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Abstract—Maven artifacts are immutable: an artifact that is
uploaded on Maven Central cannot be removed nor modified. The
only way for developers to upgrade their library is to release
a new version. Consequently, Maven Central accumulates all
the versions of all the libraries that are published there, and
applications that declare a dependency towards a library can pick
any version. In this work, we hypothesize that the immutability
of Maven artifacts and the ability to choose any version naturally
support the emergence of software diversity within Maven
Central. We analyze 1,487,956 artifacts that represent all the
versions of 73,653 libraries. We observe that more than 30% of
libraries have multiple versions that are actively used by latest
artifacts. In the case of popular libraries, more than 50% of
their versions are used. We also observe that more than 17% of
libraries have several versions that are significantly more used
than the other versions. Our results indicate that the immutability
of artifacts in Maven Central does support a sustained level of
diversity among versions of libraries in the repository.

Index Terms—Maven Central, Software Diversity, Library
Versions, Evolution, Open-Source Software

I. INTRODUCTION

Maven Central is the most popular repository to distribute
and reuse JVM-based artifacts (i.e., reusable software pack-
ages implemented in Java, Clojure, Scala or other languages
that can compile to Java bytecode). By September 6, 2018,
Maven Central contains over 2.8 artifacts and serves over
100M downloads every week [1]. The Maven dependency
management system, which is able to resolve transitive depen-
dencies automatically, has been key to this success: it relieves
developers from the complexity of manual management of
their dependencies. Uploading artifacts into Maven Central
is the most effective way for open source projects to remain
permanently accessible to their users. In this way, every build
tool able to download Java libraries can fetch from a world of
libraries and dependencies in a single and authoritative place.

In this work, we analyze software artifacts from the perspec-
tive of one essential characteristic enforced by Maven Central:
immutability'. All artifacts (code packages, documentation,
dependency declarations, etc.) that are uploaded on Maven
Central are immutable: they cannot be rewritten nor deleted.
This is a critical design choice that has a significant influence
on the way the Maven Central repository is utilized. We
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hypothesize that this design decision is a great opportunity
to prevent dependency monoculture [2] and increase the di-
versity [3] among software dependencies.

Previous works have analyzed Maven artifacts from the
perspective of the risks induced by immutability. First, the
redundancy in multiple versions can introduce conflicts among
dependencies, e.g., trying to load the same class several times.
This risk has been extensively analyzed by Wang and col-
leagues [4]. Second, the projects that depend on a library need
to explicitly update their dependency descriptions in order
to benefit from the update. This represents a risk since these
projects can eventually rely on outdated dependencies [5] that
can contain security issues [6] or API breaking changes [7].

We take a fresh look at the presence of multiple versions
of the same library in Maven Central, and consider it as
an opportunity. We analyze how the ability to choose any
library version for software reuse supports the emergence of
software diversity in the repository and how this diversity of
versions fuels the success of popular libraries. We consider this
emergent diversity of reused versions as an opportunity since
it participates in mitigating the risks of software monoculture
[8]. Overcoming this type of monoculture is essential to build
resilient and robust software systems [3], [9], [10].

To conduct this empirical study, we rely on an existing
dataset, the Maven Dependency Graph [1], which captures a
snapshot of Maven Central as of September 6, 2018. This
dataset comes in the form of a temporal graph with metadata
of 2.4 M artifacts belonging to 223K libraries, with more than
9M direct dependency relationships between them. In order
to enable reasoning not only at the artifact level but also at the
library level, we extend this dataset with another abstraction
layer capturing dependencies at the library level.

We measure activity, popularity and timeliness of a subset
of 73,653 libraries with multiple versions, which represents
61.81% of the total number of artifacts in Maven Central. We
empirically investigate whether the diversity of library versions
is a valuable design choice. Our contributions are as follows:

« a quantitative analysis of the diversity of usage and

popularity of library versions;

« evidence of the presence of large quantities of artifacts

that participate in the emergence of diversity;

« open science with replication code and scripts available

online.
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II. BACKGROUND AND DEFINITIONS

In this section, we describe the dataset of Maven artifacts
that constitutes the raw material for our work, as well as its
extended library-level abstraction.

A. The Maven Dependency Graph

To conduct this empirical study, we rely on the Maven
Dependency Graph (MDG), a dataset that captures all of
the artifacts deployed on the Maven Central repository as
of September 6, 2018 [1]. The MDG includes 2,407,335
artifacts. Each artifact is uniquely identified with a triplet
(‘groupld:artifactld:version’). The groupld identifier is a way
of grouping different Maven artifacts, for instance by library
vendor. The artifactld identifier refers to the library name.
Finally, the version identifies each library release uniquely.
For example, the triplet ‘org.neo4j:neo4j-io:3.4.7° identifies
the version 3.4.7 of an input/output abstraction layer for the
Neo4j graph database. The MDG also includes 9,715,669
dependency relationships as declared in the Project Object
Model (pom.xml) file of each artifact.

