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Abstract—Data from software repositories have become an
important foundation for the empirical study of software en-
gineering processes. A recurring theme in the repository mining
literature is the inference of developer networks capturing e.g.
collaboration, coordination, or communication from the commit
history of projects. Most of the studied networks are based on
the co-authorship of software artefacts defined at the level of files,
modules, or packages. While this approach has led to insights into
the social aspects of software development, it neglects detailed
information on code changes and code ownership, e.g. which
exact lines of code have been authored by which developers, that
is contained in the commit log of software projects.

Addressing this issue, we introduce git2net, a scalable python
software that facilitates the extraction of fine-grained co-editing
networks in large git repositories. It uses text mining techniques
to analyse the detailed history of textual modifications within
files. This information allows us to construct directed, weighted,
and time-stamped networks, where a link signifies that one
developer has edited a block of source code originally written
by another developer. Our tool is applied in case studies of an
Open Source and a commercial software project. We argue that it
opens up a massive new source of high-resolution data on human
collaboration patterns.

I. INTRODUCTION

Software repositories are a rich source of data facilitating
empirical studies of software engineering processes. Methods
to use meta-data from these repositories have become a
common theme in the repository mining literature. Thanks to
the availability of massive databases, already simple means
allow to query meta-data on the commits of developers [1, 2].
Apart from the evolution of software artefacts, they also
contain a wealth of fine-grained information on the human
and social aspects of software development teams. Specifically,
the commit history of developers allows to construct social
networks that proxy collaboration, coordination, or commu-
nication structures in software teams. These databases have
therefore facilitated data-driven studies of social systems not
only in empirical software engineering, but also in areas
like computational social science, social network analysis,
organisational theory, or management science [3, 4].

The detailed record of file modifications contained in the
commit log of, e.g. git repositories also enables more ad-
vanced network reconstruction techniques. In particular, from
the micro-level analysis of textual modifications between sub-

sequent versions of code we can infer time-stamped, weighted,
and directed co-editing relationships. Such a relationship
(A,B; t,w) indicates that at time t developer A modified w
characters of code originally written by another developer B.
Recent research has shown that such a fine-grained analysis
of co-editing networks in large software projects can provide
insights that go beyond more coarse-grained definitions [5, 6].
However, a tool to conveniently extract such rich, time-
stamped collaboration networks for the large corpus of git
repositories available, e.g. via public platforms like gitHub,
is currently missing.

Addressing this gap, we present such a tool that facilitates
the scalable extraction of time-stamped co-editing relation-
ships between developers in large software repositories. The
contributions of our work are as follows:
Ù We introduce git2net, a python tool that can be used to

mine time-stamped co-editing relations between developers
from the sequence of file modifications contained in git
repositories. Building on the repository mining framework
pyDriller [7], git2net can operate both on local and
remote repositories. Providing a command-line interface as
well as an API, git2net can be used as stand-alone tool
for standard analysis tasks as well as a framework for the
implementation of advanced data mining scripts. Our tool is
available as an Open Source project1.

Ù Analysing all file modifications contained in the commit
log, git2net generates a database that captures fine-grained
information on co-edited code either at the level of lines
or contiguous code regions. Building on text mining tech-
niques, it further analyses the overlap between co-edited
code regions using (i) the Levenshtein edit distance [8] and
(ii) a text-based entropy measure [9]. These measures facil-
itate (i) a character-based proxy estimating the effort behind
code modifications, and (ii) an entropy-based correction for
binary file changes that can have a considerable impact on
text-based effort estimation techniques.

Ù We develop an approach to generate time-stamped collab-
oration networks based on multiple projections: (i) time-
stamped co-editing networks, (ii) time-stamped bipartite
networks linking developers to edited files, and (iii) directed

1https://github.com/gotec/git2net
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acyclic graphs of code edits that allow to infer “paths”
of consecutive edits building upon each other. All network
projections are implemented in git2net and can be directly
exported as HTML visualisations as well as formats readable
by common network analysis tools.

Ù Thanks to a parallel processing model that utilises modern
multi-core architectures, git2net supports the analysis of
massive software repositories with hundreds of thousands of
commits and millions of lines of code. A scalability analysis
proves that our parallel implementation yields a linear speed-
up compared to a single-threaded implementation, thus
facilitating the fine-grained textual analysis even in massive
projects with a long history.

Ù Utilizing git2net in a case study on two software projects,
we show that the fine-grained textual analysis of file mod-
ifications yields considerably different network structures
compared to coarse-grained methods that analyse code co-
authorship at the level of files or modules. We further
demonstrate how our tool can be used to breakdown de-
veloper effort into (a) the revision of code authored by the
developer him or herself vs. (b) the revision of code written
by other team members.

Providing a novel method to mine fine-grained collaboration
networks at high temporal resolution from any git repository,
our work opens new perspective for empirical studies of
development processes. It further contributes a simple method
to generate data on temporal social networks that are of in-
terest for researchers in computational social science, (social)
network analysis and organisational theory.

The remainder of this paper is structured as follows: Section
II provides an overview of works addressing the construction
of social networks from software repository data. Section III
introduces our proposed methodology to extract time-resolved
and directed links between developers who subsequently edit
each others’ code. Section IV presents a case study, in which
we apply our tool to git repositories from (i) an Open Source
Software project, and (ii) a commercial, closed-source project.
In section V we draw conclusions from our work and highlight
the next steps in our research.

II. RELATED WORK

Given the large body of work using network analysis
to study software development processes, we restrict our
overview to related works that address the reconstruction of
social networks from software repositories. A broader view on
applications of graph-based data analysis and modelling tech-
niques in empirical software engineering—including works on
(technical) dependency networks that are outside the scope of
our work—is, e.g., available in [10, 11, 12].

