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Abstract—Mistakes in binary conditions are a source of error
in many software systems. They happen when developers use, e.g.,
‘<’ or ‘>’ instead of ‘<=’ or ‘>=’. These boundary mistakes
are hard to find and impose manual, labor-intensive work for
software developers.

While previous research has been proposing solutions to iden-
tify errors in boundary conditions, the problem remains open. In
this paper, we explore the effectiveness of deep learning models
in learning and predicting mistakes in boundary conditions. We
train different models on approximately 1.6M examples with
faults in different boundary conditions. We achieve a precision
of 85% and a recall of 84% on a balanced dataset, but lower
numbers in an imbalanced dataset. We also perform tests on 41
real-world boundary condition bugs found from GitHub, where
the model shows only a modest performance. Finally, we test the
model on a large-scale Java code base from Adyen, our industrial
partner. The model reported 36 buggy methods, but none of them
were confirmed by developers.

Index Terms—machine learning for software engineering, deep
learning for software engineering, software testing, boundary
testing.

I. INTRODUCTION

Off-by-one mistakes happen when developers do not cor-
rectly implement a boundary condition in the code. Such
mistakes often occur when developers use ‘>’ or ‘<’ in cases
where they should have used ‘=>’ or ‘<=’, or vice versa.

Take the example of an off-by-one error in the
Gson library1, which we illustrate in Figure 1. The
toFind.length() < limit condition is wrong. The fix
changes the < operator by the <= operator. Such mistakes are
particularly difficult to find in source code. After all, the result
of the program is not always obviously wrong, as it is “merely
off by one”. In most cases, the mistake will lead to an “out
of bounds” situation, which will then result in an application
crash.

A large body of knowledge in the software testing field is
dedicated to (manual) boundary testing techniques (e.g., [1,
2, 3, 4, 5]). However, manually inspecting code for off-
by-one errors is time-consuming since determining which
binary operator is the correct one is usually heavily context-
dependent. The industry has been relying on static analysis
tools, such as SpotBugs2 or PVS-Studio3. SpotBugs promises
to identify possible infinite loops, as well as array indices,

1https://github.com/google/gson/commit/161b4ba
2https://spotbugs.github.io
3https://www.viva64.com/en/pvs-studio/

offsets, lengths, and indexes that are out of bounds. PVS-
Studio also tries to identify mistakes in conditional statements
and indexes that are out of bounds in array manipulation. And
while they can indeed find some of them, many of them go
undetected. As we later show in this paper, none of the real-
world off-by-one errors could be detected by the state-of-the-
practice static analysis tools.

We conjecture that, for a tool to be able to precisely
identify mistakes in boundary conditions, it should be able to
capture the overall context of the source code under analysis.
Understanding the context of the source code has been tra-
ditionally a challenge for static analysis techniques. However,
recent advances in machine and deep learning have shown that
models can learn useful information from the syntactic and
semantic information that exist in source code. Tasks that were
deemed not possible before, such as method naming [6, 7, 8],
type inference [9, 10, 11], and bug finding [12], are now
feasible. The lack of reliable tools that detect off-by-one
mistakes leaves an excellent opportunity for researchers to
experiment with machine learning approaches.

Inspired by the code2vec and code2seq models proposed by
Alon et al. [8, 13], we trained several deep learning models
on likely correct methods and their counterparts affected by
off-by-one mistakes. The models are trained on over 1.6M
examples, and the best results are obtained with the Code2Seq
[13] model achieving 85% precision and a recall of 84% on a
balanced testing set. However, our results also show that the
model, when tested on a real-world dataset that consisted of
41 bugs in open-source systems, yields low performance (55%
precision and 46% recall).

Finally, we tested the best models in one of our industrial
partners. Adyen is one of the world’s largest payment service
providers allowing customers from over 150 countries to use
over 250 payment methods including different internet bank
transfers and point of sales solutions. The company is working
in a highly regulated banking industry and combined with the
high processing volumes there is little to no room for errors.
Hence, Adyen uses the industry-standard best practices for
early bug detection such as code reviews, unit testing, and
static analysis. It is at Adyen’s best interest to look into novel
tools to prevent software defects finding their way into their
large code base, preferring methods that scale and do not waste
the most expensive resource of the company, the developers’
time. Our results show that, while the model did not reveal any
bugs per se, it pointed developers to code that they considered

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works



private boolean skipTo(String toFind) throws IOException {
outer:

for (; pos + toFind.length() < limit ||
↪→ fillBuffer(toFind.length()); pos++) {

for (int c = 0; c < toFind.length(); c++) {
if (buffer[pos + c] != toFind.charAt(c)) {

continue outer;
...

}

Fig. 1: A off-by-one error in the Gson library, fixed in commit
#161b4ba. The mistake is in the toFind.length() <
limit condition; the fix changes the < by <=.

to deviate from their good practices.
This paper expands our workshop paper, entitled “OffSide:

Learning to Identify Mistakes in Boundary Conditions” [14].
The main contributions of this paper are:

1) An empirical study on the performance of different deep
learning models, based on code2vec and code2seq, to
detect off-by-one mistakes.

2) A quantitative and qualitative evaluation of deep off-by-
one detection models in real-world open-source bugs and
in a large-scale industrial system.

II. RELATED WORK

The use of static analysis tools is quite common among
software development teams (e.g., [15, 16]). These tools,
however, rely on bug pattern detectors that are manually
crafted and fine-tuned by static analysis experts. The vast
amount of different bug patterns makes it very difficult to cover
more than a fraction of them.

