262 1,673 78,991 2,735
Failed 55,546 2,368 39,025 2,139 94,571 3,106
Passed 236,573 5,774 164,174 5,299 400,747 7,319

build underwent (i.e., gh num pr comments>0) and did
not undergo (i.e., gh num pr comments=0) peer code
reviews. We found 40% (i.e., 232K) of such commits reviewed
by the developers. We extract automated build and test details
(e.g., outcome, frequency) and code review activities (e.g.,
review comment statistics) from each of the collected entries
for our comparative and inferential analysis. Table I shows the
details of our collected dataset for the study.

III. ANSWERING RQ1: AUTOMATED BUILD STATUS AND
CODE REVIEW PARTICIPATION

To answer RQ1, we divide automated build entries into
two non-overlapping groups– builds with code reviews and
builds without code reviews. The goal is to contrast between
these two groups in terms of their build status and code
review activities. An automated build can have one of these
four statuses– canceled, errored, failed and passed. On the
other hand, review comment counts from each entry could
be considered as a proxy to code review participation. That
is, if such a comment count is greater than zero, the commits
associated with the build entry received code reviews and vice
versa. Alternatively, one or more reviewers participated and
the participation is denoted as “1” and vice versa. In GitHub,
reviewers can submit two types of code review comments–
in-line comments and summary comments – where they are
also called as pull request comments and issue comments
respectively. Thus, we consider one independent variable (i.e.,
automated build status) and two response variables (i.e., pull
request comment count and issue comment count) for RQ1,
and perform statistical tests and further analyses to answer the
research question in terms of a hypothesis as follows:

H10: Code review participation is not affected by the status
of previous automated builds.
H1a: Code review participation is significantly affected by
the status of previous automated builds.

Test of Hypothesis: While 40% of the built commits from
our dataset received one or more code reviews, developers
did not participate in the code reviews of rest 60% commits
from the same set of projects. Please note that 95%–100% of
the projects from the MSR challenge dataset [3] adopt pull
request based code reviews. Therefore, such lack of reviews
might not be a mere coincidence and thus warrants an in-
depth analysis. To ensure a fair comparative analysis, we
pick up a random sample of 231,829 entries without code
reviews (i.e., equal to the entries with reviews) from our
dataset. Then we perform Chi-squared tests on the samples
combining both groups, and investigate whether the code
review participation is independent of corresponding build
status or not. The test reported a p-value of 2.2e-16<0.05,

Fig. 2. Pearson correlation between build status and code review participation associated
with (a) projects and (b) pull requests. IssComs=Issue comments, PRComs=PR comments

TABLE II
PULL REQUESTS WITH CODE REVIEW COMMENTS CHANGED

Previous Issue Comments PR Comments All Review Comments
Build Status Add↑ Remove↓ Add↑ Remove↓ Add↑ Remove↓ Total↑↓
Canceled 15 21 9 7 20 24 65
Errored 448 198 232 122 510 265 812
Failed 1,379 676 610 299 1,542 826 2,316
Passed 3,711 1,388 2,048 791 4,235 1,788 5,677
↑ = One or more review comments added, ↓ = One or more comments removed from the reviews

which refutes the null hypothesis (H10). That is, alternative
hypothesis (H1a) is accepted, and code review participation is
significantly affected by the status of automated builds.

Correlation Analysis: Although the alternative hypothesis
(H1a) is found true according to the above statistical test,
we perform correlation analysis between independent and
response variables for gaining further insights. In particular,
we consider two entities with different abstraction levels–
project and pull request, and calculate their build statistics and
code review statistics. We calculate the number of canceled,
errored, failed and passed automated builds for each entity
while determining the frequency of their built commits that
received code reviews later. The goal is to find out whether
certain build status is correlated to code review participation
or not. Fig. 2 shows the correlation plot between four build
statuses and code review participation for (a) projects and (b)
pull requests. We see that commits with passed builds received
the maximum code reviews both in project level and in pull
request level. That is, reviewers possibly get more confidence
in reviewing such code that is syntactically correct and meets
functional requirements, i.e., passes the automated builds and
tests. However, as shown in Fig. 2, the errored and failed
builds also triggered notable review participation.