A number of studies use operational data on software
projects to construct graphs or networks where nodes capture
developers while links capture social interactions and/or work
dependencies between developers. To this end, a first line
of works has used data that directly capture communication
[13], e.g. via IRC channels [14], E-Mail exchanges [15, 16,

17, 18, 19], mailing lists [20], or communication via issue
trackers [21, 22, 23, 24, 25].

While data on direct developer communication facilitate
the construction of meaningful social networks, they are
often not available, e.g. due to privacy concerns. To address
such settings, researchers have developed methods to infer or
reconstruct collaboration networks based on developer actions
recorded in code repositories like CVS, SVN, or git. A common
approach starts from code authorship or code ownership
networks, which map the relation between a developer and
the artefacts (i.e. files, modules, binaries, etc.) that he or she
contributed to [26, 27, 28, 29]. The resulting directed bipartite
developer-artefact networks [30] can then be projected onto
co-authorship networks, where undirected links between two
developers A and B indicate that A and B have modified at least
one common artefact. The authors of [31, 32] have studied co-
change based on a large corpus of CVS repositories of Open
Source Software projects.

The majority of works mining social networks from soft-
ware repositories build on this general idea. In [29, 33, 34, 35,
36] a file-based notion of co-authorship is used to construct
co-commit networks, where a link between two developers
signifies that they have committed the same file at least once.
The authors of [37] adopt a module-based definition, assuming
that two developers are linked in the co-authorship network
if they have contributed to at least one common module.
Taking a similar approach, Huang and Liu [38] use information
on modified file paths in SourceForge repositories to infer
relations between authors editing the same part of a project.
Incorporating the time stamps of commits, Pohl and Diehl [39]
used a file-based co-authorship definition to construct dynamic
developer networks that can be analysed and visualised using
methods from dynamic network analysis [40]. The authors
of [41] recently developed a similar approach to study the
ecosystem of software projects on gitHub. To this end, they
define project-level co-commit networks, i.e. a projection of
commits where two developers are linked if they committed to
the same Open Source project. Schweitzer et al. [42] provided
a related study, analysing ten years of data from the Open
Source project hosting platform SourceForge.

These works have typically constructed undirected co-
authorship networks based on joint contributions to files,
modules, or projects. Such coarse-grained definitions of co-
authorship networks introduce a potential issue: They do not
distinguish between (i) links between developers that are due
to independent contributions to the same artefact, and (ii) links
that are due to commit sequences where one developer builds
upon and/or redacts the particular lines of source code previ-
ously authored by another developer. Networks defined based
on the latter type of time-ordered co-editing of code regions
are likely associated with a stronger need for coordination
and communication than the mere fact that developers edited
the same file or module [43]. So far, few studies have adopted
such fine-grained approaches to create developer collaboration
networks. Notable exceptions include the function-level co-
editing networks constructed by Joblin et al. [5]. The authors



further argue that, using file-based definitions of collaboration
networks, network analytic methods fail to identify meaningful
communities. The authors of [6] constructed line-based co-
editing networks, showing that such an analysis (i) yields
insights into the coordination structures of software teams, and
(ii) provides new ways to test long-standing hypotheses about
cooperative work from social psychology.

While such a fine-grained analysis of the co-editing be-
haviour of developers has its advantages, it also introduces
challenges that have so far limited its adoption. First and
foremost, it requires a detailed analysis of file modifications
and makes it necessary to identify the original author for every
modified line of code affected in each commit. Requiring a
potentially large number of git operations for every commit
being analysed, such an analysis is both complicated to
implement as well as time-consuming to perform. Compared
to other approaches, which often merely require a suitable
query in structured databases like ghTorrent [1, 2], a tool that
facilitates this task for very large repositories is still missing.

Closing this gap, our work introduces a practical and
scalable solution for the construction of fine-grained and
time-stamped co-editing networks from git repositories. Our
work extends the state-of-the-art and facilitates analyses of
developer collaboration and coordination in software projects.
Providing a new method to construct large, dynamic networks
at high temporal resolution we further expect our work to be of
interest for the community of researchers developing methods
to analyse dynamic (social) networks [40, 44, 45].

III. MINING CO-EDITING RELATIONS FROM GIT
REPOSITORIES

A. From Commit Logs to Co-Edits

We first outline our proposed method to extract co-editing
relationships from git commits. An overview of the mining
procedure, which we will explain in the following, is presented
in Algorithm 1.

git projects generally consist of multiple files that can be
edited by a large number of developers. Sets of changes made
by a developer to potentially multiple files are recorded as
commits, where each commit is identified by a unique hash.
Building on the package pydriller [7], we first extract the
history of all commits in a repository and record the meta-data
(author, time of commit, branch, etc.) for each commit. As the
person committing the changes is not necessarily the author
of these changes (a different developer can commit code on
behalf of the original author), both the committer and author
of the changes are considered. Subsequently we analyse the
changes made with the commit.

As each commit can contain modifications of multiple files,
we analyse each file modification individually to associate
every changed text region with its original author. In a first
step, select the modifications relevant for the current analysis.
To this end, we have implemented a filter allowing to exclude
specific files, file types as well as entire directories or sub-
directories from the analysis. For all selected modifications,
the associated diff is analysed, determining which lines have

Algorithm 1 Simplified mining procedure of git2net
1: procedure MINE GIT REPO(git repo, output db)
2: for all commits in git repo do
3: commit info ← parsed commit data
4: for all modified files in commit do
5: deleted lines, added lines ← parse diff of modification
6: blame info ← git blame on file in parent commit
7: for each line deleted lines do
8: current author ← modifying author from commit info
9: previous author ← original author from blame info

10: coedits info ← authors and metadata on changes
11: output db ← commit info, coedits info

been added or deleted. In addition, we identify the original
author of every edited line of code by executing git blame
on the version of the analysed file before the current commit.
By matching the author A of a modification contained in the
current commit with time stamp t to all original authors Bi
of an edited line i, we obtain time-stamped and directed co-
editing relations (A,Bi, t).