In this work, we focus on [libraries, i.e., the sets of artifacts
that share the same tuple ‘groupld:artifactld’ but have differ-
ent versions. The MDG includes 223,478 of such libraries,
but the concept of library is not rigorously captured in the
graph. Consequently, we extend the artifact nodes of the MDG
with labels referring to their corresponding library. We call
LIBS the set of all libraries in Maven Central. We introduce
an ordering function denoted <, that leverages the standard
version numbering policy described by the Apache Software
Foundation? in order to compare the different versions of
artifacts belonging to the same library. For instance, 1.2.0 <,
2.0.0. We also define a temporal ordering function denoted
by <; to compare the release dates of different artifacts. For
example, ‘12-09-2011" <; ‘30-03-2015’. In the remainder of
the paper, we refer to artifacts as library versions or simply
versions. We define the MDG as follows:

Definition 1. Maven Dependency Graph. The MDG is a
vertex-labelled graph, where vertices represent Maven library
versions, and edges describe dependency relationships or
precedence relationships. We use a labeling function over
vertices to group versions by library. We define the MDG as
G=W,D,N,L,R), where,
o the set of vertices V represents the library versions
present in Maven Central
o the set of directed edges D represents dependency rela-
tionships between library versions
o the set of directed edges N represents versions
precedence relationships, where the version of the source
node is strictly lower than the version of the target node
w.rt. <,
e the surjective labelling function L returns the
corresponding library of a given library version
v €V, defined as L :V — LIBS
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Fig. 1. Example of relationships between library versions in the Maven

Dependency Graph.

o the temporal function R refers to the date at which a
library version v € V was deployed, defined as R : V —
T, where T is a <;-ordered discrete time domain

In the MDG, T is bounded to [‘15-05-2002°, ‘06-09-2018°],
where the lower bound refers to the date when the first library
was deployed on Maven Central. In the rest of the paper, we
refer to the lower and upper bounds respectively as START
and SNAPSHOT, and we use days as the time granularity.

Figure 1 illustrates the different nodes and
relationships within a simplified graph G composed
of four libraries (A,B,C,D) and nine library versions
{a1,a2,a3,b1,ba, c1,ca,c3,d1}. The regular edges represent
dependency relationships. For example, the first version of A
(aq1) depends on the first version of B (b1), and the second
version of A (az) depends on the second version of B (by) and
C (c2). The dashed edges represent precedence relationships,
and all vertices that are related through such edges constitute
the different versions of a library. In Figure 1, we place nodes
in a temporal order, from left to right, corresponding to the
deployment date, thus the node b; is the firstly deployed,
while the node c3 is the most recently deployed.

The temporal order of releases does not imply a similar
versioning order for a given library. In some cases, library
instances with lower version number may be released after
library versions with a greater version number, e.g., in case of
a library version downgrade or maintenance of several major
library versions. In Figure 1, we can see that as<;as and
az<yaz. Note, this is a common practice adopted by very
popular libraries such as Apache CXF?, and Mule* [11].

Definition 2. Additional notations. For further references in
the MDG, we introduce the following notations:

o next(v): the next release of a given library version v
w.r.t. the ordering function <,

o nextq(v): transitive closure on the next releases of a
library version v

3https://cxf.apache.org
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o latest: the library version v such that } next(v)

e LATESTS: the set of all latest library versions in a
dependency graph G

o deps(v): V. — V" with n € IN: the set of direct
dependencies of a given library version v € V

o depsiree(v): the whole dependency tree of v

o users(v): V — V", with n € IN: the set of library
versions declaring a dependency towards v

o usersq(v): all the transitive users of v

For example, in Figure 1, deps(as) =

depsirec(ag) = {ba,ca,d1}, users(dy)
usersqy(dy) = {ca, c3, a2}

{b2, 2},
= {co,c3} and

B. The Maven Library’s Dependency Graph

In order to be able to reason about not only versions but also
libraries, we elevate the abstraction of the MDG to the library
level. Figure 2 shows the elevated graph corresponding to the
dependency graph G in Figure 1. We construct a weighted
graph, G, where nodes correspond to libraries (LIBS) in G.
We create an outgoing edge between two libraries /; and lo if
there is at least a version of /; that uses a library version of Is.
We denote by D(I) the set of direct library dependencies of
a given library [. For example, D(A) = {B, C}. Finally, the
weight of the outgoing edges from [y to I corresponds to the
number of versions of [; that use a version of l5. We define
the Maven Library’s Dependency Graph (MDGg) as follows:

Definition 3. Maven Library’s Dependency Graph. The
MDGy, is a edge-weighted graph, where vertices represent
Maven libraries, and edges’ weight describes the number of
dependency relationships between their versions. We define the
MDGy, as G = (LIBS, £, W), where,
e the set of vertices LIBS represents the libraries present
in Maven Central
o the set of edges E represents the dependency relationships
between libraries
o the weighing function YV represents the weight of a given
edge, defined as W : & — IN
For further references in the MDG,, we introduce the follow-
ing notations:
o the set of direct library dependencies D of a given library,
defined as D : LIBS — LIBS"
o the weighing function W returns the sum of the weights
of incoming edges, defined as : LIBS - N
o the weighing function W returns the sum of the weights
of outgoing edges, defined as W :LIBS — IN

Fig. 2. The elevated Maven Library’s Dependency Graph from Figure 1.

III. STUDY DESIGN

This work is articulated around five research questions. In
this section, we introduce these questions as well as the metrics
that we collect to answer them. We also describe the represen-
tative subset of artifacts that we study throughout the paper.