Machine Learning for Software Engineering has seen rapid
development in recent years inspired by the successful applica-
tion in the Natural Language Processing field [17]. It is applied
in many tasks related to software code such as code translation
(e.g., [18]), type inference (e.g., [9, 10]), code refactoring
(e.g., [19]) and, as we list below, bug identification.

Pradel et al. [12] use a technique similar to Word2Vec
[20] to learn embeddings for JavaScript code tokens extracted
from the AST. These embeddings are used to train two-layer
feed-forward binary classification models to detect bugs. Each
trained model focuses on a single bug type, and the authors test
it on problems such as wrong binary operator, wrong operand
in binary operation and swapped function arguments. These
models do not use all the tokens from the code, but only those
specific to the problem at hand. For example, the model that
detects swapped function arguments only uses embeddings of
the function name and arguments with a few other AST nodes
as features.

Allamanis et al. [21] use Gated Graph Neural Network [22]
to detect variable misuse bugs on a token level. As an input to
the model, the authors use an AST graph of the source code
and augment it with additional edges from the control flow
graph.

Pascarella et al. [23] show that defective commits are often
composed of both defective and non-defective files. They also
train a model to predict defective files in a given commit.
Habib et al. [24] create an embedding from methods using a
one-hot encoding of tokens such as keywords (for, if, etc.),
separators (;, (), etc.), identifiers (method, variable names and
literals (values such as "abc" and 10). The embeddings for the
first 50 tokens are then used to create a binary classification
model. The oracle for training data is a state-of-the-art static
analysis tool, and the results show that neural bug finding can
be highly successful for some patterns, but fail at others.

Li et al. [25] use method AST in combination with a
global Program Dependency Graph and Data Flow Graph
to determine whether the source code in a given method is
buggy or not. The authors use Word2Vec to extract AST node
embeddings with a combination of GRU Attention layer and
Attention Convolutional Layer to build a representation of the
method’s body. Node2Vec [26] is used to create a distributed
representation of the data flow graph of the file which the
inspected method is in. The results are combined into a method
vector which is used to make a softmax prediction.

Wang et al. [27] define bug prediction as a binary classifi-
cation problem and train three different graph neural networks
based on control flow graphs of Java code. They use a novel
interval-based propagation mechanism to more efficiently gen-
eralize a Graph Neural Network (GNN). The resulting method
embedding is fed into a feed-forward neural network to find
null-pointer de-reference, array index out of bounds and class
cast exceptions. For each bug type, a separate bug detector is
trained.

III. APPROACH

In order to detect off-by-one errors in Java code, we aim to
create a hypothesis function that will calculate output based
on the inputs generated from an example. More specifically,
we train and compare different binary classification machine
learning models to classify Java source code methods to one
of the two possible output labels which are ”defective” and
”non-defective”. If a method is considered as ”defective”, it is
suffering from an off-by-one error, otherwise, it is deemed to
be clear from errors.

These models are based on the Code2Vec [8] and
Code2Seq [13] models, state-of-the-art deep learning models
originally developed for generating method names and descrip-
tions. The models use Abstract Syntax Tree paths of a method
as features and create an embedding by combining them with
the help of an attention mechanism. In addition, we also build
a Random Forest baseline model based on source code tokens.

We acquired the datasets necessary for the training of these
models from the work of Alon et al. [8] which results in an
imbalanced dataset of 920K examples (1 to 10 ratio) and a
balanced dataset of 1.6M examples when combined with our
automatically mutated methods.

We train on both imbalanced and balanced data to see the
difference in performance. We then evaluate the accuracy of
the model in 41 real-world open source off-by-one errors. In
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Fig. 2: The flow of the research including data collection,
mutation, training and testing.

TABLE I: The different datasets used in this paper.

Dataset Train Validation Test Total

large-balanced 1,593,610 30,634 48,516 1,672,760
large-imbalanced 876,485 16,849 26,684 920,018
Adyen 11,032 690 3,148 14,870
open-source bugs - - 82 82

addition, we further train the models with data from a company
project to fine-tune the model and find bugs from that project
specifically.

In Figure 2, we show the overall research method. In the
following, we provide a more detailed description of the
approach and research questions.

A. Datasets

We used the java-large dataset provided by Alon et al.
[13] for model training. We used Adyen’s production Java
code to further train and test the model with project-specific
data. Finally, we used an additional real-world-bugs dataset to
evaluate models on real-world bugs. A summary of the datasets
can be seen in Table I.
1) The java-large-balanced dataset consists of 9,500 top-

starred Java projects from GitHub created since January
2007. Out of those 9500 projects, 9000 were randomly
selected for the training set, 250 for the validation set and
the remaining 300 were used for the testing set. Originally,
this dataset contained about 16M methods, but 836,380
were candidates for off-by-one errors (e.g. methods with
loops and if conditions containing binary operator <, <=,
> or >=). After mutating the methods, the final balanced
dataset consisted of 1,672,760 methods, 836,380 of them
assumed to be correct and 836,380 assumed to be buggy.

2) The additional imbalanced dataset java-large-imbalanced
was constructed to emulate more realistic data, where the
majority of the code is not defective. A 10-to-1 ratio
between non-defective and defective methods was chosen

since it resulted in a high precision while having a reason-
able recall. We empirically observed that upon increasing
the ratio of non-defective methods even further, the model
did not return possibly defective methods when running
on Adyen’s codebase. Meaning that if the ratio was higher
than 10-to-1, the recall of the model became too low to
use it.

3) Adyen’s code is a repository containing the production
Java code of the company. It consists of over 200,000
methods out of which 7,435 contain a mutation candidate
to produce an off-by-one error. After mutating the methods,
this resulted in a balanced dataset containing 14,870 data
points.

