
 

Vrije Universiteit Brussel

Prevalence of Botched Code Integrations
Muylaert, Ward; De Roover, Coen

Published in:
Proceedings - 2017 IEEE/ACM 14th International Conference on Mining Software Repositories, MSR 2017

DOI:
10.1109/MSR.2017.40

Publication date:
2017

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Muylaert, W., & De Roover, C. (2017). Prevalence of Botched Code Integrations. In Proceedings - 2017
IEEE/ACM 14th International Conference on Mining Software Repositories, MSR 2017 (pp. 503-506). [7962407]
https://doi.org/10.1109/MSR.2017.40

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 26. Apr. 2024

https://doi.org/10.1109/MSR.2017.40
https://cris.vub.be/en/publications/prevalence-of-botched-code-integrations(c4687538-87f9-4124-8b11-fe6417fad375).html
https://doi.org/10.1109/MSR.2017.40


Prevalence of Botched Code Integrations

Ward Muylaert

Software Languages Lab

Vrije Universiteit Brussel

Brussels, Belgium

ward.muylaert@vub.be

Coen De Roover

Software Languages Lab

Vrije Universiteit Brussel

Brussels, Belgium

coen.de.roover@vub.be

Abstract—Integrating code from different sources can be an
error-prone and effort-intensive process. While an integration
may appear statically sound, unexpected errors may still surface
at run time. The industry practice of continuous integration aims
to detect these and other run-time errors through an extensive
pipeline of successive tests. Using data from a continuous integra-
tion service, Travis CI, we look into the prevalence of integration
errors. We find code integration causes failure less often than
regular commits. Repairing is usually done the same day and
takes less than ten lines of code, largely in the source code.
These results indicate that applying proper practices mitigates
many issues associated with code integration.

I. INTRODUCTION

Version control repositories enable working on independent

versions of a project in so-called branches. Merging two

branches combines their changes, but this is not always

successful. Three different types of merge conflicts can be

discerned [5]. A textual conflict occurs when the same line of

code has been changed in both branches. A syntactic conflict

occurs when the result of a merge is no longer syntactically

correct. A semantic conflict occurs when the result is syntac-

tically correct, but no longer behaves as intended.

For this mining challenge, we analyse the prevalence of

syntactic and semantic conflicts on a large scale. We combine

information from GitHub, a version control repository host,

with information from Travis CI, a continuous integration

service. This because many projects hosted on GitHub have

been configured so that Travis CI will build the program, run

its test suite, and report the results back to the developers upon

every commit pushed to GitHub. In the case of open source

projects, Travis CI makes these results publicly available.

While the types of conflicts are well-defined, there is little

information on their frequency. Brun et al. [2] analysed 3,562

merge commits across nine open source projects. Their study

observed that about one in six merge commits leads to a

textual conflict. Three of the nine open source projects were

investigated for build and test failures. Build failures were

found in 0.1%, 4%, and 10% of merge commits. Test failures

were found in 4%, 28%, and 3% of merge commits.

Though the first of its kind, the study lacks in two aspects.

First, the sample size is small. Only three projects were

investigated in terms of conflicts beyond the textual. Second,

the study did not consider what was done to fix these failures.

We seek to answer the following research questions:

RQ1 How often do code integrations lead to conflicts?

RQ2 How much effort is needed to fix conflicts after code

integration?

RQ3 What type of files is this effort concentrated in?

II. DATASET

A. Origin of Dataset

To answer these research questions, we need to combine two

datasets. GHTorrent [3] (version 2016-05-04) provides GitHub

data, while TravisTorrent [1] (version 2016-12-06) provides

Travis CI data. The TravisTorrent dataset contains information

on whether or not the build and tests after a commit succeeded,

for about 1300 Ruby and Java projects. These projects meet the

following criteria defined by Kalliamvakou et al. [4]: projects

must have forks, received a commit in the last six months,

received at least one pull request, and have more than 50

stars on GitHub. Our study still requires GHTorrent in order to

identify merge commits in this dataset, based on information

about their parent commits. To this end, we link commits from

either dataset using their SHA-1 hash.

B. Refining the Dataset

We perform a three-step refinement on the dataset to ensure

its projects have sufficient merge commits, and adhere to con-

tinuous integration practices. First, the refinement eliminates

projects with less than 50 builds of merge commits. This step

leaves 579 projects.

Second, the refinement filters out projects with a build

success rate under 34%. We suspect these projects of not

adhering to continuous integration practices. The success rate

of a project is the ratio of passed builds compared to the total

number of builds. The quartiles are at 0.67, 0.81, and 0.89.

The interquartile range IQR defines a lower bound l for the

success rate: l = Q1− 1.5 ∗ IQR = 0.34. Of the 579 projects,

555 have sufficient success rate.