A. Research Questions

RQ1: To what extent are the different library versions actively
used?

Because Maven artifacts are immutable, all the versions of
a given library that have been released in Maven Central are
always present in the repository. Meanwhile, previous studies
have shown that users of a given version do not systematically
update their dependency when a new version is released [5],
[12], [13]. Consequently, we hypothesize that, at some point
in time, multiple versions of a library are actively used. In
this research question, we investigate how many versions are
currently used, how many have been used but are not anymore
and how many versions have never been used.

RQ2: How are the actively used versions distributed along the
history of a library?

The full history of versions of a library released on Maven
Central is always available. Consequently, users can decide
to depend on any of the versions. In this research question,
we analyze where, in the history of versions, are located the
versions that are actively used.

RQ3: Among the actively used versions of a library, is there
one or several versions that are significantly more popular
than the others?

Library users are free to decide which version to depend on
and for how much time. In the long term, these users’ decisions
determine what are the most popular libraries and versions
in the entire software ecosystem [5], [14]. This research
question investigates to what extent these decisions lead to
the emergence of one or more versions that receive a greater
number of usages compared to the other versions.

RQA4: Does the number of actively used versions relate to the
popularity of a library?

We observe that for most libraries, more than one version is
actively used at a given point in time. The library developers
have no control over this since they cannot remove versions
from Maven Central, nor force their users to update their
dependencies. Meanwhile, it might be good for a library to
maintain several versions that fit different usages. In this
question, we investigate how the existence of multiple active
versions relates to the overall popularity of a library.

RQ5: How timely are the different library versions in Maven
Central?

With each new release, project maintainers make an effort
to improve the quality of their libraries (e.g., by fixing bugs,
adding new functionalities or increasing performance). These
changes are expected to be directly reflected in the number of



users that update their dependencies to the new available re-
lease, and also in the number of new usages of the library [15].
This research question aims to get insights into how timely is
the release of new versions. In particular, we investigate how
much attraction gets a library version while it was the latest,
compared to the older versions during the same period of time.

B. Metrics

To characterize the activity status of libraries and versions
in terms of their usages by other latest library versions, we
introduce the notions of active, passive, and dormant libraries
and versions. Moreover, we introduce the lifespan of library
versions to get insights on the duration of their activity
period. These notions and measures are intended to answer
RQ1 and RQ2.

Metric 1. Activity status. A passive library version v is a
version that has been used in the past, but is no longer
used, even transitively, by any latest library version (v €
LATESTS). Formally, this metric is described as a boolean
function isPsv : V — {true, false}, where,

false wve U {depsiree(i)}
isPsv(v) = i€ LATESTS
true, otherwise
An active library version v is a version where
isPsv(v) = false. A dormant library version is an

extreme case of a passive library version that occurs when
the version has never been used by existing libraries (i.e.,
users(v) = 0) in Maven Central.

At the library level, an active library is a library that has
at least one active version, whereas a passive library is a
library that has all its versions passive. A dormant library
is an extreme case of passive library that occurs when all its
versions are dormant.

Metric 2. Lifespan. The lifespan of a library version v is
the time range during which it was/is being used. We define
this period as the time range between the release date of v
and the timestamp at which it becomes passive. In case v is
active, this period starts at the release date of the artifact
until the day the SNAPSHOT was captured. Dormant library
versions do not have a lifespan at all. We denote this metric
by ls(v) =[startLs,,endLs,]. Then, the interval’s upper
bound can be formally described as follows:

SNAPSHOT,

last,

—isPsv(v)
isPsv(v)

{R(next(i))}.

endAct, = {

where, last = max U

i€usersqy(v)

To study the popularity of library versions in Maven Central,
and hence answer RQ3 and RQ4, we introduce a metric
of popularity which measures the transitive influence and
connectivity of a library version in the MDG. We rely on
the standard PageRank algorithm [16], which accounts for the
number of transitive usages. Intuitively, library versions with

a higher PageRank are more likely to have a larger number of
transitive usages. On the other hand, to measure the popularity
of libraries, we use the Weighted PageRank algorithm [17] on
the MDG ..

Metric 3. Popularity. The popularity of a library version
v €V is as follows:

popy(v) = (1—d)+d Y popv(i),
i1€users(v)

where d is a damping factor to reflect user behavior, which is
usually set to 0.85 [18].
The popularity of a library | € LIBS is as follows:

popc(l) = (1—d)+d Z popy(1)°C 1.5 C (1)

ieU(l)
where ‘¢ and @ are respectively:
. =
P (O N iU
TS W) Y W)
peD(l) peD(l)

Finally, to answer RQS5, we introduce the notion of timeli-
ness of library versions. This metric looks at the number of
usages of every single version when it was latest and assesses
if it was successful in attracting more users compared to its
older versions. To this end, we compare the usages of a given
version v during its lifespan to the usages that the whole library
has received during the period when v was latest. We call this
period the timeliness period.