4) 41 real-world bugs in boundary conditions were used for
manual evaluation. We extracted the bugs from the 500
most starred GitHub Java projects. The analyzed projects
were not part of the training and evaluation sets and thus
are not seen by a model before testing. Using a Pydriller
script [28], we extracted a list of candidate commits where
authors made a change in a comparator (e.g., a ”>” to
”=>”; ”<=” to ”<”, etc.). This process returned a list of
1,571 candidate commits which were analyzed manually
until 41 were confirmed to be off-by-one errors and added
to the dataset. The manual analysis was stopped due to it
being a very labor-intensive process.

B. Generating positive and negative instances

In order to train a supervised binary classification model,
we require defective examples. To get those, we modified the
existing likely correct code to produce likely incorrect code.
For each method, we found a list of possible mutation points
and selected a random one. After this, we altered the selected
binary expressions using JavaParser4 in a way to generate an
off-by-one error.

Due to changing only one of the expressions, the equivalent
mutant problem does not exist5 for the training examples,
unless the original code was unreachable at the position of
the mutation. It is also important to note that the datasets
are split on a project level for the java-large dataset and on
a sub-module level for Adyen’s code. This means that the
positive and the negative examples both end up in the same
training, validation or test set. We did this to avoid evaluating
model predictions on a code that only had one binary operator
changed compared to the code that was used during training.

C. Model Architecture

The models we used in this work are based on the recent
Code2Vec model [8] and its enhancement Code2Seq [13], and
a baseline model that makes use of random forest. We describe
the models in more detail in the next sub-sections.

4JavaParser GitHub page https://github.com/javaparser/javaparser/
5Equivalent mutant problem may exist, for example, if we mutate “dead

code”. However, we conjecture that this is a negligible problem and will not
affect the results.



1) Code2Vec: The Code2Vec model created by Alon et al.
[8] is a Neural Network model used to create embeddings from
Java methods. These embeddings were used in the original
work to predict method names.

The architecture of this model requires Java methods to be
split into path contexts based on the AST of the method. A
path context is a random path between two nodes in the AST
and consists of two terminal nodes xs, xt and the path between
those terminal nodes pj which does not include the terminals.
The embeddings for those terminal nodes and paths are learned
during training and stored in two separate vocabularies. During
training, these paths are concatenated to a single vector to
create a context vector ci which has the length l of 2 ·xs+xp

where the length of xs is equal to xt.
The acquired context vectors ci for paths are passed through

the same fully connected (dense) neural network layer (using
the same weights). The network uses hyperbolic tangent acti-
vation function and dropout in order to generate a combined
context vector c̃i. The size of the dense layer allows controlling
the size of the resulting context vector.

The attention mechanism of the model works by using a
global attention vector a ∈ Rh which is initialized randomly
and learned with the rest of the network. It is used to calculate
attention weight ai for each individual combined context
vector c̃i.

It is possible that some methods are not with a large enough
AST to generate the required number of context paths. For
this dummy (masked) context paths are inputted to the model
which get a value of zero for attention weight ai. This enables
the model to use examples with the same shape.

During training, a tag vocabulary tags_vocab ∈ R|Y |×l is
created where for each tag (label) yi ∈ Y corresponds to an
embedding of size l. The tags are learned during training and
in the task proposed by the authors, these represent method
names.

A prediction for a new example is made by computing the
normalized dot product between code vector v and each of
the tag embeddings tags_vocabi, resulting in a probability
for each tag yi. The higher the probability, the more likely the
tag belongs to the method.

2) Code2Seq: The Code2Seq model created by Alon et al.
[13] is a sequence-to-sequence model used to create embed-
dings from Java methods from which method descriptions are
learned. The original work was used to generate sequences of
natural language words to describe methods.

Similarly to the Code2Vec model, the model works by
generating random paths from the AST with a specified
maximum length. Each path consists of 2 terminal tokens xs,
xt and the path between those terminal nodes pj which, in
Code2Seq, includes the terminal nodes ps, pt ∈ pj , but not
tokens.

It is important to make a difference between terminal tokens
and path nodes. The former are user-defined values, such as
a number 4 or variable called stringBuilder while the latter
come from a limited set of AST constructs such as NameExpr,

BlockStmt, ReturnStmt. There are around 400 different node
types that are predefined in the JavaParser implementation6.

During training, the path nodes and the terminal tokens
are encoded differently. Terminal tokens get partitioned into
subtokens based on the camelCase notation, which is a stan-
dard coding convention in Java. For example, a terminal token
stringBuilder will be partitioned into string and Builder. The
subtokens are turned into embeddings with a learned matrix
Esubtokens and encoding is created for the entire token by
adding the values for subtokens.

Paths of the AST are also split into nodes and each of
the nodes corresponds to a value in a learned embedding
matrix Enodes. These embeddings are fed into a bi-directional
LSTM which final states result in a forward pass output

→
h and

backward pass output
←
h . These are concatenated to produce

a path encoding.
As with the Code2Vec model, the encodings of the terminal

nodes and the path are concatenated and the resulting encoding
is an input to a dense layer with tanh activation to create a
combined context vector c̃i. Finally, to provide an initial state
to the decoder, the representations of all n paths in a given
method are averaged.

The decoder uses the initial state h0 to generate an output
sequence while attending over all the combined context vectors
c̃1, ..., c̃n. The resulting output sequence represents a natural
language description of the method. We adapted Code2Seq’s
sequence output to be {(0|1),<eos>}, i.e., a 1 or 0 token
indicating the method being buggy or not buggy, and a token
that ends the sequence.