Review Change Analysis: Review comment statistics for
each entry in the challenge dataset are generally calculated for
the time gap between the previous build and the current build
on the same pull request [3]. That means, if such statistics
are found changed during the current build submission, the
previous build might have played a role given that corre-
sponding logs reported the details of automated builds and
tests performed. We thus analyze the automated build sequence
(i.e., based on build starting time) of each pull request from
our dataset, and determine their review comment changes. In
particular, we identify the status of the immediate previous
build and the change direction of review statistics in the current
build for each of the pull requests. Table II shows the statistics
of pull requests that underwent such review changes. We see
that 28% (8,870) of 31,648 pull requests (i.e., associated with



TABLE III
CODE REVIEW COMMENTS OF TWO QUARTILES

Quartile Issue Comments PR Comments All Review Comments
Mean p-value ∆ Mean p-value ∆ Mean p-value ∆

Q1 0.60
<0.001* 0.35 0.24

<0.001* 0.49 0.84
<0.001* 0.41Q4 0.99 0.52 1.50

Q′
1 0.62

<0.001* 0.40 0.32
<0.001* 0.53 0.94

<0.001* 0.44
Q′

4 0.97 0.54 1.51

* = Statistically significant, ∆ = Cliff’s delta for effect size, Q′
i = Quartile for total build counts

code reviews) received further code reviews which might have
triggered by the immediate previous builds. Passed builds are
associated with most of these review changes (i.e., 18%) which
confirms our findings from the correlation analysis. Besides, as
shown in Table II, failed and errored builds also introduced a
moderate amount (i.e., about 10%) of reviews. We also check
three file change statistics for each of these pull requests from
the dataset, and found that 99%–100% of them underwent
file changes. That is, automated builds first trigger the code
changes which in turn might warrant further code reviews.

Thus, to answer RQ1, automated build statuses are very
likely to affect code review participation. Passed builds en-
courage more code reviews than failed or errored builds. While
a code review process is generally initiated by the patch
submitter requesting peers for reviews, automated builds along
with their outcomes might also trigger further code reviews.

IV. ANSWERING RQ2: AUTOMATED BUILD FREQUENCY
AND CODE REVIEW QUALITY

Our analyses in RQ1 suggest that automated build status
might affect code review participation while passed builds
having the maximum influence. Our conjecture is that de-
velopers possibly felt comfortable in reviewing such code
(i.e., investing their effort into) that has already gained a
quality threshold (i.e., passed the automated builds and tests).
However, too many and too frequent builds might introduce
reviewing job overload [2] on the developers which is likely to
hurt the review quality. We consider review comment counts
as a proxy to code review quality [4, 6]. Thus, an investigation
is warranted on how frequency of automated builds might
affect the overall code review quality. We collect project level
build statistics and review comment statistics, and contrast
between the projects with high frequency builds and the
projects with low frequency builds. We performed statistical
tests and further analyses to answer the research question in
terms of a hypothesis as follows:

H20: Quality of code reviews associated with highly frequent
builds is similar to that of less frequent builds.
H2a: Quality of code reviews associated with highly frequent
builds is significantly higher than that of less frequent
automated builds.

Test of Hypothesis: We calculate build frequency per month
for each of the projects in our dataset. Then we divide them
into four quartiles where first quartile (Q1) contains the lowest
25% and fourth quartile (Q4) contains the highest 25% of all
the build frequencies. We collect the corresponding project
entries from both quartiles, and compare their mean review
comment counts– issue comment counts/build and pull request
comment counts/build. We performed Mann-Whitney Wilcoxon

Fig. 3. Code review quality of projects from two different build frequency quartiles