Metric 4. Timeliness. The timeliness period, tp(v), of a
library version v, is the time range between the release date
of v and the most recently released version of its library
ordered by <y, which is not necessarily next(v). We denote
this version as mr:

tp(v) = [R(v), R(mr)],

where, mr = min

Lmin’ (ROIRE) > R}

The timeliness of a library version v is a function, tim(v) :
VY — QF, where,
Fim(v) = . |lusers(v)| _—
| U{RG) e tpo) n L) € | {£06)}

i€y Jj€deps(i)

In case the library corresponding to v was not used during
the timeliness period of v (the denominator is 0), then we
consider tim(v) = 0. This also applies when v is dormant.
All first releases of libraries have tim(v) = 1 since they have
no earlier releases.

Based on the timeliness metric, three situations can occur:

o v is timely if tim(v) = 1: v was a success during its

timeliness period and users relied on it

e v is over-timely if tim(v) > 1: v has attracted users

beyond its timeliness period

o v is under-timely if tim(v) < 1: users relied on older

versions during its timeliness period



TABLE I
CATEGORIES OF LIBRARIES IN MAVEN CENTRAL ACCORDING TO THEIR
RELEASING PROFILES

Category Criteria #Libraries (%) #Versions (%)
@) #versions = 1 65,557 (29.33%) 65,557 (2.72%)
(ii) One shot* 32,825 (14.69%) 459, 445 (19.08%)

(iii) #versions > 1 125,096 (55.98%) 1,882,333 (78.2%)

(*) Libraries with more than one version and that have been released in the
same day.

C. Study Subjects

During our initial exploration of the MDG, we distinguished
three different categories of libraries in Maven Central: (i)
libraries that have only one version (~30%), (ii) libraries with
multiple versions all released on the same day (~15%), and
(iii) libraries with multiple versions released within different
time intervals (~55%). Table I gives detailed numbers about
these categories. In particular, after manual inspection we
notice that a large number of libraries belonging to categories
(1) and (ii) are shipped with their classpath. We suspect these
projects to be using Maven only for deploying and storing
their libraries in Maven Central, but not for dependency
management or further maintenance tasks.

In this work, we are interested in studying libraries that have
multiple versions and utilize Maven regularly to manage and
update their dependencies, i.e., libraries belonging to category
(iii) in Table I. Figure 3 shows the distribution of the number
of versions for the libraries in this category. The minimum and
maximum number of versions are respectively 2 and more than
2,000, precisely, 2,122. Meanwhile, the 1st-Q and 3rd-Q are
around 5 and 200 versions respectively.

In order to conduct our empirical study on a representative
dataset, we choose [1st-Q, 3rd-Q] as a range of number of
versions. Therefore, this study focuses on all the libraries
with between 5 and 200 versions. This accounts for 73,653
libraries and 1,487,956 versions, representing 32.96% and
61.81% of the total number of libraries and version in Maven
Central at the SNAPSHOT time.

libraries 4 T
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Fig. 3. Distribution of the number of library versions in Maven Central.

IV. RESULTS

In this section, we address our research questions and
present the results obtained.

A. RQI1: To what extent are the different library versions
actively used?

To answer RQI, we study the activity status of libraries
and versions in Maven Central. Table IT shows the numbers
and percentages of active, passive and dormant libraries and
versions. We observe a low percentage of active versions
(14.73%), whereas there is a predominant number of passive
ones (85.27%), of which more than a half are dormant
(45.16%). On the other hand, we can notice that the majority
of libraries are active (95.49%), i.e., have at least one of its
versions active. Meanwhile, passive libraries represent nearly
5% of the total number of libraries, of which (~4%) are
dormant.
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Fig. 4. Distribution of the number of active versions across active libraries

TABLE I
ACTIVITY STATUS OF LIBRARIES AND VERSIONS IN THE STUDY SUBJECTS

Status #Versions (%) #Libraries (%)
Active 219,184 (14.73%) 70,337 (95.49%)
Passive non-dormant 596, 776 (40.11%) 387 (0.53%)
Dormant 671,996 (45.16%) 2,929 (3.98%)
Total 1,487,956 (100%) 73,653 (100%)

We are intrigued by the 2,929 dormant libraries. The
median number of versions in this family of libraries is 9
with a maximum of 150 versions. We noticed that most of
them are in-house utility libraries, intended for custom logging
or testing, e.g., ‘com.twitter:util-benchmark_2.11.0°. Other
libraries are archetypes®, e.g., ‘io.fabric8.archetypes:karaf-
cxf-rest-archetype’. These libraries are not intended to be
used in production. Their custom nature makes them used
rather internally, or by the library maintainers themselves.

In Table II, we also observe that a low proportion of versions
are active 219, 184 (14.73%), yet they are distributed across a
very high number of libraries, 70, 337 (95.49%), making these
libraries active. Figure 4 summarizes the distribution of active
versions in active libraries. We observe that more than a half of
active libraries, 40, 233 in total, have only one active version.
The remainder, 30,104 libraries, have more than one active
version. For some libraries, such as ‘org.hibernate:hibernate-
core’, more than 100 versions are currently active. However,