The advantage of the Code2Seq model is in the way the
context vectors c̃i are created. In particular, due to splitting
terminal nodes. The vocabulary of the terminal nodes yields
greater flexibility towards different combinations of sub-token
combinations. In addition, while Code2Vec embeds entire AST
paths between terminals, the Code2Seq model only embeds
sub-tokens. This results in fewer out-of-vocabulary examples
and a far smaller model size. The model also has an order-
of-magnitude fewer parameters compared to the Code2Vec
model.

3) Baseline Model: We developed a baseline model to
assess the performance of a simpler architecture. For this,
we used a Random Forest model [29] and compared the
performance with the same datasets.

First, we tokenized the Java methods using leaf nodes of
their respective ASTs. After this, all the tokens of the method
were vectorized using the TF-IDF method. The vectorized
tokens of one method comprised a training example for a
Random Forest model. This model was then trained on all
of the methods from java-large training set.

D. Hyper-parameter optimization and model training

For hyper-parameter optimization, we used Bayesian opti-
mization [30]. We selected model precision as the optimization

6JavaParser Node types https://www.javadoc.io/doc/com.github.javaparser/
javaparser-core/3.15.9/com/github/javaparser/ast/Node.html



TABLE II: Model training times. B=Balanced dataset,
I=Imbalanced dataset, E=number of epochs, T=time to train.

Balanced Imbalanced Adyen

Model T E T E T E

Baseline 5h33m 1 1h59m 1 48s 1
Code2Vec 1d2h2m 52 11h6m 52 1h1m 53
Code2Seq 3d18h18m 14 2d14h 41m 15 1h8m 17

parameter since high precision is required to obtain a usable
defect prediction model. We used Bayesian optimization over
other methods like random search or grid search because it
enables us to generate a surrogate function that is used to
search the hyper-parameter space based on previous results
and acts as intuition for parameter selection. This results in
saving significantly more time because the actual model does
not need to run as much due to wrong parameter ranges being
discarded early in the process.

The hyper-parameters are optimized in the java-med-
balanced, another dataset made public by Alon et al. [8].
The dataset consists of 1,000 top-starred Java projects from
GitHub. Out of those 1000 projects, 800 were randomly
selected for the training set, 100 for validation set and the
remaining 100 were used for the testing set. Originally, this
dataset contained about 4M methods, but 170,295 were can-
didates for off-by-one errors (e.g. methods with loops and if
conditions containing binary operator <, <=, > or >=). This
resulted in a balanced dataset of 340,590 methods, 170,295 of
them assumed to be correct and 170,295 assumed to be buggy.

We ran optimization for four different scenarios. Two runs
for the balanced java-medium dataset with Code2Vec model
and Code2Seq models, respectively, and an additional two runs
with the same models for imbalanced datasets. We used a
machine with Intel(R) Xeon(R) CPU E5-2660 v3 processor
running at 2.60GHz with a Tesla M60 graphics card.

Once the hyper-parameters were identified, we train the
Code2Vec and Code2Seq models (as well as the baseline)
using the balanced and imbalanced versions of the java-large
dataset, and perform further training with the source code of
our industrial partner. We show the training time of the final
models in Table II.

E. Analysis

We report the precision and recall of our models. Precision
helps to evaluate the models’ proneness to classify negative
examples as positive. The latter is also known as false positive.
This means that a model with high precision has a low false-
positive rate and a model with low precision has a high false-
positive rate. More formally, precision is the number of true
positive (TP) predictions divided by the sum of true positive
and false positive (FP) predictions.

For a bug detection model, low precision means a high
number of false positives, making the developers spend their
time checking a large number of errors reported by the model
only to find very few predictions that are defective. This means

that in this work, we prefer high precision for a bug-detection
model.

Monitoring precision alone is not enough since a model that
is precise but only predicts few bugs per thousands of bugs
is also not useful. Hence, recall is also measured. It measures
the models’ ability to find all the defective examples from the
dataset. A recall of a model is low when it does not find many
of the positive examples from the dataset and very high if it
manages to find all of them. More formally, it is the number
of true positive predictions divided by the sum of true positive
and false negative predictions.

Ideally, a bug prediction model would find all of the bugs
from the dataset and have a high recall score. However, deep
learning networks usually do not achieve perfect precision and
recall at the same time. For more difficult problems with a
probabilistic model, there can be a trade-off. When increasing
the threshold of the model confidence for the positive example,
the recall will decline. For this reason, a sci-kit learn package
was used to also make a precision-recall curve to observe the
effect of the change in precision and recall upon changing
the confidence of the model needed to classify an example as
positive (defective).

F. Reproducibility

We provide all the source code (data collection, pre-
processing, and machine learning models) in our online ap-
pendix [31]. The source code is also available in GitHub7.

IV. METHODOLOGY

The goal of this study is to measure the effectiveness of
deep learning models in identifying off-by-one mistakes. To
that aim, we propose three research questions:
• RQ1: How do the models perform on a controlled

dataset? In order to obtain a vast quantity of data, we
use a controlled dataset (see Section III-A). We train the
models on the dataset and use metrics such as precision
and recall to assess the performance.

• RQ2: How well do the methods generalize to a
dataset made of real-world bugs? We mine a dataset
of real-world off-by-one error bugs from GitHub issues
of various open-source projects. Then we use a model to
predict the error-proneness of a method before and after
a fix. This will indicate how well the model works for
real-world data. This evaluation will enable us to extract
the precision metric and compare it to the one from RQ1.