For each extracted relation, we record hashes of the original
and modifying commit as well as meta-data capturing the
location (file name, line number) of the associated co-edit.
Naturally, such co-edits can be linked to vastly different
development effort, ranging from a change of whitespaces to
the complete rewriting of code. To capture to what extent
developers edit each others’ code, we use a text mining
approach to address these differences. We specifically use
the Levenshtein edit distance [8], which can be thought of
as the minimum number of keystrokes required to transform
the prior source code version into the version after the edit.
This measure proxies the development effort associated with
an edit, where single character changes, line deletions, or
the commenting/uncommenting of lines are associated with
a minimum effort while the writing of a new line of code
is associated with maximum effort. This approach allows
us to construct time-stamped and weighted co-edit relations
(A,B; t,w), where the weight w captures the Levenshtein
distance of the associated edit.

An issue that we have encountered during the testing of
our method in real-world repositories is associated with the
embedding of text-encoded binary objects in source code, e.g.
due to the inclusion of base64-encoded images in HTML or
JavaScript. Notably, the modification of a single pixel in a
text-encoded image, can result in a completely different text
encoding. Considering our approach to associate the weight
of a co-edit relation with the Levensthein edit distance this
can considerably distort our analysis, potentially leading to
the issue that binary file modifications dominate the recorded
weights. We take an information-theoretic approach to enable
the detection (and potential exclusion) of such modifications.
In particular, we compute the entropy S of code before and
after the change, defined as:

S =−∑
k

pk log2(pk) (1)

This computation is based on the utf-8 encoding space with
256 possible symbols. Entries of the vector p represent a



code entropy

a for x in ’hello world’: print(x) 3.94
b for c in ’hello world’: print(c) 3.94
c d = {x[0]:x[1] for x in df[’d’]} 3.80
d Uatsffm+BC+s7kWKqVpMlrMEWk7nTfK1 4.41

Fig. 1. Entropy of equal length strings based on discrete utf-8 (256 possible
symbols) probability space. The entropy can take values between 0 and 8
bits. The entropy of base64 encoded image (d) is considerably higher than
of typical lines of (python) code (a–c). In practice the effect is amplified
as strings of binary encoded images are longer. Small changes within a line
have a small or no effect on entropy as can be seen in the entropy difference
between a and b.

symbol’s normalised frequency in a given string. Given this
definition, the entropy S can take values between 0 and 8
bits. Some examples for this measure are given in Figure 1.
The resulting distribution of entropy for all co-edits can be
used for a Bayesian classification distinguishing, e.g. binary
encoded images or hashes from natural language or source
code changes.

In the discussion above, we have considered a purely line-
based approach, which treats every modified line of code as
a separate entity. However, it is common that developers edit
contiguous regions of code, consisting of multiple adjacent
lines, with a single modification. As illustrated in Figure 2,
git2net therefore provides an option to analyse co-edits at
the granularity of such contiguous code regions rather than
lines. Compared to previous approaches, which have used
programming language constructs like functions to identify co-
edits at a granularity smaller than files [5], this approach has
the advantage that it is agnostic of the programming language.
It further allows to analyse co-edit relations in files that do not
represent source code, e.g. in text documents.

To explain our approach of identifying edited blocks of code,
we distinguished between different cases contained in Figure
2: For deleted lines (e.g. line 2 in Fig. 2) a normal co-editing
relationship is recorded. As the effort required for deletions
can vary both between projects and the type of analysis per-
formed, we mark these cases in the database but do not specify
a Levenshtein edit distance. Edits exclusively consisting of

1
2
3
4
5

6
7
8

9

10

1

2

3
4
5
6

7
8
9
10

deleted

replaces

replaces

added

replaces
deleted

added

deleted

replaces

replaces

added

line based block based

Fig. 2. Identification of replacements using line- and block-based analysis.

COMMITS

hash str
author date date
author email str
author name str
author timezone int
branches str
committer date date
committer email str
committer name str
committer timezone int
in main branch bool
merge bool
modi�cations int
commit message len int
parents str
project name str

COEDITS

id int
mod �lename str
mod new path str

mod old path str

pre commit str

post commit str
†pre line num int
†pre line len in chars int
†pre line text entropy �oat

†post line num int
†post line len in chars int
†post line text entropy �oat

‡pre block starting line num int
‡pre block len in lines int
‡pre block len in chars int
‡pre block text entropy �oat

‡post block starting line num int
‡post block len in lines int
‡post block len in chars int
‡post block text entropy �oat

mod added int
mod removed int
levenshtein dist int
mod cyclomatic complexity int
mod loc int
mod token count int

Fig. 3. Relations in the co-editing database. Elements marked † only occur
for line based analysis, whereas entries marked ‡ are specific to block based
analysis.

added lines are recorded in the database but not considered
as co-edits (neither by a line-based nor by a block-based
approach) as no previous author exists. The Levenshtein edit
distance for pure additions matches the number of characters
that were added. For cases where a set D of deleted lines
is replaced by a set A of added lines, the line-based approach
matches each line di ∈D with a line ai ∈A for i≤min(|D|, |A|).
If |D|< |A|, a line-based approach would thus treat the excess
lines in A as added lines, thus not considering them as a co-
edit. This is the case in line 4-5 in Fig. 2. With our block-based
approach, we instead identify that a block of lines (lines 4-
5) in the original file is replaced by a new block (lines 3-5)
in the new file. If |D| > |A|, a line-based approach identifies
the excess lines in D as deleted lines (see line 7-8 in Fig. 2).
Through a block-based analysis we are instead able to identify
that a block of lines (lines 7-8) in the original file is replaced
by a new block of lines (line 7) in the new file.

While for the line-based approach, all editing statistics such
as the Levenshtein edit distance or the entropy are computed
on pairs of lines (di,ai), the block based approach considers
the set of lines in A as a replacement of the lines contained
in D. Consequently all statistics are computed for the pair of
code blocks (D,A).

