
Escaping the Time Pit: Pitfalls and Guidelines for
Using Time-Based Git Data

Samuel W. Flint
University of Nebraska–Lincoln

Lincoln, NE, USA
swflint@huskers.unl.edu

Jigyasa Chauhan
University of Nebraska–Lincoln

Lincoln, NE, USA
jchauhan2@huskers.unl.edu

Robert Dyer
University of Nebraska–Lincoln

Lincoln, NE, USA
rdyer@unl.edu

Abstract—Many software engineering research papers rely
on time-based data (e.g., commit timestamps, issue report cre-
ation/update/close dates, release dates). Like most real-world data
however, time-based data is often dirty. To date, there are no
studies that quantify how frequently such data is used by the
software engineering research community, or investigate sources
of and quantify how often such data is dirty. Depending on the
research task and method used, including such dirty data could
affect the research results. This paper presents the first survey
of papers that utilize time-based data, published in the Mining
Software Repositories (MSR) conference series. Out of the 690
technical track and data papers published in MSR 2004–2020,
we saw at least 35% of papers utilized time-based data. We
then used the Boa and Software Heritage infrastructures to help
identify and quantify several sources of dirty commit timestamp
data. Finally we provide guidelines/best practices for researchers
utilizing time-based data from Git repositories.

Index Terms—time-based, survey

I. INTRODUCTION

The Mining Software Repositories (MSR) conference has
been around as a workshop, working conference, and finally a
full conference since 2004. During those 17 years there have
been almost 600 research and over 100 data papers published.
The majority of the research in MSR relies on analyzing
existing data, including data from version control systems
(CVS, Subversion, Git), issue/bug reports, discussion forums
(emails, Stack Overflow), pull requests (PRs), continuous
build/test systems, etc. Often these data sources include time
components indicating when events occurred, such as the
timestamp of a code commit or when a pull request was
opened or closed.

Depending on the source of the data, there may be errors or
inconsistencies in the time components. For example, the Git
version control system (VCS) allows users to specify both the
authored and committed dates when creating new commits. It
also allows editing the existing commit graph (rebasing) which
allows for modification of the timestamps of older commits.
There are also more general issues with time data, for example
dealing with inconsistent time zones and clock skews.

To date, no survey has been performed to investigate how
MSR researchers utilize time-based data in their research.
This work thus surveys 690 MSR technical research and data
showcase papers from 2004–2020 to determine how many rely
on time-based data and what techniques are utilized to control

for potential errors in that data. We utilize keyword searches
of the papers and then manual inspection to determine that
at least 169 technical research papers and 70 data showcase
papers rely on or provide time-based data. This accounts for
at least 35% of the papers in MSR’s history.

Based on the survey results indicating that VCS is the
most used data kind incorporating time-based data and that
GitHub is the most used data source, we investigate potential
problems with time-based Git data. We utilize the Boa [1], [2]
and Software Heritage [3], [4] infrastructures and attempt to
quantify how frequently some kinds of errors occur. We also
attempt to infer the potential source(s) of these errors. Based
on this we can see a couple of potential pitfalls when utilizing
time-based data, and how frequently one might encounter
them.

The results show that over 4k commits have timestamps
that are suspiciously too old (even before the initial release
of CVS, 19 November 1990). Many of those bad timestamps
were the result of tools such as git-svn. We also discovered
over 18k commits from over 4k projects where one (or more)
of the commit’s parent commits had a timestamp that was
newer than the commit itself — something that does not make
sense. Again, many of these were the result of automated tools
or a small set of users. A replication package containing all
of the data and scripts used in our analysis is also publicly
available [5].

Finally we propose some guidelines for researchers utiliz-
ing time-based Git data to help escape these pitfalls. These
include filtering out older projects (based on our analysis,
we would recommend anything from 2013 or older), filtering
out certain projects or users that seem to have a lot of bad
commit timestamps, or preferably running specific analyses
to automatically verify and reject commits with suspicious
timestamps. We hope future MSR researchers follow these
guidelines.