Shttps://maven.apache.org/guides/introduction/introduction-to-archetypes
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the number of libraries with more than 100 active versions
represents less than 2% of the total. More interestingly, we
notice that 17% of the libraries have active versions belonging
to more than one different major releases (e.g., 2.X.X). For
instance, the library ‘activemq:activemq’ has two active ma-
jor versions: 3.X.X and 4.X.X, whereas ‘com.spotify:docker-
client’ has seven active versions: from 2.X.X up to 8.X.X.
Figure 5 shows the lifespan distribution of active and passive
versions. To avoid the bias introduced by the SNAPSHOT
time constraint, we consider only non-latest active versions
of libraries (v ¢ LATESTS). As we can see from the figure,
the lifespan of passive versions is approximately distributed
between 8 and 80 days (1st-Q and 3rd-Q), whereas, this range
is larger for active versions: between 351 and 1, 626 days. This
conveys that versions that are active for more than 80 days are
likely to remain active for a longer period. Subsequently, these
libraries are likely to be popular and widely used. Finally, we
notice that the median number of days a version spends after
its creation before being used for the first time is 14, with
a mean of 57.61. This suggests that versions that have been
dormant for less than 57 days are likely to become active;
beyond this time period, they are likely to remain dormant.

passive

active 1
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Fig. 5. Distributions of the lifespan (in days) of passive and active versions

Findings from RQ1: More than 40% of libraries in
Maven Central have strictly more than one active version,
while almost 4% of the libraries have never been used.
This hints on an inclusive, immutable repository that can
support the emergence of a diversity of library usages.

B. RQ2: How are the actively used versions distributed along
the history of a library?

According to Metric 1, active libraries have at least one
active version. In this research question, we focus on under-
standing how these active versions are distributed across the
different library releases.

Figure 6 shows the positional distribution of all the active
versions in the libraries. Since libraries can have different
number of versions, we use a normalized relative index lying
between [0, 1], where 0 and 1 represent the indexes of the
first and last versions of the library, respectively. First of all,
we observe that active versions are scattered across different
positional indices. While 68.4% of active library versions

are almost evenly distributed across the non-latest releases,
a significant number of active versions, precisely 69,146
(31.6%), are latest versions. This result is inline with the
current policies of dependency management systems, which
recommend upgrading to latest dependencies.
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Fig. 6. Positional distribution of active versions (#bins = 30).

Digging further, we investigate the transitional distribution
of active and passive versions. To do this, we transform each
library | € LIBS into a vector, S;, capturing the passive/active
status corresponding to all of its versions. Our objective is
to analyze the occurrence of common transitional patterns
between active and passive versions.

Let S; be a vector representing the activity status of library
versions ordered by <, (i.e. ordered by version number).
The status corresponding to a version v is P if isPSV (v)
is TRUE and A otherwise. For example, the library
com.google.guava:guava-jdk5 has a total of five versions,
ie., Sguava—jaks = [AAP,P,A]l. Considering that we are
particularly interested in transitional patterns, the consecutive
versions with the same status can be compressed to a single
status, e.g., the previous example is represented as [A,P,A].

TABLE III

THE TOP-7 MOST COMMON TRANSITIONAL PATTERNS
Pattern Frequency Example
[P,A] 43,549 commons-codec:commons-codec
[P,A,P,A] 10,219 org.apache.commons:commons-lang3
[P,A,P,A,P,A] 3,478 org.jboss.logging:jboss-logging
[A,P, 2] 2,761 com.google.guava:guava-jdk5
[P,A,P,A,P,A,P,A] 1,592 org.joda:joda-convert
[A,P,A,P,A] 1,343 com.google.inject:guice
[P,A,P] 613 org.springframework:spring-webflow

We obtained a total of 94 different transitional patterns.
Table III shows the frequency of appearance of the seven
most common of them. As expected, the 92% of the patterns
are finishing by an A. The most frequent pattern is [P,A],
i.e., old versions are passive and the latest ones are active.
Yet, the remaining patterns represent more than 40% of the
libraries. The rest of libraries follow a pattern where some
old versions are also active. In extreme cases, the latest
version of the library is passive (patterns finishing with a
P). In such cases, we observe that most of their clients use
an older version with the same major version number. We



speculate that this behavior is due to the clients’ belief that the
version they use is rather stable. Similar findings have been
reported by Kula et al. [12]. We also observe that 5.5% of
the libraries have their earliest version active. It is interesting
to note that many of them are very popular libraries, e.g.,
‘org.hamcrest:hamcrest-core’ and ‘org.apache.ant:ant’.

Findings from RQ2: 31.6% of active versions are latest
and the remaining 68.4% of active versions are evenly
distributed across the libraries’ history. When the clients
do not use the latest version, they often depend on earlier
versions belonging to the same major release of the library.

C. RQ3: Among the actively used versions of a library, is there
one or several versions that are significantly more popular
than the others?

In this research question, we investigate the diversity in the
popularity of library versions. We assess the popularity of a
library versions using Metric 3. In particular, we are interested
in identifying significantly popular versions and analyzing the
positional distribution of these versions. For this aim, we use
the Tukey’s outlier detection method [19] to identify versions
with a popularity score that is far greater than the remaining
versions of the library.

We distinguish between three different classes of libraries:
(i) libraries that do not have a significantly most popular
version (55, 148), (ii) libraries with one significantly popular
version (9,622), and (iii) libraries with more than one
significantly popular version (8,883). The first class (i)
represents libraries with versions that have a similar number
of usages. The classes (ii) and (iii) represent libraries with
one or more versions that have attracted more users compared
to the rest of their versions. A large number of the users
of significantly popular versions are different versions of
the same library. These are library providers that may have
remained loyal to one version despite the release of newer
versions. To our surprise, almost all the significantly popular
versions are active, only 86 out of 143,334 are passive.
For instance, ‘com.amazonaws:aws-java-sdk:1.11.409° is
significantly popular and passive.