Third, our research method requires information on the

build of a merge commit and its parents. This step eliminates

projects with build information on less than 50 merge commits

and their parents. This refines the dataset to 348 projects.

Table I and Fig. 1 characterize the 348 projects in the

refined dataset by the number of commits, the number of

merge commits, the maximum team size, and the number of

branches.



TABLE I
A SUMMARY OF THE 348 PROJECTS WITH 50 OR MORE BUILDS OF MERGE

COMMITS AND PARENTS AS WELL AS SUFFICIENT SUCCESSFUL BUILDS.

Commits Merges Team size Branches

Min 138 50 2 1
Q1 360 104.8 9 20.75
Median 566 155 13 53
Q3 1120 288.5 20 117.5
Max 19142 8169 288 1022

0 5000 10000 15000

0
2

0
0

0
6

0
0

0

Number of commits

N
u

m
b

e
r 

o
f 

m
e

rg
e

s

0 50 100 150 200 250

0
2

0
0

0
6

0
0

0

Team size

N
u

m
b

e
r 

o
f 

m
e

rg
e

s

0 200 400 600 800 1000

0
2

0
0

0
6

0
0

0

Number of branches

N
u

m
b

e
r 

o
f 

m
e

rg
e

s

0 500 1000 1500 2000

0
4

0
0

8
0

0

Number of commits

N
u

m
b

e
r 

o
f 

m
e

rg
e

s

0 10 20 30 40 50

0
5

0
0

1
5

0
0

Team size

N
u

m
b

e
r 

o
f 

m
e

rg
e

s

0 100 200 300 400

0
4

0
0

8
0

0

Number of branches

N
u

m
b

e
r 

o
f 

m
e

rg
e

s

Fig. 1. Number of merge commits plotted against from top to bottom: number
of commits, maximum team size, and number of branches. Each left graph
contains all 348 selected projects. Each right graph zooms in on a section
closer to the origin. Every dot corresponds to one project.

III. RESEARCH METHOD

Before explaining the research method for each research

questions, we define three concepts: breaking commit, fixing

commit, and merge commit.

A breaking commit is a commit of which the build has

status “failed” and of which the parent commit(s) have builds

with status “passed”. Considering the build status irrespective

of the one of the parents would skew results. This because a

build can remain failing for several builds in a row. The build

information is, through TravisTorrent, provided by Travis CI.

Travis CI builds can have a status “passed”, “errored”, “failed”,

“started”, or “cancelled”. “Started” means the continuous inte-

gration pipeline is still running. “Cancelled” is a state triggered

by the project’s developers if they choose to cancel a run

of the pipeline. “Passed” means nothing went wrong during

building or testing of the project. “Errored” means something

went wrong in setting up the project (e.g., a dependency could

not be installed). “Failed” means something went wrong either

while building the project or while running the project’s tests.

This build status is therefore indicative of the syntactic and

semantic conflicts we are interested in.

A fixing commit is the first commit with a build status

“passed” after a breaking commit. We define succession

in terms of TravisTorrent information. Each build entry in

TravisTorrent has a tr_prev_build field which links to the

tr_build_id of its previous build. We repeatedly follow

this link until the first build that passes.

A merge commit is a commit with two or more parent com-

mits. To identify these commits in the TravisTorrent dataset,

we look up the commit with the corresponding SHA-1 hash in

the GHTorrent dataset. GHTorrent provides information about

the parents of a commit through its commit_parents table.

A. Frequency of Conflicts

Our research method for RQ1 consists in analysing the

frequency of breaking commits. For each project, we compute

the ratio of breaking commits to all commits. This for breaking

regular commits and breaking merge commits separately.

Merge commits are then categorised into pull requests and

others. A pull request is a GitHub concept enabling explicit

review of patches to a repository. Contributors can review

the patch, suggest changes, or comment on it before it is

merged into the repository. We identify pull requests through

the gh_is_pr field in TravisTorrent.

Section IV-A employs the following metrics to answer RQ1.

• BREAK%: The ratio for a project of the number of breaking

commits (“failed” after “passed”) to the total number of commits after

a passing build (anything after “passed”). A lower number is better.

• BREAK%RC , BREAK%MC : The BREAK% for regular

commits and merge commits respectively.

• BREAK%MCNPR, BREAK%MCPR: The BREAK% for

non pull request merge commits and pull request merge commits

respectively. This is a breakdown of BREAK%MC .