In the next section we discuss prior surveys of MSR
research. In Section III we detail our survey on the use of
time-based data in MSR research. Then in Section IV we
attempt to identify and quantify some examples of problems
with time-based data in Git. We discuss implications of the
survey and present best practice guidelines in Section VI and
finally conclude in Section VII.

ar
X

iv
:2

10
3.

11
33

9v
1

 [
cs

.S
E

]
 2

1
M

ar
 2

02
1

TABLE I
PUBLISHED AND SELECTED MSR PAPERS, BY YEAR. DUE TO SPACE, WE OMIT THE FULL LIST OF SELECTED PAPERS AND REFER TO THE EXCEL

SPREADSHEET IN OUR REPLICATION PACKAGE [5].

year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 total
technical 26 22 28∗ 27 31 23 22 27 31 37 39 42 42+ 43 48 47 45 580

selected 5 2 6 8 7 9 6 9 9 10 13 12 11 13 13 16 20 169
data – – – – – – – – – 14 15 16 7 7 15 17 19 110

selected – – – – – – – – – 9 12 13 4 6 10 2 14 70
19% 9% 21% 30% 23% 39% 27% 33% 29% 37% 46% 43% 31% 38% 37% 28% 53% 35%

(∗2006 had 2 papers listed in the program that do not appear in the proceedings, and we excluded them)
(+2016 had 1 paper not listed in the program that appears in the proceedings, and we included it)

II. PREVIOUS STUDIES

In this section we discuss prior works that either performed
surveys of MSR research or propose guidelines for future MSR
researchers to follow.

Demeyer, Murgia, Wyckmans, et al. [6] explored 10 years of
MSR papers to determine what software projects were studied
and the frequency of studies on the given projects, as well
as the infrastructure behind mining. In particular, they noted
that the most common source of data were version control
systems, including the then-building popularity of Git, and
infrequency of use of VCS other than CVS, Subversion or
Git. They also noted that few of the studies at the time had
considered industrial cases and instead most were over open
source software.

Kalliamvakou, Gousios, Blincoe, et al. [7], [8] addressed
various characteristics of GitHub repositories. They note sev-
eral possible problems with GitHub data, such as containing
personal and inactive projects or that many pull requests
are not marked as merged despite being so. They provide
guidelines for software engineering researchers on how to use
GitHub data in their research more effectively.

Cosentino, Izquierdo, and Cabot [9] reviewed the use of
GitHub data in prior studies and structured data archives. In
particular, they looked at how GitHub data was used, how
the data was collected, and what, if any, limitations were
reported in the studies. The operation of the GitHub API at the
time, particularly in terms of request limits and inconsistent
responses, was noted as a limitation. Further, the lack of
availability of fresh data was considered as a potential issue,
due to reliance on common curated data sources. Finally,
they also described potential issues with sampling of datasets,
suggesting that better sampling methods are needed.

Robles [10] was concerned with the replication of MSR
studies. Replication required the availability of datasets and
tools, as well as an adequate description of techniques used
to filter and analyze those datasets. The tools and descriptions
that are preserved for replication may filter using time, yet this
particular class of filtering criteria is only one of many which
must be considered for replication.

Like [10], Ghezzi and Gall [11] studied replication of MSR
studies. In particular, they described a web service to gather
and analyse software repository data, which was then used to
replicate MSR studies from 2004–2011. They found that, of
the studies in those years, 51% could not be fully replicated.

Kotti and Spinellis [12] looked at the use of pre-prepared
datasets, particularly those described in MSR’s Data Show-
case. As these datasets often include a time component (see
Section III-A), their definitions and methods are important.
Further, we note that the use of these datasets presents an
opportunity for time-based errors to propagate into further
studies and incorporating filtering/cleaning techniques into
such datasets is extremely important.

Hemmati, Nadi, Baysal, et al. [13] described a set of
best-practices, a “cookbook”, for mining software repositories
researchers. This included suggestions regarding social data,
statistical and analytical techniques, and the sharing of tools.
They discuss the issue of VCS noise and the potential lack
of granularity in VCS-recorded changes, however, they do not
discuss the potential causes of discontinuities in time data, nor
ways they may be handled.