After evaluating each commit, results are written to an
sqlite database. This allows to pause and resume an analysis
at any point in time and helps to prevent data loss from system
crashes. The resulting database scheme is shown in Figure 3.
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Fig. 4. Process of generating a co-editing network from git commits. To
enhance readability, each commits only modifies a single file. Three different
colour coded files are considered. Edited lines are shown in red. For all edits,
edges to the commit containing the original line are shown on the left hand
side. Link weights are determined based on the number of lines changed.
A time stamped link between the authors of the modified lines is recorded
once the edit takes place (cf. centre figure). The resulting set of time stamped
edges can either be analysed itself or aggregated into co-editing networks via
a sliding window analysis as shown on the right. Unless indicated otherwise,
all edge weights are 1.

B. From Co-Edits to Networks

Given the database of co-editing relationships generated by
the approach described above, git2net provides procedures to
generate three different types of network projections: (i) co-
editing networks, (ii) directed acyclic graphs of edit sequences
for a given file, and (iii) bipartite networks linking developers
to edited files.

The process of generating co-editing networks is illus-
trated in an example shown in Figure 4. The left column
shows three developers (A, B, and C) editing three colour-
coded files. Modified lines are shown in red. Edges between
files represent the number of overlapping lines, which for
illustrative purposes we show instead of the more granular
Levenshtein edit distance. Given these edges, we generate a
temporal network connecting the developers (cf. Fig. 4, centre
for a time-unfolded representation). A link (A,B; t,w) in this
network represents a commit by developer A at time t in which
w lines originally authored by developer B are modified. By
the aggregation of time-stamped links over a (moving) time
window we obtain co-editing networks as shown in the right
column of Figure 4.

Apart from co-editing networks, git2net supports the con-
struction of file-based directed acyclic graphs (DAGs) of com-
mits based on co-editing relationships. Each path in this DAG
represent a sequence of consecutive co-editing relationships of
developers editing the given file, i.e. a sequence of commits
containing file modifications that built upon each other. The
nodes in this graph represent commits and edges represent
co-editing relationships between the authors of the commits.
An example for the construction of such a DAG from a

set of five commits containing file modifications is shown
in Figure 5. Individual connected components of the DAG
represent proxies of knowledge flow for this file. This has
been highly valuable in our own research as it immediately
allows the extraction of paths from the co-editing relationships.
Analysing these paths with the methods provided by the
software package pathpy [46] allows to trace knowledge
flow within specific areas of the development—a topic we
identified as highly relevant in discussions with practitioners
from software development companies.

To additionally facilitate coarse-grained analyses at the level
of file-based coauthorship relations, git2net finally supports
the construction of bipartite file-developer networks, where
directed links (d, f ) ∈ D×F indicate that a developer d ∈ D
has modified a file f ∈ F .

C. Usage of git2net

git2net comes as a python package that can be installed
via the python package manager pip. During the installa-
tion all dependencies, which consist of the python packages
pandas, python Levenshtein, pyDriller, progressbar2,
and pathpy, will be installed automatically. git2net runs on
all major operating systems and has been tested under Win-
dows, Mac OS X, and Linux. Assuming that the git repository
that shall be examined has been cloned to a directory repo,
our tool can be launched by the command
./git2net.py mine repo coedits.db

where coedits.db indicates the sqlite database file where
the results will be stored. An optional parameter --exclude
can be used to pass a text file that contains paths of files or
directories in the repository tree that shall be excluded from the
analysis. In our own analyses of a large commercial software
project, this function has proven crucial to exclude directories
containing large binary files or external Open Source software
dependencies that would considerably distort the analysis.
While the analysis of co-edited code uses the line-based
approach described above by default, an optional command
line switch --use-blocks can be used to use the block-based
extraction of co-editing relations instead.

time
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Fig. 5. Process of creating file based directed acyclic co-editing graphs. The
left hand side shows a set of commits modifying three colour coded files. For
each file a directed acyclic graph is generated linking consecutive commits
with overlapping changes.



In addition to the command line interface outlined above,
git2net provides an API that can be used for the development
of custom repository mining scripts. In particular, the API
provides methods that allow to extract co-edit relations from
individual commits that can be passed as PyDriller objects.
It can further be used to augment the analysis of edited code
blocks by advanced text mining and code analysis techniques.
In order to generate network projections based on a database
of co-edits, git2net can be launched with the command
./git2net.py graph [type] coedits.db graph.csv

where type can be --coedit, --bipartite, or --dag. De-
pending on the choice, git2net generates a projection of the
co-editing database in terms of a temporal co-editing network
(cf. Fig. 4), a bipartite network linking authors to files, or a
directed acyclic co-editing graph (cf. Fig. 5) respectively.

All networks can be exported in a csv-based format that
can be read by popular network analysis packages like
igraph [47], graphtool2, Gephi [48], and NetworkX [49].
Time-stamped co-editing networks can further be exported in
a format that can be read by the dynamic network analysis
and visualisation packages ORA [45] and pathpy [46] via the
provided API. Moreover, all networks can be exported in terms
of dynamic and interactive d3js visualisations, which directly
run in any HTML5-compliant browser.

D. Experimental Evaluation of Scalability

We conclude this section by an experimental evaluation of
the scalability of git2net. In particular, our tool facilitates the
analysis of large repositories thanks to the automatic utilisation
of multiple processing cores. By default, git2net uses all
available processing core, creating multiple child processes
that extract co-edits from independent commits in parallel.
Through an optional command line switch --no-parallel,
multi-core processing can be deactivated. An optional com-
mand line parameter --numprocesses N further allows to
limit multi-core processing to at most N processing cores.