B. Effort to Fix Conflicts

Our research method for RQ2 is measuring proxies for the

effort involved in fixing a build. We use three metrics. The

first metric is the number of builds needed to fix a breaking

commit. This number is the number of steps as described in

finding the fixing commit in Section III. We prefer to look

at the number of builds over the number of commits. When

several commits are pushed at once, Travis CI will only build

the last one. Our assumption here is that the developer will

push their changes once they think the fix is ready. The second

metric is the number of changed lines between the breaking

and the fixing commit. The final metric measures the time

between breaking and fixing commit. The metric considers the

gh_build_started_at field provided by TravisTorrent.

gh_build_started_at has a precision of a day. The

measured differences will thus also have a precision of a day.

• NBTF : The number of builds to fix: how many builds it takes before

a breaking commit is fixed. A lower number is preferred.

• LINES : The number of lines changed between the breaking and

fixing commit. A lower number indicates a possibly lower effort.

• TTF : The time between the breaking commit and its fixing commit.

Lower may indicate an easier fix.

We define METRIC as the median METRIC in a project.



TABLE II
A SUMMARY OF THE BREAK% FOR ALL 348 PROJECTS.

Regular Merge Not PR PR

Min 0.00 0.00 0.00 0.00
Q1 4.02 0.00 0.00 0.00
Median 6.90 2.34 2.22 0.00
Q3 11.20 5.78 5.79 0.00
Max 30.67 43.40 43.40 100.00

C. Source vs Test

To answer RQ3, we categorise a fix into one of four cate-

gories. We take the sum of the changes between the breaking

merge commit and its fixing commit. Specifically, we use the

git_diff_src_churn and git_diff_test_churn

fields of TravisTorrent. The four categories are: “source” (a

fix with only changes to source code), “test” (a fix with only

changes to test code), “both” (a fix with changes to both source

and test code), and “none” (a fix with changes to neither source

nor test code). For each project, we count the number of fixes

in each category relative to the project’s total amount of fixes

to define the four following metrics per project:

• SRC : The ratio of “source” fixes.

• TEST : The ratio of “test” fixes.

• BOTH : The ratio of “both” fixes.

• NONE : The ratio of “none” fixes.

IV. RESULTS

A. Frequency of Conflicts

For RQ1 we consider the BREAK% metric. The metric

uses the previous build for regular commits as defined in

TravisTorrent. The metric only considers merge commits with

exactly two parents. The dataset resulting from Section II-B

has but one merge commit with more than two parents.

Table II and Fig. 2 (a) depict BREAK%RC and

BREAK%MC , the BREAK% for regular commits and

merge commits respectively. We notice merge commits break

the builds less often than regular commits do. Fig. 2 (b) splits

up the merge commits into two categories: pull request and

not pull request. While we believed the pull requests might

explain away the good behaviour of the merge commits, this

does not seem to be the case. Only 35 of the selected breaking

merge commits across all the 348 projects are marked as a pull

request. Filtering these out does not change the result for the

other merge commits.

A breaking merge commit happens less often than a breaking

regular commit in projects with a CI pipeline who maintain

a 34% success rate.

This could be explained through our commit selection. We

pick breaking commits, i.e., commits for which the build not

just fails, but the build of the parent commit(s) also passes.

Regular commits will usually be something completely new

to the source code. Merge commits on the other hand will

combine two passing branches. The only way for a merge

commit to break the build is to have the source code from

both branches interact in an unexpected way. Table II shows

half of the projects deal with such an error once every 43

●

●
●

●
●
●●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●●●

●

●●●
●

●
●
●
●●

●

●

●

BREAK%RC BREAK%MC

0
2

0
4

0
6

0
8

0
1

0
0

(a) Breaking commits

●

●
●●

●

●

●●

●

●●●

●

●●●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

BREAK%MCNPRBREAK%MCPR

0
2

0
4

0
6

0
8

0
1

0
0

(b) Breaking merge commits

Fig. 2. A comparison over all projects of the BREAK%. (a) splits up breaking
commits by regular commits and merge commits. (b) splits up the breaking
merge commits by pull request.

merge commits. For a quarter of the projects this occurs at

least once every 17 merge commits.

Threats to Validity. Merge commits are but one form of

code integration. The manual application of a patch or a Git

“rebase” would not show up in the Git history. Rebasing

rewrites the history of a project to pretend commits were made

sequentially rather than in parallel over different branches.

This study does not consider these forms of code integration.

TravisTorrent contains projects that adhere to the GitHub

workflow. The projects need have forks and pull requests. This

limits our analysis to this type of projects.

B. Effort to Fix Conflicts

We start out with 16413 breaking commits (14430 regular,

1983 merge) from the 348 projects after removal of outlier

projects in Section IV-A. For 8453 (7664 regular, 789 merge)

of the breaking commits a fixing commit is found. The merge

commits are spread out over 203 projects.