Gasser, Ripoche, and Sandusky [14], early on in MSR’s
history, evaluated the needs of researchers in the field, and
the data and artifacts to be studied. They proposed a set of
characteristics for studies to have, and discussed issues with
data and how these issues may be addressed. In particular,
they discussed the frequent need to normalize data as part of
the analysis and data collection process.

Bird, Rigby, Barr, et al. [15] discussed mining one VCS
in particular, Git, and the potential issues that may occur in
mining repositories using it. This work describes a number of
issues, in particular, the existence of rebasing, which allows
users to rewrite a repository’s history, re-using commits in a
different order than the commit timestamps may suggest. We
consider this as a potential cause of some of the time problems
we discover in Section IV.

Paixao and Maia [16] study how rebasing is used in code
reviews. In particular, they study what the side effects of
rebasing are during the code review process. Because of the
side effects observed, specifically the introduction of commits
not germane to the review, they present a methodology to
better handle rebasing in mining code reviews. Although
rebasing causes issues, their study was not focused directly
on the time changing aspects of rebasing.

III. SURVEY ON THE USE OF TIME-BASED DATA

This paper investigates the following research questions:
RQ1 How many MSR papers rely on time-based data? We

look at all MSR published technical and Data Showcase

papers and use keyword searches to identify time-based
data being used.

RQ2 What kinds of data include time? We classify the
papers according to the data kinds.

RQ3 What filtering or cleaning techniques are used with
time-based data? We classify the papers according to
their filtering or cleaning techniques.

RQ4 Is bad time-based data common? Based on the results
of the prior research questions, we investigate Git data
from GitHub to quantify how frequently bad time-based
data occurs.

We begin by by surveying published MSR proceedings. We
select papers to review, then from these, classify what kind of
time-related data is used, how it is filtered or cleaned, and the
source of the data used.

A. Paper Selection

For this study we focused only on papers published in MSR
proceedings from 2004 to 2020. All technical track papers
(short and long) and Data Showcase papers were considered.
Data Showcase papers were included as they are potential data
sources for other (future) research papers. Mining Challenge
papers were excluded, as all papers in this category for a given
year typically use the same challenge dataset, which may skew
results towards a particular kind of data in that year. This gave
us a corpus of 690 papers to inspect.

Papers from this corpus were filtered by one author, retain-
ing for further study those that contained any of the follow-
ing time-related keywords: time, date, epoch, record,
month, year, hour, minute, second, period, week,
chronolog, day, past, and interval.

After the papers were enumerated, two authors determined
what kinds of time-based data was used, the source(s) of
the data, and any methods used to filter, clean, or normalize
the time-based data. During this process, if any two authors
both found that a paper did not fit the study, it was removed
(in particular, the use of “runtime” as a performance metric
or “epoch” as a measure of training time was considered
irrelevant to this study).

Additionally, if there was disagreement on the kinds of data,
source of data, or filtering techniques both authors discussed
until agreement was reached. This affected a total of 5 rows
for source of data, 5 rows for kinds of data, and 22 rows for
filtering techniques. This data is described in more detail in
the following subsections.

A total of 43 papers (6.2%) had a matching keyword but
were removed. Thus the keyword search yielded a precision of
85%. The results of this selection process are shown in Table I
and the spreadsheet including all identified papers and human
judgements is available in our replication package [5].

B. Paper Classification

We found that across the 239 papers selected, 44 different
kinds of time-including data were used. From these, all data
kinds used by more than one paper are shown in Table II.

TABLE II
COMMON KINDS OF DATA USED IN MSR PAPERS. ONLY DATA KINDS USED

BY MORE THAN ONE PAPER ARE LISTED HERE.

Number of Papers Data Kind
153 (64%) version control systems (VCS)
73 (31%) issues
40 (17%) forge metadata
39 (16%) releases
16 (7%) pull requests (PRs)
15 (6%) mailing lists
12 (5%) continuous improvement (CI) builds
10 (4%) Stack Overflow
10 (4%) system logs
4 (2%) Common Vulnerabilities and Exposures (CVE)
2 (1%) time cards
2 (1%) chat logs

In particular, we found that VCS data (diffs, commit lineage,
commit logs, authors, etc.) are the most commonly used.