Fig. 4. Review comments of frequently built projects and rarely built projects

tests, and found that their review comment counts differ
significantly, i.e., all p-values are less than 0.05. Table III
reports the details of our statistical tests, and Fig. 3 shows the
box plots of mean comment counts for the two quartiles. We
see that code review quality (i.e., mean review comment count)
is significantly higher for Q4 (i.e., projects with frequent
builds) than Q1 (i.e., projects with less frequent builds) in
terms of all measures– mean, p-value and Cliff’s delta (effect
size)– which refutes the null hypothesis (H20). We also repeat
the same experiments by considering total build counts rather
than frequency per month for each of the projects, and reached
at the same conclusion. Thus, build frequency has a significant
impact on the code review quality of the projects. Since
automated tests are performed simultaneously with automated
builds and thus have the same frequencies, the above findings
regarding code review quality also equally apply to them.

Interval-Aware Comparative Analysis: While the above
statistical analysis shows that the alternative hypothesis (H2a)
is true, we performed further analysis to gain more insights. In
particular, we examine and compare the code review statistics
of frequently built projects (i.e., fourth quartile, Q4) and rarely
built projects (first quartile, Q1) over specific time interval such
as month. We select Top-5 projects from Q4 and Top-5 projects
from Q1 where each of the projects is 3–4 years old. Then,
we calculate review comments/build for each of the 48 months
for the projects, and plot the cumulative comments/build for
each project. From Fig. 4, we see that the cumulative curves
for the frequently built projects are close to linear with an
upward slope. This suggests that these projects maintained
steady review activities over the time period in question. On
the other hand, the curves for the less frequently built projects
are zigzag and do not show a regular structure. That is, they
failed to maintain the regular code review activities, which is
also manifested by their declining review comment statistics.

Thus, to answer RQ2, automated build frequency is very
likely to have an impact on the quality of code reviews in
the open source projects. While frequent builds help maintain
an acceptable code quality standard for the projects, they also
help trigger more code reviews than the infrequent builds.



TABLE IV
PERFORMANCE OF PREDICTION MODELS

Algorithm Metrics Overall New Review Triggered
Accuracy Precision Recall

Naive {all metrics} 58.03% 68.70% 29.50%
Bayes {build status, code review} 56.50% 78.60% 17.80%

Logistic {all metrics} 60.56% 64.50% 47.00%
Regression {build status, code review} 60.18% 64.30% 45.60%

J48 {all metrics} 64.04% 69.50% 50.10%
{build status, code review} 62.64% 73.80% 39.20%

V. ANSWERING RQ3: AUTOMATIC PREDICTION OF NEW
CODE REVIEWS USING A MODEL

Automated builds and tests often introduce source code
changes which in turn might or might not trigger further
code reviews. According to our analysis, about 100% of the
builds from the dataset are associated with code level changes.
However, code reviews were triggered for only 40% of the
pull requests (details in Section II). Automated identification
of such pull requests and their builds beforehand could help
the project developers or stake holders with important decision
making on code reviews. Thus, a prediction model is warranted
which can automatically predict whether an automated build
is likely to trigger new code reviews or not.

We develop a prediction model where the model is
trained on build log data using three machine learning algo-
rithms. In particular, we use automated build status– tr -
status, three code change statistics–gh diff files -
added, gh diff files deleted and gh diff -
files modified, two test change statistics– gh -
diff tests added and gh diff tests deleted
and two review comment statistics for the pull request–gh -
num issue comments and gh num pr comments –
as the predictor variables. The response variable of each
current build is determined based on whether the next build
entry (i.e., based on building date and time) for the same pull
request has a changed review comment statistic or not. Thus,
the response variable for each of our build entries takes one of
these two values–“new review” or “unchanged.” We used a
randomly sampled set of 26,516 build entries from our dataset
for the experiments where equal number of instances from
both classes are ensured. We use Naive Bayes (NB), Logistic
Regression (LR) and J48 from WEKA [1] workbench for the
training, and apply 10-fold cross validation for the testing of
our prediction models. Table IV summarizes our findings.