• RQ3: Can the approach be used to find bugs from a
large-scale industry project? One useful application to
an error-detection model is to analyze the existing project
and notify of methods containing off-by-one errors. We
make several runs where the model is firstly trained on a
dataset with mutated code and then tested on real code to
find such errors. In addition, we further train the model
with a different version of the industry project to find
errors in the future versions of the project.

7https://github.com/hsellik/thesis/tree/MSR-2021



To answer RQ1, we performed hyper-parameter optimiza-
tion. After this, we selected the best hyper-parameter values
and trained the model with randomly initialized parameters
on the java-large dataset on the same machine as used for
hyper-parameter optimization (see Section III-D). We trained
Code2Seq and Code2Vec models until there was no gain in
precision for three epochs of training in the evaluation set.
After this, we assessed the model on the testing set of java-
large dataset.

The process was conducted for three different configurations
of data. These were:

1) BB - the training data was balanced (B) with the cross-
validation and testing data also being balanced (B).

2) BI - the training data was balanced (B) with the cross-
validation and testing data being imbalanced (I).

3) II - the training data was imbalanced (I) with the cross-
validation and the testing data also being imbalanced (I).

The data imbalance was inspired by the work of Habib et
al. [24], who reported that a bug detection model trained on a
balanced dataset would have poor performance when testing
on a more real-life scenario with imbalanced classes.

To answer RQ2, we selected the best-performing model
on the controlled java-large testing set (see Table III), which
was the model based on the Code2Seq architecture. After this,
the model was tested on the bugs and their fixes found from
several real-world Java projects (open-source bugs dataset in
Table I).

Firstly, we tested the model on the correct code that was
obtained from the GitHub diff after the change to see the
classification performance on non-defective code. To test the
model performance on defective code, we reverted the example
to the state where the bug was present using the git version
control system. After this, we recorded the model prediction
on the defective method.

In addition, as a way to compare our work with static
analysis, we apply three popular static analyzers to the same
set of defective and non-defective snippets: SpotBugs (v.4.0.0-
beta1), PVS-Studio (v.7.04.34029), and the static analyzer
integrated with IntelliJ IDEA (v. 2019.2.3).

To answer RQ3, we trained the Code2Seq model only on
the data generated from the company project, but the training
did not start with randomly initialized weights. Instead, the
process was started with the weights acquired after training
on the java-large dataset (see Figure 2).

We selected the Code2Seq based model because it had
the best performance on the imbalanced testing set of the
controlled java-large set. We selected the performance on the
imbalanced controlled set as a criterion since we assumed
that the company project also contains more non-defective
examples than defective ones.

We used the pre-trained model because the company project
alone did not contain enough data for the training process.
Additionally, due to the architecture of the Code2Seq and
Code2Vec models, the embeddings of terminal and AST node
vocabularies did not receive additional updates during further
training with company data. We trained the model until there

was no gain in precision for three epochs on the validation set,
and after this, we tested the model on the test set consisting
of controlled Adyen data.

We conducted additional checking on Adyen data by try-
ing to find bugs in the most recent version of the project.
More specifically, we updated the project to its most recent
version using their git version control system, and without
any modifications to their original code, we used the model
to predict whether every Java method in their code base had
a off-by-one mistake. We analyzed all bug predictions that
were over a threshold of 0.8 to see if they contained bugs.
The 0.8 threshold was defined after manual experimentation.
We aimed at a set of methods that were large enough to bring
us interesting conclusions, yet small enough to enable us to
manually verify each of them.

A. Threats to Validity

In this section, we discuss the threats to the validity of this
study and the actions we took to mitigate them.

1) Internal validity: Our method performs mutations to
generate faulty examples from likely correct code by editing
one of the binary condition within the method. This means that
while the correct examples represent a diverse set of methods
from open-source projects, the likely incorrect methods may
not represent a realistic distribution of real-world bugs. This
affects the model that is being trained with those examples
and also the testing results conducted on this data.

2) External validity: While the work included a diverse
set of open-source projects, the only closed-source project
that was used during this study was Adyen’s. Hence, the
closed-source projects (in training and in validation) are under-
represented in this study.

Moreover, we have only experimented with Java code
snippets. While the approach seems to be generic enough to
be applicable to any programming language, the results might
vary given the particular way that developers write code in
different communities. Therefore, more experimentation needs
to be conducted before we can argue that the results generalize
to any programming language.

V. RESULTS

In the following sections, we present the results of our
research questions.

A. RQ1: How do the models perform on a controlled dataset?

In Table III, we show the precision and recall of the different
models. In Figures 3a and 3b, we show the ROC curve and
the precision-recall curve of the experiment with Code2Seq
based model for the imbalanced java-large dataset.

Observation 1: Models present high precision and recall
when trained and tested with balanced data. The results
show that when training models on a balanced dataset with an
equal amount of defective/non-defective code and then testing
the same model on a balanced testing set, both Code2Vec and
Code2Seq models achieve great precision and recall where
the Code2Seq based model has better precision (85.23% vs



TABLE III: Model results in controlled testing sets. BB stands for balanced training and testing set, II stands for imbalanced
training set and testing set.