Further, we found roughly 180 different sources of data
were used (proprietary or custom repositories were grouped as
a single source, ‘anonymized’, rather than listed separately).
Data sources used by more than one paper are shown in
Table III. Perhaps unsurprisingly, GitHub is the most common
data source. Eclipse, Apache1, and Mozilla repositories are
also popular, as is the GHTorrent dataset.

Finally we investigated any filtering or cleaning techniques
used by the selected papers. There were 54 different methods
of cleaning or filtering the data (considering all custom condi-
tions as one method for the purposes of counting). Any used
by more than one paper are shown in Table IV. We further
analyze these in the next section.

C. Identified Filtering and Cleaning Techniques

Among the various time-based filtering and cleaning tech-
niques found in MSR papers, we found six used by more than
one paper. The majority of these are filtering techniques of
some form, with a single cleaning technique described. It is
important to note, however, the majority of papers utilizing
time-based data (149, 62%) do not explicitly describe any
filtering or cleaning methods used. We discuss each of the
six techniques in more detail.

1) time window: A number of studies select data from a
source that was added between two dates or other markers
in time (e.g., releases). This was by far the most common
explicitly described method, being found in 24 studies. Some
of these studies provided full dates [17], [18], others only
partial dates out to year or month [19], [20], or version
numbers of releases [21].

2) date cutoff: All studies retrieved data from before a
specific date (the date of the study). But whether the study
date is used or some other date is used must be considered.
In particular, some papers describe what their cutoff date for
data inclusion is, while others do not. This method is used in

1Apache projects are listed separately if a paper studied just that single
project and not the full Apache repository, i.e., because NetBeans is mentioned
separately from other Apache projects, it is listed alone. Similarly, httpd and
OpenOffice are listed separately.

TABLE III
COMMON DATA SOURCES USED BY MSR PAPERS. ONLY DATA SOURCES

USED BY MORE THAN ONE PAPER ARE LISTED HERE.

Number of Papers Data Source
49 (21%) GitHub
19 (8%) Eclipse
19 (8%) Anonymized
17 (7%) Apache organization repositories
14 (6%) GHTorrent
13 (5%) Mozilla

9 (4%) Stack Overflow
8 (3%) Firefox
7 (3%) PostgreSQL
7 (3%) Linux
5 (2%) Travis
5 (2%) Python
5 (2%) Debian
4 (2%) OpenStack
4 (2%) Google Play
3 (1%) Spring
3 (1%) Source Forge
3 (1%) OpenOffice
3 (1%) NetBeans
3 (1%) Maven Central Repository
3 (1%) JBoss
3 (1%) EUDC
3 (1%) Chromium
3 (1%) BIRT
3 (1%) ArgoUML
2 (1%) World of Code
2 (1%) Software Heritage Archive
2 (1%) QT
2 (1%) OpenBSD
2 (1%) MySQL
2 (1%) Mycomp
2 (1%) Moodle
2 (1%) LKML
2 (1%) KDE
2 (1%) JBOSS
3 (1%) Apache httpd
2 (1%) Google Code
2 (1%) GHtorrent
2 (1%) GCC
2 (1%) F-Droid
2 (1%) Evolution
2 (1%) Eureka
2 (1%) DockerHub
2 (1%) CVE
2 (1%) Chrome
2 (1%) BugZilla
2 (1%) App Stores

TABLE IV
COMMON FILTERING/CLEANING TECHNIQUES USED BY MSR PAPERS.

ONLY TECHNIQUES USED BY MORE THAN ONE PAPER ARE LISTED HERE.

Times Used Method Used Type
149 (62%) none explicitly mentioned –

24 (10%) time window filtering
15 (6%) date cutoff filtering

7 (3%) custom condition filtering
5 (2%) changeset coalescence filtering
4 (2%) CVSAnalY filtering
3 (1%) date format correction cleaning

particular by Wang, Brown, Jennings, et al. [22], Karampatsis
and Sutton [23], Zhu and Wei [24], and Cito, Schermann,
Wittern, et al. [25].