Figure 7 shows illustrative examples, Apache 10, JUnit,
and XML APIs, each one corresponding to one of these three
classes. The horizontal dashed line in each frame represents
the outlier’s threshold of the library. All the versions that lie
above this line are considered significantly popular. As shown
in the figure, although the version 2.4 of Apache IO is quite
old, it is still the most popular release of this library in Maven
Central. In the case of JUnit, it has two significantly popular
versions: 4.11 and 4.12. On the other hand, the library XML
APIs does not have any significantly popular version (i.e., the
popularity of its versions remains steady across time).

In order to measure the positional distribution of popular
versions, we focus on libraries that have at least one signifi-
cantly popular version. We determine the relative position of
such versions with respect to the number of versions of the
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Fig. 7. Evolution of the popularity of versions (popy, (v) metric) correspond-
ing to the libraries Apache Commons IO, JUnit and XML APIs.

library. As for the positional distribution of active version,
we also normalize the relative position between [1,0]. The
histogram in Figure 8 shows the distribution of the positions
of the most popular versions across libraries. We observe that
less than 10% of libraries have their latest version as the
most popular. This is expected since the average lifespan of
latest versions is lower than the average of non-latest versions.
Interestingly, we found that the remaining highly popular
versions are almost equally distributed, between 2% and 5%,
in the remaining positions.
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Fig. 8. Histogram of the positional distribution of significantly popular library
versions (#bins = 30).

This result indicates that the most popular libraries in Maven
Central are distributed across all the different library releases.
It is notable that for almost 85% of libraries the most used
version is not the latest. Thus, older versions are still being
heavily used by other libraries, with the exception of the first
version which is rarely the most popular.

Findings from RQ3: 17% of the libraries have more than
one significantly popular version distributed across differ-
ent releases, each of which creates a niche fitting a group
of users. This indicates that library developers successfully
address the needs of diverse populations of users.




D. RQ4: Does the number of actively used versions relate to
the popularity of a library?

We have seen so far that many libraries in Maven Central
have multiple active versions, of which more than one can
be significantly more popular than the others. Now, we
investigate whether the activity status of versions has a
direct effect on the popularity of their corresponding library.
For this, we calculate the percentages of active and passive
versions of each library and compare them with respect to
the overall popularity of the library.

Figure 9 shows the smoothing function corresponding
to the relation between the popularity of libraries and
their percentages of active versions. There is a significant
positive correlation between both variables (Spearman’s rank
correlation test: p = 0.87, p-value < 0.01). In particular,
we observe that libraries that have more than 50% of active
versions are more likely to be very popular, as popular libraries
with many versions attract more clients for their versions.

200 4
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Fig. 9. Fitting curve (GAM model) of the percentage of active versions w.r.t.
the popularity of libraries (pop . (1) metric). The shaded area around the fitting
curve represents the 95% confidence interval.

Table IV shows the seven most popular libraries ranked in
decreasing order of popularity, as well as their percentage of
active and significantly popular versions. As we can see, in all
the cases a significant proportion of their versions are active.
This indicates that many versions of these libraries continue
being actively used, contributing to the popularity of the
library and adding dependency diversity among all the clients.
In three cases out of seven, there are more than two versions
that are significantly more popular than the others. Finally, we
also notice that these popular libraries serve general purposes,
which allow them to fit well for various types of usages.

rFindings from RQ4: Popular libraries in Maven Central
have most of their versions active and serve general
purposes. Moreover, the popularity of a library can be
estimated by the number of its active versions. The more
active versions a library has, the more likely it is to be
popular, and vice-versa.

E. RQ5: How timely are the different library versions in
Maven Central?

This research question focuses on the temporal dimension
of the dataset. We analyze whether the diversity of popular and

TABLE IV
THE TOP-7 MOST POPULAR LIBRARIES IN OUR STUDY SUBJECTS AND
THEIR NUMBER OF ACTIVE AND SIGNIFICANTLY POPULAR VERSIONS

Library Domain  #Active (%) #Popular (%)
google.code.findbugs:jsr305  Utility 10 (90%) 1 (9.01%)
org.slf4j:slf4j-api Logging 63 (86.3%) 3 (4.1%)
log4j:log4j Logging 18 (94.7%) 1 (5.2%)
com.google.guava:guava Utility 71 (79.7%) 1 (1.2%)
Jjunit:junit Testing 27 (96.5%) 2 (7.1%)
org.hamcrest:hamcrest-core ~ Testing 5 (100%) 1 (20%)
commons-logging:logging Logging 15 (88.3%) 2 (11.8%)

active versions that we observe today is a phenomenon that
sustained in the past history of the libraries. We look at every
single library version v separately and investigate whether,
during the time period when v was the latest, it gained the
expected attraction among its older peers. We compare the
number of usages that a version v gets during its lifespan
period against the number of usages that the whole library
received during the timeliness period of v. For this comparison,
we rely on the timeliness function described in Metric 4. This
metric can be considered as an internal popularity metric that
assesses the popularity of a version among its peers.