2https://graph-tool.skewed.de/
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Fig. 6. Time required to analyse the git repository of the software package
igraph [47] for different numbers of parallel processing threads. Both axes
are logarithmic. Bars show the mean and standard deviation of three runs.
The grey line shows a perfect linear scaling based on the time required by a
single-threaded analysis.

Similarly, the API exposed by git2net provides parameters
that can be used to control multi-core processing.

In order to evaluate the scalability gains provided by the
parallel processing model, we performed an experiment using
real-world data. We specifically cloned the git repository of
the Open Source software igraph [50] and used git2net to
extract line-based co-editing relationships. We then measured
the time needed to analyse the full git history with close
to 6,000 commits and approximately 35,000 file edits over
a period of 14 years. We repeated this experiment multiple
times, using different numbers of processing cores on a recent
16 core desktop processor3.

Figure 6 shows the time required to extract all co-editing
relationships from the repository of igraph (y-axis) plotted
against the number of processing threads (x-axis). Up to the
number of physical processing cores of the machine (16)
we observe an almost perfect linear scaling of processing
time, cutting down processing time from close to one hour
(single-threaded) to less than 5 minutes. Starting from 16
processing cores we observe deviations from the linear scaling
that are likely due to the synchronised writing to the sqlite
database. This deviation from the linear scaling is naturally
intensified as we exceed the number of physical processing
cores, additionally utilising logical cores exposed through
Intel’s implementation of HW-based multi-threading.

IV. EXEMPLARY CO-EDITING ANALYSIS OF AN OPEN
SOURCE AND COMMERCIAL PROJECT

Having discussed the implementation, usage, and scalability
of our tool, we now demonstrate its usefulness through four
short exemplary studies of real-world software projects. We
apply git2net to (i) the gitHub repository of the Open Source
network analysis software igraph [47], and (ii) a large git
repository of a commercial software project obtained via an
industry collaboration with the software company GENUA. We
specifically demonstrate (A) the construction of different static
network projections capturing co-editing, co-authorship, and
code-ownership relations, (B) a comparative study of fine-
grained co-editing networks vs. coarse-grained co-authorship
networks generated at the level of files, (C) the analysis of
dynamic co-editing networks by means of temporal network
analysis techniques, and (D) a comparison of temporal co-
editing patterns between an Open Source and a commercial
software project. These case studies should be seen as seeds for
future work that demonstrate the usefulness of our approach
rather than as conclusive analyses. To support such future
studies, the co-editing relationships extracted from the Open
Source project igraph are available on zenodo.org [51].

A. Static Network Projections

To demonstrate our tool, we illustrate the three different
network projections introduced in III, using the co-edit in-
formation extracted from the public git repository of the
network analysis package igraph [50]. The resulting networks
are shown in Figure 7.
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a b c

Fig. 7. Three examples for time-aggregated collaboration networks generated by git2net based on co-editing relations in igraph project: a shows a
time-aggregated, static, directed network of co-editing relations. Each node represents one developer, while a directed link (A,B) indicates that at some point
in the development history developer A edited at least one line of code previously written by developer B. b shows a directed acyclic graph of edits of the
source code file flow.c. Nodes represent commits by developers. Root nodes with in-degree zero are marked in red, leaf nodes with out-degree zero are
marked in green, intermediary nodes are marked in red. c shows a bipartite network linking developers (lightblue) to the files that they edited (blue).

Figure 7a shows a static co-editing network where nodes
represent developers. For this initial demonstration we employ
a time-aggregated projection, i.e. we use time-stamped co-
editing relations (v,w; t) capturing that at time t a developer
v edited code originally written by developer w to con-
struct a time-aggregated graph G(V ,E) where (v,w) ∈ E iff
∃τ : (v,w;τ). The directionality of links in this projection
allows us to distinguish between team members with different
roles: Nodes with zero in-degree, i.e. developers with no
incoming co-edit relations, have never contributed code that
was subsequently revised by other developers. Nodes with zero
out-degree, i.e. developers with no outgoing co-edit relations,
have never revised code that was originally authored by other
developers. Such a maximally simple static projection can
thus give a first “birds-eye” view of the collaboration and
coordination structures in a software developing team. It high-
lights pairs of developers who exhibit strong mutual co-editing
relations as well as pairs of developers working independently.
This analysis can be refined by taking into account the time
stamps of co-editing events, which we will do in section IV-C.
In section IV-B we further discuss the difference between file-
based coauthorship networks considered in prior works and
the static projection of a fine-grained line-based definition.

Apart from co-editing relations between developers, in
section III we have argued that git2net also provides a new
perspective on the history of commits modifying a given file
in the repository. In particular, this information can be used to
a construct a directed acyclic graph of commits, where a link
(v,w) in the graph indicates that commit w edited a region of
source code originally contributed in commit v. Hence, each
path from a root node r to a leaf node l in the resulting directed
acyclic graph can be interpreted as a time-ordered sequence of
commits that transforms code originally introduced in commit
r into the “final” version contained in l. We highlight that this
projection is different from commonly studied commit graphs,

which link each commit to their parent commit independent
of whether there is an overlap in the edited code. Fig. 7b
illustrates this idea. It shows the directed acyclic graph of
commits for the source code file flow.c in igraph [50]. Root
nodes (with in-degree zero) in which the original version of a
region of source code was committed are shown in red, while
the commits containing the “final” version of code regions
(out-degree zero) are highlighted in green. Intermediary nodes
(yellow) represent commits that have both (a) edited code
originally contributed in a previous commit and (b) contributed
new code that is being revised in a subsequent commit. The
analysis of such directed acyclic graphs can give insights into
the complexity of code edits and their distribution across the
team or across time. They further provide a novel abstraction
that can be useful for the comparison of software artefacts,
development processes, or projects.

In order to make it easy to reproduce file-based definitions
of co-authorships used in the literature, git2net finally sup-
ports the construction of networks linking developers with
the files that they have edited. The time-aggregated bipartite
network resulting from the file edits made in the year 2016 for
the project igraph is shown in Fig. 7c. Apart from being a
basis for the construction of file-based coauthorship networks,
this simple representation can give a coarse-grained view of
code ownership and the distribution of contributions across the
development team.