3) custom condition: A custom condition specifies some
method for filtering a data source using time. These were
frequently employed to ensure that commits or issues were
studied that matched some temporal condition relating the two,
or to ensure that commits were in order, as well as for other
purposes.

Liu, Lin, and Cleland-Huang [26] describe the use of a
particular time-based condition to select commits to study.
They were interested in finding commits between the open and
close of a particular issue (in other words, looking for fixing
commits). This condition is issuecreate < commitcreate <
issueclose, and uses time components from both issues and
commits.

Kikas, Dumas, and Pfahl [27] use commit time and a forge’s
repository creation time to remove forks of original projects so
that only the originals may be studied. We note in particular
that this method may inappropriately remove projects which
have changed forges.

Finally, Steff and Russo [28] construct a commit graph such
that, for each commit node, it is only connected to nodes
preceding it in time which also share files in common, that
is, for two commits (t1,F1) and (t2,F2), (t1,F1) → (t2,F2)
if and only if t1 < t2 and F1 ∩ F2 6= ∅.

4) changeset coalescence: Further techniques used include
changeset coalescence or commit reconstruction. This tech-
nique is useful in CVS or RCS repositories where changes
are only made to individual files. Most of these methods
operate by collecting changes made in a small window (3
minute) by one user into a single changeset; they may also be
aided by the use of ChangeLogs to collect such changes. This
technique was used by Zimmermann and Weißgerber [29],
Walker, Holmes, Hedgeland, et al. [30], Kagdi, Yusuf, and
Maletic [31], and D’Ambros, Lanza, and Robbes [32].

5) CVSAnalY: CVSAnalY2 is a tool to extract information
from VCS logs of various kinds. It supports CVS, Subversion,
and Git. When operating on Subversion repositories, it skips
over commits it considers invalid, with one condition being the
lack of date. Otherwise, it performs a sort of date format cor-
rection, storing all dates as Unix timestamps with associated
time zones.

In particular, this tool sees use on Git repositories [33]–[35],
as well as subversion repositories [36], where the filtering may
be most apparent.

6) date format correction: Due to the diversity of data
sources and systems used, date and time data must often
be normalized, that is, put into a standard format. This may
include time zone conversion or other actions, and presents a
single, unified view of time for analysis and further filtering.
This cleaning technique is specifically used by Claes and
Mäntylä [37], Xu and Zhou [38], and Baysal, Holmes, and
Godfrey [39].

2https://github.com/MetricsGrimoire/CVSAnalY

https://github.com/MetricsGrimoire/CVSAnalY

These are some of the most common time-based data
filtering techniques used. In the next section we investigate
and attempt to quantify how frequently problems occur in
time-based data.

IV. IDENTIFYING AND QUANTIFYING TIME PROBLEMS

In the previous section we showed that many MSR papers
rely on time data in their methodologies. In this section we
show some potential problems with this kind of data and
attempt to quantify how often these problems occur.

To aid in quantification, we utilize the Boa infrastructure [1],
[2]. We rely on the latest general dataset (not datasets specific
to a single language), which was “2019 October/GitHub”. This
dataset contains 282,781 Git repositories from GitHub that
each contain a minimum of one revision.3 There are a total of
23,229,406 revisions in the dataset.4

1 P: output collection[string][string] of time;
2 P2: output collection[string][string] of time;
3 P3: output collection[string][string] of time;

4 cvs_release := T"Mon Nov 19 00:00:00 UTC 1990";
5 boa_dataset := T"Thu Oct 31 00:00:00 UTC 2019";
6 last: Revision;

7 visit(input, visitor {
8 before r: Revision -> {
9 if (r.commit_date < cvs_release)

10 P[input.project_url][r.id] << r.commit_date;
11 else if (r.commit_date > boa_dataset)
12 P2[input.project_url][r.id] << r.commit_date;

13 if (def(last)
14 && r.commit_date < last.commit_date
15 && !match("merge", lowercase(last.log))
16 && !match("merge", lowercase(r.log)))
17 P3[input.project_url][r.id] << r.commit_date;
18 last = r;
19 }
20 });

Fig. 1. Boa query to find bad commit timestamps for this study. This
query is the combination of http://boa.cs.iastate.edu/boa/?q=boa/job/public/
90164, http://boa.cs.iastate.edu/boa/?q=boa/job/public/90169, and http://boa.
cs.iastate.edu/boa/?q=boa/job/public/90973 for presentation purposes.