Overall, for all our study subjects, 70.6% of library versions
are under-timely (including dormant versions), while 19.8%
are timely, and the remaining 9.6% are over-timely. Figure 10
shows the distribution of the three timeliness classes for active
and passive versions. We observe that roughly 45% of passive
library versions were under-timely. These are versions that did
not attract users for their library throughout their timeliness
period. Meanwhile, almost 55% are timely. These are library
versions that were not only active at some point, but also
widely used. This gives substantial evidence that the diversity
that we observe today has existed in the past in Maven Central.
On the other hand, we observe that 55.3% of active versions
are under-timely. These are versions that are not widely
popular among their peers, yet active. The average lifespan
of these versions is ~777 days, which suggests that although
they are under-timely, they are likely to remain active for a
long period of time; whereas, the remaining active versions
are evenly distributed among timely and over-timely.
timely .over—timely

under-timely

14.4%

24.7%
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Fig. 10. Proportions of timeliness classes for passive and active versions.

In order to analyze the distribution of the timeliness
classes at the library level, we calculate the proportions of
under-timely, timely and over-timely versions in each library.
Figure 11 shows a ternary diagram [20] representing the
distribution of the three timeliness classes across the study
subjects. In the figure, each point represents a library. In



general, we observe a high dispersion in the space of libraries,
meaning that there are representative cases for almost all of
the different proportions of classes. The paired correlation
tests between the proportions of each of the classes and the
popularity of their corresponding library reveal that none of
the correlations are statistically significant (p-value > 0.05
according to the Spearman’s test). Therefore, the proportions
of the timeliness of the versions of a library are not directly
related with the popularity of the library.

under—timely

/e

timely & @ & & & over-timely
-

over-timely (%)

Fig. 11. Distribution of libraries w.r.t. their percentages of over-timely,
timely and under-timely versions. The dispersion of points inside the triangle
indicates that the proportions of classes are well distributed across the libraries.

( )
Findings from RQ5: The diversity in the usage and

popularity of versions has consistently sustained during the
history of Maven Central. We observe that ~10% of all the
library versions attract new users during their timeliness
period and remain active even after the next version has
been released. Meanwhile, there is no correlation between

the popularity of a library and the timeliness of its versions.
(. J/

V. DISCUSSION

In this section, we discuss the implications of our findings
about the emergence of software diversity in Maven Central,
as well as some threats to the validity of our results.

A. Supporting the Emergence of Software Diversity

This study focuses on the diversity of usages of libraries and
versions in Maven Central. We have observed empirically how
the immutability of versions, which is a characteristic enforced
by design in Maven Central, supports the natural emergence
of software diversity [3]. This diversity takes multiple forms
and has various effects:

o all active libraries have strictly more than one active
version, and the 42.7% of them have more than two active
versions;

e 17% of the libraries have two or more versions that are
significantly more popular than the others, which indi-
cates a very rich diversity in usages of the latest library
releases and may imply that the latest library versions
deployed on Maven Central use different versions of a
similar library;

« the most popular libraries are also the ones that have the
largest proportion of active versions;

« the existence of multiple used versions that overlap in
time is a common phenomenon in the history of all
libraries.

We interpret these multiple forms of diversity in usage and
popularity of libraries as follows: a repository that offers the
opportunity for users to choose their dependencies, naturally
supports the emergence of diversity among these dependen-
cies. In other words, this massive emergent diversity is not
only due to users who forget to update their dependencies.
Many users decide very explicitly to depend on one or
the other version of a library because it perfectly fits their
needs. Consequently, this kind of diversity emerges in a fully
decentralized and unsupervised manner.

Our study also highlights some important challenges for a
repository that supports diversification. First, there is a cost for
the maintainers of Maven Central. We have observed that, al-
though most libraries are actively used (95.49%), only 14.73%
of the Maven artifacts are used. We have also noticed that some
companies use Maven Central to store artifacts that nobody
else uses (45.1% of versions are dormant). Consequently,
keeping all versions induces an overhead in hardware and
software resources. Second, there is a cost for the developers
of popular libraries who need to maintain several versions of
their library to serve different clients. Third, there is a risk
that users decide to keep a dependency towards a vulnerable
or flawed version.

The trade-off between healthy levels of diversity in a system
(here, the Maven Central ecosystem) and the challenges of
redundancy and noise is necessary and very natural. Biological
studies insist on the importance of keeping less fit or even
unexpressed genes as genetic material that is necessary in
order to adapt to unpredictable environmental changes [21],
[22]. Our study reveals that the immutability of Maven artifacts
provides the material for libraries to eventually fit the needs
of various users, which eventually results in the emergence
of diverse popular and timely versions. In the same way that
biological systems do, library maintainers can accommodate
the overhead of manual updates and conflict management in
order to contribute to the sustainability of the massively large
pool of software diversity that exists in Maven Central.