The NBTF metric shows 87.19% of projects usually repair

a breaking merge commit on the next build. Performing the

same analysis on the number of commits gives similar results:

70.94% of projects usually require just one commit.

Fig. 3 depicts the LINES (quartiles at 3.25, 9, and 36).

The inset zooms in on the left part of the graph. The inset

still shows 87.68% of the projects. Half of the projects repair

breaking merge commits usually with up to nine lines.

Table III summarises the TTF metric. TTF shows 66.5%

of projects usually fix a breaking merge commit the same

day. Within a week, 94.09% of projects have fixed a breaking

merge commit.

In most projects a breaking merge commit is usually fixed

with one build on the same day by changing less than ten

lines of code.



Median LINES

N
u

m
b

e
r 

o
f 

p
ro

je
c
ts

0 200 400 600 800 1000 1200 1400

0
1

0
2

0
3

0
4

0
5

0
6

0

0 20 40 60 80 100

0
1

0
2

0
3

0
4

0
5

0
6

0

Fig. 3. LINES for every project. Despite the long tail, for 75% projects

LINES is less than 36. The inset zooms in on the lower end of the graph.
The inset still shows 88% of projects.

TABLE III
AN OVERVIEW OF THE TTF METRIC. IT SHOWS 66.5% OF PROJECTS

USUALLY FIX A BREAKING BUILD OF A MERGE COMMIT WITHIN A DAY.

Usually fixed

the same day 66.50%

the next day 14.29%

the same week 13.30%

the same month 4.93%

more than a month 0.99%

Threats to Validity. Our method for identifying the fixing

commit relies on finding the next builds in TravisTorrent.

However, TravisTorrent does not provide this information in

the case of merge commits. A fixing commit will not be found

if a breaking commit is fixed by a merge commit or a merge

occurs between the breaking and the fixing commit.

Once left with 789 fixes of merge commits there is not a

lot of data per project. This may skew the results in favour of

what happens in those projects with very few data points.

Clearly all metrics are but a proxy for effort. It may

take a lot of effort to track down the exact problem of an

issue, while still fixing it with but one line of code in one

commit. The TTF metric used does not necessarily indicate

time a developer spent working on fixing the build. The

dataset comprises open source projects which are, in general,

developed by volunteers on an irregular basis.

C. Source vs Test

Fig. 4 depicts how the metrics defined in Section III-C are

spread out across all projects. Fig. 4 shows most breaking

merge commits are fixed by changes to either exclusively the

source code or to both source and test code.

Breaking merge commits are fixed by changes to the source

code.

Threats to Validity. This analysis is done for those breaking

●●

●

●

●●

●

●●●

●●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●●

Source Test Both Neither

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4. SRC , TEST , BOTH , and NONE metrics. Breaking merge
commits in the majority of projects are usually repaired by changes to the
source code.

merge commits for which a fix was found. Only 789 such cases

were found. There is not a lot of data per project. This may

skew the results in favour of what happens in those projects

with very few data points.

V. CONCLUSION

Using data from GitHub and Travis CI, we analysed break-

ing commits: commits for which the build fails and the build

of its parent commit(s) passed. We found breaking merge

commits occur less often than breaking regular commits.

Breaking merge commits are repaired with relatively little

effort. Repairing is often done the same day and with just

one build. Less than ten lines of code need to be changed to

repair a breaking merge commit. Most of the changes are done

in the source code, as opposed to test code or other places.

Given their observed prevalence, we recommend further

research on tools that warn developers early about potential

semantic merge conflicts. Semantic conflicts are more subtle

than textual conflicts and may otherwise go undetected until

all tests are run or a user encounters its effects.

NOTES

Ward Muylaert is an SB PhD fellow at FWO, project

number 1S64317N. A replication package for this study is

available via https://soft.vub.ac.be/∼wmuylaer/publications.

REFERENCES

[1] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing
travis ci and github for full-stack research on continuous integration,” in
Int. Conf. on Mining Software Repositories (MSR), 2017.

[2] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of
collaboration conflicts,” in Proc. of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of software engineer-

ing (ESEC/FSE), 2011.
[3] G. Gousios, “The GHTorrent dataset and tool suite,” in Int. Conf. on

Mining Software Repositories (MSR), 2013.
[4] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and

D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, 2015.

[5] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans-

actions on Software Engineering, May 2002.

https://soft.vub.ac.be/~wmuylaer/publications

	Introduction
	Dataset
	Origin of Dataset
	Refining the Dataset

	Research Method
	Frequency of Conflicts
	Effort to Fix Conflicts
	Source vs Test

	Results
	Frequency of Conflicts
	Effort to Fix Conflicts
	Source vs Test

	Conclusion
	References