B. Co-editing vs. co-authorship networks

As outlined in section II, the analysis of co-authorship
networks that capture which developers have contributed to the
same files has received significant attention. At the same time,
recent works have argued for more fine-grained definitions
of collaboration networks, using e.g. function points or code
lines [5, 6]. We contribute to this discussion and investigate the
differences between a line- and a file-based approach to con-
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Fig. 8. Comparative analysis of file-based co-authorship vs. line-based co-editing networks. a Number of nodes and edges of networks aggregated over the
entire project duration. Here, the co-authorship network overcounts relationships as editing the same file does not require a co-editing relationship on a line
basis. b Proportion of edges in both networks over a moving 90 day window. Here, the co-authorship network frequently does not display links present in
the co-editing network, as with co-editing links interactions with developers not contributing code in the present time window can be considered.

struct developer collaboration networks. Our results show that
(i) this choice of granularity has considerable influence on the
resulting network topologies, (ii) that the resulting differences
are project-dependent, and (iii) that the differences between
the resulting networks exhibit temporal inhomogeneities.

For our analysis, we first use git2net to extract (a) a
file-based co-editing network G f (which for simplicity we
call co-authorship network), and (b) a line-based co-editing
network Gl for the Open Source project igraph as well as
for a large commercial software project. For both networks,
we compare the time-aggregated projections (constructed as
described in IV-A) and the sequence of networks obtained via
a rolling window analysis. For each time window (as well as
for the time-aggregated network), we then quantitatively assess
the difference between Gl and G f . We first observe that the
set of nodes in both networks is necessarily the same. As a
maximally simple approach to assess the difference between
the two networks, we can thus calculate δ := m f

ml
, where m f

and ml are the number of links in the file-based co-authorship
network and the line-based co-editing networks, respectively.

Figure 8 shows the result of this analysis. Fig. 8a confirms
that the file-based co-authorship network does not resolve
where in the file edits take place, leading to a significantly
higher number of links compared to the co-editing network
in both projects. We expect many of these additional links
to be false positives, in the sense that despite two developers
having made edits to the same file no actual collaboration on
the same code actually occurred.

Fig. 8b highlights the temporal dimension of these dif-
ferences. It shows the time-evolving difference between the
two network abstractions, using a 90 day moving window.
For each window, the difference δ between the two networks
is reported. Importantly, we observe time windows where
δ < 1, which indicates that the line-based co-editing networks
feature additional links over the file-based co-authorship net-
work. This is due to the fact that a file-based (temporal)
co-authorship network does not consider commits to files
made outside the time window currently analysed. However,
our detailed analysis of co-edit relations can nevertheless

identify that at time t within the time window developer
A has edited code originally authored by developer B in a
commit outside the time window. We argue that neglecting
this relation introduces the risk of false negatives, in the sense
that we would omit the need of collaboration or coordination
associated with a commit occurring at time t. This subtle but
important difference highlights the limitations of a simple file-
based extraction of collaboration networks and showcases the
advantage of our approach.

C. Analysis of Temporal Co-Editing Networks

A major advantage of git2net is its support for the extrac-
tion of dynamic co-editing networks with high temporal res-
olution. To showcase the benefits of such a temporal analysis
for the two projects mentioned above, we have used git2net’s
python API to extract a time-stamped co-editing network from
the repositories of the two projects mentioned above. We then
used the temporal network analysis package pathpy [46] to
apply a rolling window analysis, which provided us with a time
series of network analytic measures. Figure 9 shows the result-
ing time series for four measures both for the Open Source
project igraph as well as the commercial software project.
The first row gives the number of developers working on the
projects in a 365-day sliding window. The number of unique
co-editing relations between these developers, shown in the
second row, can be used to proxy the amount of collaboration
on joint code regions taking place in a project in a given time
window. We observe that the number of such collaborations
relative to the number of developers is considerably higher for
the commercial software project compared to the Open Source
project. This finding is further corroborated by the mean out-
degree of nodes shown in the third row. This suggests that
on average developers in igraph edit the code of one to two
other developers, while for the commercial software project
each developer has to coordinate his or her changes with
four to eight other team members. It is a remarkable finding
for the commercial software project that both the number of
unique directed edges and the mean out-degree decline from
2013 onwards, despite the growing number of developers. This
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Fig. 9. Time series of different (network-analytic) measures for the time-stamped co-editing networks of an Open Source (left) and commercial software
project (right). Results were generated using a rolling window analysis with a window size of 365 days and 30 day increments.

could mark a change in the software development processes
and/or the social organisation of teams. While a first feedback
from the project managers suggests that this could be related
to a change in the adoption of an agile development model,
testing this hypothesis requires a separate in-depth study.
Finally, in the fourth row in Figure 9 we report the evolution
of normalised (total) degree centralisation over time [52].
A minimum value of zero indicates that all nodes in the
network have the same degree, while a maximum value of one
corresponds to a perfect star network where all nodes except
a hub node have degree one. We find that igraph exhibits
considerably larger degree centralisation than the commercial
software project, which is likely related to previous findings
of highly skewed distributions of code contributions in Open
Source projects [6, 53, 54].

D. Editing of Own vs. Foreign Code

In a final experiment, we showcase how git2net can
be used to analyse temporal co-editing patterns in software
development teams. To this end, we extend our analysis
of the mere topological dimension of co-editing relations
performed in previous sections, to use additional information
on the Levenshtein distance associated with these relations.
The Levenshtein distance between two source code versions
captures the number of characters one has to type to transform
one string into another string. It has been used as a proxy for
development effort associated with commits [6]. Extending
this approach, an interesting aspect of our methodology is
that it allows us to distinguish between (i) the cumulative
Levenshtein distance of code edits made in a developer’s own
code and (ii) the cumulative Levenshtein distance of edits

made in foreign code, i.e. code originally written by other
developers. This enables us to calculate, for each time window
in the commit history of a project, the relative proportion of
development effort falling into these two categories.