Experiment BB Experiment BI Experiment II

Java-large Java-large Java-large Adyen data
(cross-project)

Adyen data
(further trained)

Model Pr. % Re. % Pr. % Re. % Pr. % Re. % Pr. % Re. % Pr. % Re. %

Code2Seq 85.23 84.82 36.08 84.86 83.04 42.34 71.15 24.66 66.66 30.66
Code2Vec 80.11 77.01 28.52 75.53 64.65 41 53.85 20.46 43.95 23.39
Baseline 50 49.08 8.99 49.18 17.86 0.15 0.0 0.0 9.25 0.92
Offside [14] 80.9 75.6 - - - - - - - -

80.11%) and recall (84.82% vs 77.01%) compared to the
Code2Vec based model. In addition, the balanced models’
performance was compared to the one used in Offside [14],
our previous work exploring only the use of Code2Vec model,
which was also tested on the identical java-large dataset
using very similar preprocessing pipeline and training model
(80.11% vs 80.9% precision and 77.01% vs 75.6% recall).

Observation 2: The metrics drop considerably when
tested on an imbalanced dataset. When simulating a more
real-life scenario and creating an imbalance in the testing set
with more non-defective methods, the recall of the models
remained similar with recall increasing from 84.82 to 84.86
for the Code2Seq model and dropping from 77.01% to 75.53%
for the Code2Vec model. However, the precision of the models
reduced drastically with the Code2Seq model dropping from
85.23% to 36.08% and Code2Vec model from 80.11% to
28.52%. The baseline model also drops in precision from 50%
to 8.99% while keeping the same recall.

Observation 3: The low precision can be mitigated by
training on an imbalanced dataset, but at the cost of recall.
We trained Code2Seq and Code2Vec models on an imbalanced
dataset and results show that the precision score for imbal-
anced data returned almost to the same level for the Code2Seq-
based model (83.04% vs 85.23%), but remained lower for
the Code2Vec-based model (64.65% vs 80.11%). However,
the recall declined drastically from 84.82% to 42.34% for
the Code2Seq model and from 77.01% to 41.00% for the
Code2Vec model.

When analysing the ROC curve (Figures 3a and 3b), the
precision is ≈0.8 while recall remains ≈0.5 at a confidence
threshold of 0.8. Moreover, it can also be seen that the model
confidence is correlated where higher thresholds yield better
precision but lower recall.

RQ1 summary: Both Code2Seq and Code2Vec based mod-
els present high accuracy on a balanced dataset. The numbers
drop when we make use of imbalanced (i.e., more similar to
the real-world) datasets.

B. RQ2: How well do the methods generalize to a dataset
made of real-world bugs?

The performance of the model on the 41 real-world bound-
ary mistakes and their non-defective counterparts are presented
in Table IV.

TABLE IV: Results of applying the Code2Seq model to
41 real-world off-by-one bugs and their corrected ver-
sions. B=balanced training set, I=imbalanced training set,
Pr=Precision, Re=Recall, Thr=Threshold.

Model Thr TP TN FP FN Pr Re F1

Code2Seq (B) 0.5 19 26 15 22 55.88 46.34 50.67
Code2Seq (B) 0.8 10 33 8 31 55.56 24.39 33.9

Code2Seq (I) 0.5 3 41 0 38 100 7.32 13.64
Code2Seq (I) 0.8 1 41 0 40 100 2.44 4.76

Observation 4: The model can detect real-world bugs,
but with a high false-positive rate. Out of the 41 defective
methods, 19 (46.34%) were classified correctly and out of 41
correct methods, 26 (63.41%) were classified correctly. The
precision and recall scores of 55.88 and 46.34 were achieved
while evaluating the model on real-world bugs with the
Code2Seq model trained on balanced data using a threshold
of 0.5. Compared to the results from the java-large testing set
with augmented methods, the results are significantly lower
with precision and recall being 29.35 and 38.08 points lower
respectively (see metrics for Code2Seq model with Experiment
BB in Table III).

Observation 5: The state-of-the-practice linter tools did
not find any of the real-world bugs. As an interesting remark,
none of the bugs was identified by any of the state-of-the-
practice linting tools we experimented. This reinforces the
need for approaches that identify such bugs (by means of static
analysis or deep learning).

RQ2 summary: The model presents only reasonable per-
formance on real-world off-by-one mistakes in open-source
projects. Static analysis tools did not detect any bug.

C. RQ3: Can the approach be used to find bugs from a large-
scale industry project?

We present the accuracy of the model in our industrial
partner, Adyen, also in Table III.

Observation 6: Models trained on open-source data show
satisfactory results in the industry dataset. Our empirical
findings show that when a model is trained on an open-source
dataset and then applied to the company project (following
the same pipeline of mutating methods as to generate positive
and negative instances), it will have good precision and recall



(a) ROC curve. Area under curve 0.89. (b) Precision-recall curve. Area under curve 0.65.

Fig. 3: ROC and precision-recall curves for the Experiment II with the java-large dataset.

scores with 71.15% and 24.66% for Code2Seq and somewhat
lower 53.85% and 20.46% for Code2Vec model respectively.

Observation 7: Further training on the Adyen project
did not yield better results. We hypothesized that training
the model further on Adyen’s code base would give a boost in
precision and recall scores. The recall of the models improved
by 6.0 percentage points for Code2Seq based model and 2.93
for Code2Vec based model. However, the precision of both
models dropped by 4.49 percentage points for Code2Seq and
9.9 for Code2Vec.

Observation 8: The model did not reveal any bugs, but
20% of the reported methods were considered suspicious
by the developers. Running the model on a newer version
of the repository reported 36 potential bugs with a confidence
threshold over 0.8 (which we chose after experimenting with
different thresholds and analyzing the number of suspicious
methods the model returned that we considered feasible to
manually investigate). While no bugs were found after man-
ually analyzing all the reported snippets, we marked seven
methods as suspicious. When we showed these methods to
the developers, they agreed that, while not containing a bug
per se, the seven methods deviate from good coding standards
and should be refactored. More specifically, four methods had
the for loop being initialized at a wrong index (i.e., the for
loop was initialized with i = 1, but inside the body, the code
performed several i − 1) and three snippets had hard-coded
unusual constraints in the binary expression (i.e., a > 256,
where 256 is a specific business constraint). Interestingly,
Pradel and Sen [12] also observed that models can sometimes
point to pieces of code that are not buggy, but highly deviated
from coding standards.