B. Threats to Validity

We report about internal, external, and reliability threats to
the validity of our study.

a) Internal validity: The internal threat relates to the
metrics employed, especially those to compare the popular-
ity of libraries and versions. In this work, we characterize
popularity in terms of number of usages and quantify it based
on well-known graph-based metrics [23]. Thus, we assume
that a widely reused library is a popular one, and we consider
only the relationships described in Maven Central, which do
not take into account usages from private projects. The jOOQ
library is one example among others. Because it is dual-
license, many OSS libraries avoid to depend on it, but other



closed-source software are still using it and there is no way
to quantify their number. However, as suggested in previous
studies, software popularity can be measured in a variety of
ways, depending on different factors such as social or technical
aspects [24]. Another concern relates to the fact that conven-
tions on semantic versioning are not really taken well into
account by library maintainers [25]. Still, we believe that at
the scale of the dataset employed in this study, our metrics are
a fair approximation of the state of practice in Maven Central.

b) External validity: Our results might not generalize
to other software repositories beyond the Maven Central
ecosystem (e.g., npm, RubyGems or CRAN). It should also
be noticed that Maven Central does not perform any real
vetting of the people that deploy artifacts or on the quality
of such artifacts. Thus, the integrity and origin of most
of our study subjects therein is not known or verifiable.
Moreover, this work takes into account version ordering as
well as temporal ordering relationships, which we believe are
sufficient to give a plausible representation of the way that
libraries are updated as well as their evolution trends.

c) Reliability validity: Our results are reproducible,
the dataset used in this study is publicly available online®.
Moreover, we provide all necessary code’ to replicate our
analysis, including Cypher queries and R notebooks.

VI. RELATED WORK

This paper is related to a long line of previous works
about mining software repositories and analysis of dependency
management systems. In this section we discuss the related
work along the following aspects.

a) Structure and updating behavior: Over the past years,
several research papers have highlighted the benefits of lever-
aging graph-based representations and ecologycal principles to
analyze the architecture of large-scale software systems [26]—
[29]. Raemaekers et al. [30] investigated the adherence to
semantic versioning principles in Maven Central as well as
the update trends of popular libraries. They found that the
presence of breaking changes has little influence on the actual
delay between the availability of a library and the use of the
newer version. Kula et al. [12] study the latency in trusting the
latest release of a library and propose four types of dependency
adoptions according to the dependency declaration time. De
Castilho et al. [31] use the Maven Central repository for
automatically selecting and acquiring tools and resources to
build efficient NLP processing pipelines. Their analysis relied
partially on Maven build files to collect library dependencies in
industrial systems. However, as far as we know, none of the ex-
isting works have studied the repercussion of the artifacts’ im-
mutability at the scale of the entire Maven Central repository.

b) Analysis of evolution trends: The evolution of soft-
ware repositories is a popular and widely-researched topic in
the area of empirical software engineering. Recently, Decan

Shttps://doi.org/10.5281/zenodo. 1489120
7https://github.com/castor-software/oss- graph- metrics/tree/master/
maven-central-diversity

et al. [32] perform a comparison of the similarities and differ-
ences between seven large dependency management systems
based on the packages gathered and archived in the libraries.io
dataset. They observe that dependency networks tend to grow
over time and that a small number of libraries have a high
impact on the transitive dependencies of the network. Kikas
et al. [33] study the fragility of dependency networks of
JavaScript, Ruby, and Rust and report on the overall evolution-
ary trends and differences of such ecosystems. Abdalkareem et
al. [34] investigate about the reasons that motivate developers
to use trivial packages on the npm ecosystem. Raemaekers
et al. [35] construct a Maven dataset to track the changes on
individual methods, classes, and packages of multiple library
versions. Our work expands the existing knowledge in the area
by showing how software repositories can contribute to prevent
dependency monoculture by making available a more diverse
set of library versions for software reuse.

c) Security and vulnerability risks: Researchers have in-
vestigated and compared dependency issues across many pack-
aging ecosystems. Suwa et al. [11] investigate the occurrence
of rollbacks during the update of libraries in Java projects.
Their results confirm previous studies that show that library
migrations have no clear patterns and in many cases, the latest
available version of a library is not always the most used [36],
[37]. Mitropoulos et al. [38] present a dataset composed of
bugs reports for a total of 17,505 Maven projects. They use
FindBugs to detect numerous types of bugs and also to store
specific metadata together with the FindBugs results. Zapata
et al. [39] compare how library maintainers react to vulnerable
dependencies based on whether or not they use the affected
functionality in their client projects. Our work considers
security and vulnerability risks in software repositories from a
novel perspective, i.e., by taking into account the benefits and
drawbacks that come with the emergence of software diversity.

VII. CONCLUSION

In this paper, we performed an empirical study on the
diversity of libraries and versions in the Maven Central
repository. We studied the activity, popularity and timeliness
of 1,487,956 artifacts that represent all the versions of 73, 653
libraries. We defined various graph-based metrics based on
the dependencies among Maven artifacts that are captured
in the Maven Dependency Graph [1]. We found that ~40%
of libraries have two or more versions that are actively used,
while almost 4% never had any user in Maven Central. We
also found that more than 90% of the most popular versions
are not the latest releases, and that both active and significantly
popular versions are distributed across the history of library
versions. In summary, we presented quantitative empirical
evidence about how the immutability of artifacts in Maven
Central supports the emergence of natural software diversity,
which is fundamental to prevent dependency monoculture
during software reuse. Our next step is to investigate how
we can amplify this natural emergence of software diversity
through dependency transformations at the source code level.
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