Figure 10 shows the result of this analysis for the two
projects introduced above, where the top-part of the figure
reports the total number of (unweighted) co-edit relations,
while the bottom part shows the relative proportion of the
total Levenshtein distance of own code changes vs. foreign
code changes. This analysis highlights considerable project-
and time-dependent differences. For the Open Source project
igraph, during a first phase from 2006 to 2015, the majority
of code edits take place in code previously written by the same
developer. This indicates a strict notion of code “ownership”,
where developers rarely touch code written by others. For
the commercial software project we observe a completely
different dynamics, where for the majority of time windows
development effort is dominated by foreign code edits. We
hypothesise that this finding is likely related to code changes
triggered by the specific implementation of the code review
process in the commercial software project [55]. While an in-
depth study of this claim goes beyond the scope of this tool
paper, this finding highlights a specific research question that
can be addressed with our tool in future work.

V. CONCLUSION AND OUTLOOK

Over the past two decades, the analysis of co-authorship, co-
commit, or co-editing networks in software development teams
has experienced huge interest from the empirical software
engineering and repository mining community. Exemplary
studies have shown that the analysis of such collaboration
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networks helps to assess the time-evolving social structure of
teams [6, 33], predict software defects [34], categorise devel-
oper roles [39], identify communities [5], or study knowledge
spillover across individuals, teams, and projects [4, 36, 38, 41].
Most of these studies have employed definitions of co-
authorship networks which assume that developers are linked
if they edited a common file, module, or binary. However,
such coarse-grained definitions have been shown to neglect
information on the microscopic patterns of collaborations
contained in the time-ordered sequence of lines of code edited
by developers [5, 6].

To facilitate data-driven studies of developer networks that
take advantage of this detailed information, we have intro-
duced git2net, a python package for the mining of fine-
grained and time-stamped collaboration networks from large
git repositories. Going beyond previous works, we adopt
text mining techniques to assess (a) the development effort
of an edit in terms of the Levenshtein distance between the
version before and after the commit, and (b) the entropy of file
modifications, which can be used to filter out changes in text-
encoded binary data. Thanks to a parallel processing model
our tool exhibits a linear speed up for an increasing number
of processing cores. This makes git2net suitable to analyse
git repositories with hundreds of thousands of commits and
millions of lines of code.

Apart from a description of our tool, we have reported
results of a case study using the repositories of an Open
Source and a commercial software project. While the results
are rather anecdotal and should thus not be generalised to
other projects, this case study is meant to demonstrate that
the presented tool simplifies the construction and analysis
of dynamic developer collaboration networks and co-editing
behaviour. It further showcases scenarios where our tool can
be useful and highlights interesting research questions that we
will address in future works.

Extending the analysis presented in [5], in section IV-B we
report on a small comparative study of a file- vs. line-based

construction of co-editing networks. A future systematic study
of the differences between these approaches would be impor-
tant. This should highlight in which case we need fine-grained
methods and in which other cases coarse-grained notions of
collaboration may be sufficient. Given the large number of
studies using coarse-grained definitions of collaboration net-
works, such a study could make a substantial methodological
contribution to the repository mining literature.

The results presented in section IV-C indicate topological
differences between co-editing networks that are potentially
linked to (a) the difference between Open Source and com-
mercial software projects, and (b) the adoption of an ag-
ile development process in the commercial software project.
These hypotheses must be tested in a larger corpus of projects
that differ in these two dimensions. To support such a study,
we recently mined co-editing relationships from the full git
commit history of Linux4, comprising more than 800,000
commits over a period of 18 years. Running git2net on a
machine with 16 processing cores, we were able to complete
the extraction of more than 60 million time-stamped co-editing
relations in four days.

In section IV-D we further demonstrate that the information
extracted by our tool can be used to generate a time-resolved
breakdown of developer effort into (a) the revision of code
authored by the developer him or herself vs. (b) the revision
of code written by other team members. We currently work
on a more systematic analysis of this interesting aspect of
collaboration in development teams. Specifically, we study
how collaboration is related to team size, project types, release
schedules, code review processes, or the difference between
Open Source and industrial projects.

Finally, a key advantage of our tool is that it provides a
simple method to extract fine-grained collaboration networks
at high temporal resolution from any git repository. Publicly
available repositories cover a variety of different collaborative

4https://github.com/torvalds/linux
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tasks, like software development, manuscript editing, web
content management, etc. [56]. Our tool efficiently utilises the
large number of such repositories and thus opens up a massive
new source of high-resolution data on human collaboration
patterns.

The fact that the resulting dynamic collaboration net-
works can be cross-referenced with project-related information
(project success, organisational structures and project culture,
developer roles, etc.) is likely to be of value for researchers
in computational social science and organisational theory. We
further expect the resulting corpus of data to be of considerable
interest for the network science and social network analy-
sis community, which have recently moved beyond moving
window analyses, developing techniques that incorporate the
chronological ordering of interactions in high-resolution time
series data [30, 40, 57]. We thus hope that the tool and analyses
presented in our work will serve the growing community
of interdisciplinary researchers working at the intersection of
data science, (social) network analysis, computational social
science and empirical software engineering.
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TOOL AVAILABILITY, ARCHIVAL, AND REPRODUCIBILITY

The tool presented in this work is available as Open Source
software package on gitHub5. git2net is further available
via the python package index pypi, enabling users to simply
install and update it via the package management tool pip. To
support the reproducibility of our work, we have permanently
archived the version of our tool that was used to obtain the
results presented in this paper on the open-access repository
zenodo.org [51].
git2net comes with unit tests and a comprehensive in-

line documentation. To support users in developing their first
analysis, we further provide access to interactive jupyter
notebooks, which allow to reproduce our approach.