Observation 9: The model can potentially be useful at
commit time, however, the number of false alarms is to be
considered. Fixing mistakes regarding good code practices for
old pieces of software might not be considered worthwhile

at large companies, given the possible unwanted changes to
the behavior of the software. However, if such a system were
to be employed during automated testing, the alerts might
help developers to adhere to better practices. We observed the
model pointing to relevant problems in 7 out of the 36 potential
bugs (20% of methods it identifies). While 20% might be
considered a low number, one might argue that inspecting
36 methods out of a code base that contains thousands of
methods is not a costly operation and might be worth the effort.
However, we still do not know the number of false negatives
that the tool might give, as inspecting all the methods of the
code base is unfeasible.

RQ3 summary: When tested on a large-scale industrial
software system, the approach did not reveal any bugs per se,
but pointed to code considered to deviate from good practices.

VI. FUTURE WORK

We see much room for improvement before these models
can reliably identify off-by-one errors. In the following, we
list the ones we believe to be most urgent:

The need for more data points for the off-by-one prob-
lem. In this paper, we leveraged the existing java-large dataset
created by Alon et al. [13]. While the entire dataset was built
on top of 9,500 GitHub projects and contained approximately
16M methods, only around 836k had binary conditions (e.g.,
methods with loops and ifs containing a <, <=, > or >=).
We augment this dataset to 1.6M by introducing the defective
samples. Nevertheless, there is a big difference between 16M
and 1.6M methods for training. As Alon et al. [8] argues:
“a simpler model with more data might perform better than
a complex model with little data”. It should be part of any
future work to devise a much larger dataset for the off-by-
one problem and try the models we experiment here before
proposing more complex models.

Moreover, our dataset contains fewer usages of >= or
<= compared to usages of > or <, clearly representing the
preferences of developers when coding such boundaries. These



differences can lead to biased training and, as a result, we
observed models tending to give false positive results in case of
>= or <=. One way to mitigate the issue is to create a balanced
dataset with a more equal distribution of binary operators, as
well as the distribution of the places of their occurrence (if-
conditions, for- and while-loops, ternary expressions, etc).

The challenges of imbalanced data. In this study, we
explored the effects of balancing and imbalacing in the ef-
fectiveness of the model. However, the real imbalance of the
problem in real life (i.e., the proportion between methods
with off-by-one mistakes and methods without off-by-one
mistakes) is unknown, although we strongly believe it to be
imbalanced. Nevertheless, a 10:1 proportion enables us to
have an initial understanding how models would handle such
high imbalance. Our results show that it indeed negatively
affects the performance of the model. Therefore, we suggest
researchers to focus their attention on how to make these
models better in face of imbalanced datasets.

The support for inter-procedural analysis. Currently, our
approach is only supporting the analysis of the AST of one
method. However, the behaviour of a method, and the possi-
bility of the bugs thereof, also depends on the contents of the
other methods. For example, in recent research by Compton
et al. [32], the embedding vectors from the Code2Vec model
are concatenated to form an embedding for the entire class.
Future work should explore whether class embeddings would
perform better.

Experimenting with different (and more recent) archi-
tectures. In our work, we mainly looked at Code2Vec and
Code2Seq models. We now see more recent models, such
as the GREAT model proposed by Hellendoorn et al. [33],
which uses transformers and also captures the data-flow of the
code. We believe that data-flow information would enhance the
performance of our models.

Making use of Byte-Pair Encoding (BPE) techniques.
NLP models are often dependent on the vocabulary they are
trained on. The out-of-vocabulary (OoV) problem also hap-
pens in this work. When testing the models trained on top of
open-source data at Adyen, we had to replace unknown tokens
by a generic UNK. We conjecture that this may diminish
the effectiveness of the models. We unfortunately did not
measure the extent of how many times the UNK token was
used in our experiments. We plan to more precisely measure
it in future replications of this work. In future work, we also
plan to make use of techniques such as Byte-Pair Encoding
(BPE) [34, 35], which attempts to mitigate the impact of
out-of-vocabulary tokens. We note that the use of BPE is
becoming more and more common in software engineering
models (e.g., [10, 33, 36]).

A deeper understanding of the differences between our
model and Pradel’s and Sen’s [12] model. The DeepBugs
paper explores the effectiveness of deep learning models to a
similar problem, which authors call “Wrong Binary Operator”.
The overall idea of their approach is similar to ours (in other
words, their work also served as inspiration for this one): the
negative instances (i.e., the buggy code) are generated through