From Table IV, we see that J48-based model performed
the best in separating review triggering build entries from
the rest. Our model classifies the build entries with 64%
overall accuracy which is promising as a proof of concept.
Besides, the model can identify the true-positives with about
70% precision and 50% recall which are also promising. Such
findings clearly answer our third research question regarding
automatic prediction on code review triggering–RQ3.

VI. DISCUSSION & CONCLUSION

In this paper, we report an exploratory study using 578K
automated build entries from MSR challenge dataset, where
we investigate the impact of continuous integration on code

reviews. We explore two different aspects of continuous
integration–automated build status and automated build fre-
quency and two aspects of code review–review participation
and review quality, and investigate how the former aspects
might affect the later. We apply several statistical tests, and
perform correlation and comparative analysis to answer our
three research questions. Our findings both confirm intuitive
beliefs and reveal new meaningful information as follows:

Automated build status has a notable impact on code
review participation where passed builds having the maximum
influence. Our analyses show that automated builds triggered
new code reviews for 28% of the 31,648 pull requests from our
dataset. While passed builds played the major role, errored and
failed builds also brought about new code changes and thus,
triggered further code reviews for 10% of the pull requests.

Build frequency has a significant impact on the quality
of code reviews in the open source projects. Our analyses
suggest that code review comments are significantly higher
for frequently built projects than that of rarely built projects.
Frequently built projects often maintain a steady level of
code review activities over the years, which is most probably
missing from the rarely built projects according to our findings.

Experiments with the three prediction models show that
most of our identified metrics– build status, code change
statistics, test change statistics and review comment statistics–
are effective in predicting whether an automated build might
trigger new code reviews or not. Since the dataset was skewed,
we conduct experiments with a randomly sampled subset that
contains equal number of instances from both classes. Our
model provides a reasonable accuracy of 64% with up to 70%
precision and 50% recall. Although peer code reviews are
reported to be effective for quality improvement of software
systems, they are generally done manually and are often time-
consuming. Our model can offer automatic supports in the
code reviews and software quality management by identifying
the appropriate pull requests for code reviews using build logs.

Acknowledgement: This research was supported in part by
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES
[1] WEKA. URL http://www.cs.waikato.ac.nz/ml/weka/.
[2] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. The influence of non-

technical factors on code review. In Proc. WCRE, pages 122–131, 2013.
[3] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing travis ci and

github for full-stack research on continuous integration. In Proc. MSR, 2017.
[4] A. Bosu, M. Greiler, and C. Bird. Characteristics of Useful Code Reviews: An

Empirical Study at Microsoft. In Proc. MSR, pages 146–156, 2015.
[5] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Investigating

code review quality: Do people and participation matter? In Proc. ICSME, pages
111–120, 2015.

[6] O. Kononenko, O. Baysal, and M. W. Godfrey. Code Review Quality: How
Developers See It. In Proc. ICSE, pages 1028–1038, 2016.

[7] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code review
coverage and code review participation on software quality: A case study of the
qt, vtk, and itk projects. In Proc. MSR, pages 192–201, 2014.

[8] R. Morales, S. McIntosh, and F. Khomh. Do code review practices impact design
quality? a case study of the qt, vtk, and itk projects. In Proc. SANER, pages
171–180, 2015.

[9] S. Panichella, V. Arnaoudova, M. D. Penta, and G. Antoniol. Would Static Analysis
Tools Help Developers with Code Reviews? In Proc. SANER, pages 161–170, 2015.

[10] P.C. Rigby, B. Cleary, F. Painchaud, M. Storey, and D.M. German. Contemporary
Peer Review in Action: Lessons from Open Source Development. TSE, 29(6):
56–61, 2012.

http://www.cs.waikato.ac.nz/ml/weka/

	I Introduction
	II Data Collection
	III Answering RQ_1: Automated Build Status and Code Review Participation
	IV Answering RQ_2: Automated Build Frequency and Code Review Quality
	V Answering RQ_3: Automatic Prediction of New Code Reviews using a Model
	VI Discussion & Conclusion