Since the submission of this paper, the following additional
features have been added to the release version of git2net:
• Extraction of line-editing networks, where nodes repre-

sent states of content lines of files, while edges link
consecutive versions.

• Detection of copying and moving lines both within and
between files for the file-based approach via the git
blame -C option.

• Extraction of edits rather than co-edits in the sqlite
database. With this also pure additions are listed in the
database allowing users of git2net to implement own
co-editing measures, e.g. based on the distance (in line
numbers) of an addition to other lines.

5https://github.com/gotec/git2net
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[36] V. S. Vijayaraghavan, P.-A. Noël, Z. Maoz, and R. M. DSouza, “Quanti-
fying dynamical spillover in co-evolving multiplex networks,” Scientific
reports, vol. 5, p. 15142, 2015.

[37] L. Lopez-Fernandez, G. Robles, J. M. Gonzalez-Barahona et al., “Ap-
plying social network analysis to the information in cvs repositories,” in
International Workshop on Mining Software Repositories. IET, 2004,
pp. 101–105.

[38] S.-K. Huang and K.-m. Liu, “Mining version histories to verify the
learning process of legitimate peripheral participants,” in Proceedings
of the 2005 International Workshop on Mining Software Repositories,
ser. MSR ’05. New York, NY, USA: ACM, 2005, pp. 1–5. [Online].
Available: http://doi.acm.org/10.1145/1082983.1083158

[39] M. Pohl and S. Diehl, “What dynamic network metrics can tell us about
developer roles,” in Proceedings of the 2008 international workshop on

Cooperative and human aspects of software engineering. ACM, 2008,
pp. 81–84.

[40] P. Holme, “Modern temporal network theory: a colloquium,” The
European Physical Journal B, vol. 88, no. 9, p. 234, Sep 2015.
[Online]. Available: https://doi.org/10.1140/epjb/e2015-60657-4

[41] E. Cohen and M. P. Consens, “Large-scale analysis of the co-commit
patterns of the active developers in github’s top repositories,” in 2018
IEEE/ACM 15th International Conference on Mining Software Reposi-
tories (MSR), May 2018, pp. 426–436.

[42] F. Schweitzer, V. Nanumyan, C. J. Tessone, and X. Xia, “How
do oss projects change in number and size? a large-scale analysis
to test a model of project growth,” ACS - Advances in Complex
Systems, vol. 17, no. 07n08, p. 1550008, 2014. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0219525915500083

[43] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley,
“Identification of coordination requirements: implications for the design
of collaboration and awareness tools,” in Proceedings of the 2006
20th anniversary conference on Computer supported cooperative work.
ACM, 2006, pp. 353–362.

[44] T. Y. Berger-Wolf and J. Saia, “A framework for analysis of dynamic
social networks,” in Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2006, pp.
523–528.

[45] K. M. Carley and J. Pfeffer, “Dynamic network analysis (dna) and ora,”
Advances in Design for Cross-Cultural Activities Part I, pp. 265–274,
2012.

[46] Ingo Scholtes, “Software Package pathpy,” http://pathpy.net, 2017, [On-
line].

[47] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.
[Online]. Available: http://igraph.sf.net

[48] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source
software for exploring and manipulating networks.” Icwsm, vol. 8, no.
2009, pp. 361–362, 2009.

[49] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[50] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.
[Online]. Available: http://igraph.org

[51] C. Gote, I. Scholtes, and F. Schweitzer, “git2net - An Open
Source Package to Mine Time- Stamped Collaboration Networks
from Large git Repositories,” May 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.2587483

[52] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social networks, vol. 1, no. 3, pp. 215–239, 1978.

[53] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 3, pp.
309–346, 2002.

[54] Z. Lin and J. Whitehead, “Why power laws? an explanation from fine-
grained code changes,” in 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, May 2015, pp. 68–75.

[55] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do they fix?”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014,
pp. 202–211. [Online]. Available: http://doi.acm.org/10.1145/2597073.
2597082

[56] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[57] I. Scholtes, “When is a network a network?: Multi-order graphical
model selection in pathways and temporal networks,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’17. New York, NY,
USA: ACM, 2017, pp. 1037–1046. [Online]. Available: http:
//doi.acm.org/10.1145/3097983.3098145

http://dl.acm.org/citation.cfm?id=2486930
http://dl.acm.org/citation.cfm?id=2486930
http://dx.doi.org/10.1109/CHASE.2013.6614731
http://dx.doi.org/10.1109/CHASE.2013.6614731
http://doi.acm.org/10.1145/1287624.1287673
http://doi.acm.org/10.1145/2025113.2025119
http://doi.acm.org/10.1145/1453101.1453106
http://doi.acm.org/10.1145/1082983.1083158
https://doi.org/10.1140/epjb/e2015-60657-4
http://www.worldscientific.com/doi/abs/10.1142/S0219525915500083
http://pathpy.net
http://igraph.sf.net
http://igraph.org
https://doi.org/10.5281/zenodo.2587483
http://doi.acm.org/10.1145/2597073.2597082
http://doi.acm.org/10.1145/2597073.2597082
http://doi.acm.org/10.1145/3097983.3098145
http://doi.acm.org/10.1145/3097983.3098145

	I Introduction
	II Related Work
	III Mining Co-Editing Relations from git Repositories
	III-A From Commit Logs to Co-Edits
	III-B From Co-Edits to Networks
	III-C Usage of git2net
	III-D Experimental Evaluation of Scalability

	IV Exemplary Co-Editing Analysis of an Open Source and Commercial Project
	IV-A Static Network Projections
	IV-B Co-editing vs. co-authorship networks
	IV-C Analysis of Temporal Co-Editing Networks
	IV-D Editing of Own vs. Foreign Code

	V Conclusion and Outlook