mutations in the positive code (i.e., non-buggy code), the code
representation is a vector that is based on the embeddings of all
the identifiers in the code, and the classification task is a feed-
forward neural network that learns from the balanced set of
positive and negative instances. Their results show an accuracy
of 89%-92% in the controlled dataset (i.e., slightly higher than
our results in RQ1), and a precision of 68% in the manual
analysis (i.e., higher than our results in RQ2). Interestingly,
authors also observe that the model also reports non-buggy
code which deviates from best practices (i.e., similar to our
observations in RQ3). When designing this study, we did
explicit compare the results to DeepBugs. The embeddings
derived from code2vec/seq capture more information, and we
conjectured that they would naturally supersede DeepBugs.
We nevertheless see a few differences between both works:
First, in their “Wrong Binary Operator” task, the mutation
replaces the (correct) binary operator to any binary operator,
e.g., a i < length can become a i % length. In our
case, we limit ourselves only to off-by-one mistakes, i.e., a
correct i < length will always become a i <= length.
We conjecture that this may increase the difficulty for the
model to learn, as bugs are now slightly more subtle. Second,
while the manual analysis conducted in the DeepBugs paper
is performed on the testing set (which contains artificial bugs),
our RQ2 explores the performance of the model in real-world
bugs, i.e., bugs that were found and fixed by developers. This
extra reality we bring to the experiment may be the reason for
the lower performance. Finally, we assumed that more robust
models such as code2vec and code2seq would better capture
the intricacies of the off-by-one mistake. The model used in
DeepBugs is simpler and yet as accurate as ours. More work is
needed to understand the pros and cons of our model and how
both works can be combined for the development of better and
more accurate models.

VII. CONCLUSIONS

Software development practices offer many techniques for
detecting bugs at an early stage. However, these methods come
with their challenges and are either too labor-intensive or leave
a lot of room for improvement. In this paper, we adapted
recent state-of-the-art deep learning models to detect off-by-
one errors in Java code, which are traditionally hard for static
analysis tools due to their high dependency on context.

We concluded that the trained models, while effective in
controlled datasets, still do not work well in real-world situ-
ations. We see the use of deep learning models to identify
off-by-one errors as promising. Nevertheless, there is still
much room for improvement, and we hope that this paper
helps researchers in paving the road for future studies in this
direction.

ACKNOWLEDGMENTS

We thank Jón Arnar Briem, Jordi Smit, and Pavel Rapoport
for their participation in the workshop version of this paper.



REFERENCES

[1] B. Jeng and E. J. Weyuker, “A simplified domain-testing strategy,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 3, no. 3, pp. 254–270, 1994.

[2] S. C. Reid, “An empirical analysis of equivalence partitioning, boundary
value analysis and random testing,” in Proceedings Fourth International
Software Metrics Symposium. IEEE, 1997, pp. 64–73.

[3] D. Hoffman, P. Strooper, and L. White, “Boundary values and automated
component testing,” Software Testing, Verification and Reliability, vol. 9,
no. 1, pp. 3–26, 1999.

[4] B. Legeard, F. Peureux, and M. Utting, “Automated boundary testing
from z and b,” in International Symposium of Formal Methods Europe.
Springer, 2002, pp. 21–40.

[5] P. Samuel and R. Mall, “Boundary value testing based on uml models,”
in 14th Asian Test Symposium (ATS’05). IEEE, 2005, pp. 94–99.

[6] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2014, pp.
281–293.

[7] ——, “Suggesting accurate method and class names,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 38–49.

[8] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[9] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the
foundations of software engineering, 2018, pp. 152–162.

[10] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao, “Typilus: Neural
type hints,” in PLDI, 2020.

[11] M. Pradel, G. Gousios, J. Liu, and S. Chandra, “Typewriter: Neu-
ral type prediction with search-based validation,” arXiv preprint
arXiv:1912.03768, 2019.

[12] M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based
bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1–25, 2018.

[13] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=H1gKYo09tX

[14] J. A. Briem, J. Smit, H. Sellik, P. Rapoport, G. Gousios, and M. Aniche,
“Offside: Learning to identify mistakes in boundary conditions,” in Pro-
ceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, pp. 203–208.

[15] K. F. Tómasdóttir, M. Aniche, and A. Van Deursen, “The adoption of
javascript linters in practice: A case study on eslint,” IEEE Transactions
on Software Engineering, 2018.

[16] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, “Why and how
javascript developers use linters,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017,
pp. 578–589.

[17] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on

[24] A. Habib and M. Pradel, “Neural bug finding: A study of opportunities

Software Engineering (ICSE). IEEE, 2012, pp. 837–847.
[18] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program

translation,” in Advances in neural information processing systems,
2018, pp. 2547–2557.

[19] M. Aniche, E. Maziero, R. Durelli, and V. Durelli, “The effectiveness
of supervised machine learning algorithms in predicting software refac-
toring,” Transactions on Software Engineering (TSE), 2020.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[21] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” arXiv preprint arXiv:1711.00740, 2017.

[22] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph
sequence neural networks,” in Proceedings of ICLR’16, April 2016.

[23] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-time
defect prediction,” Journal of Systems and Software, vol. 150, pp. 22–36,
2019.
and challenges,” arXiv preprint arXiv:1906.00307, 2019.

[25] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug
detection via context-based code representation learning and attention-
based neural networks,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019.

[26] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[27] Y. Wang, F. Gao, L. Wang, and K. Wang, “Learning a static bug finder
from data,” arXiv preprint arXiv:1907.05579, 2019.

[28] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp. 908–
911.

[29] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[30] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[31] H. Sellik, O. van Paridon, G. Gousios, and M. Aniche, “Learning off-by-
one mistakes: An empirical study (appendix),” https://doi.org/10.5281/
zenodo.4560410, 2021.

[32] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java classes
with code2vec: improvements from variable obfuscation [accepted],” in
MSR 2020. ACM, 2020.

[33] V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber,
“Global relational models of source code,” in International Conference
on Learning Representations, 2019.

[34] P. Gage, “A new algorithm for data compression,” C Users Journal,
vol. 12, no. 2, pp. 23–38, 1994.

[35] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[36] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code!= big vocabulary: Open-vocabulary models for source code,” arXiv
preprint arXiv:2003.07914, 2020.