Figure 1 shows the relevant Boa query used to collect
data for this section. Note that Boa stores commits for the
main branch only, in a topologically sorted array based on
the commit parent(s). This means traversals on the commits
(called Revisions in Boa) are performed in topological
order.

The query looks for two possible kinds of bad time data.
First, it looks for suspicious commit timestamps that seem too
old. Then it also looks for commits who have a parent that is
newer than themselves. The query outputs the project URL,
the commit ID, and the commit timestamp.

Since the notes for Boa indicate this data was actually from
20155, many projects no longer exist on GitHub. We also

3http://boa.cs.iastate.edu/boa/?q=boa/job/public/90189
4http://boa.cs.iastate.edu/stats/index.php
5http://boa.cs.iastate.edu/boa/?q=content/dataset-notes-october-2019

utilized the Software Heritage archive [3], [4] to attempt to
locate these repositories that have since been deleted.

In this section, we investigate these two sources of bad time
data in more detail.

A. Looking for Suspicious Commit Timestamps

First we investigated to see if there were suspicious commit
timestamps within the studied repositories. Since they are all
Git repositories, one might expect the commit timestamps to
be after the initial release of Git (around 2005). It is however
possible some repositories were in a different version control
system (such as CVS or Subversion) and converted to Git.
For the sake of this study, we decided to investigate any
commit timestamp prior to the release of CVS version 1.0
(19 November 1990). The relevant part of the Boa query in
Figure 1 is lines 9–10.

The result of this query found 4,735 suspicious commit
timestamps from 82 projects. For those projects, this represents
3.45% of their total commits. For the full dataset, this repre-
sents 0.02% of the commits. In total, there were 23 unique
suspicious timestamps (note: Boa timestamps are given as
Unix timestamps with milliseconds), listed here along with
the number of times they occurred and their conversion to a
human readable date format:

$ cut -d’=’ -f2 P.txt | sort -n | uniq
-2044178335000000# 1 time, 03/23/1905, 12:41:05 PM
0 #4677 times,01/01/1970, 12:00:00 AM
730000000 # 1 time, 01/01/1970, 12:12:10 AM
956000000 # 1 time, 01/01/1970, 12:15:56 AM
1585000000 # 1 time, 01/01/1970, 12:26:25 AM
1601000000 # 1 time, 01/01/1970, 12:26:41 AM
1627000000 # 1 time, 01/01/1970, 12:27:07 AM
3495000000 # 1 time, 01/01/1970, 12:58:15 AM
3523000000 # 1 time, 01/01/1970, 12:58:43 AM
7403000000 # 1 time, 01/01/1970, 02:03:23 AM
7558000000 # 1 time, 01/01/1970, 02:05:58 AM
7923000000 # 1 time, 01/01/1970, 02:12:03 AM
88210000000 # 1 time, 01/02/1970, 12:30:10 AM
88211000000 # 2 times, 01/02/1970, 12:30:11 AM
88212000000 # 3 times, 01/02/1970, 12:30:12 AM
88213000000 # 2 times, 01/02/1970, 12:30:13 AM
127771000000 # 1 time, 01/02/1970, 11:29:31 AM
179895000000 # 1 time, 01/03/1970, 01:58:15 AM
255447000000 # 1 time, 01/03/1970, 10:57:27 PM
1000000000000 # 25 times, 01/12/1970, 13:46:40 PM
315772873000000 # 1 time, 01/03/1980, 06:41:13 PM
566635987000000 # 5 times, 12/16/1987, 06:53:07 AM
589770257000000 # 5 times, 09/09/1988, 02:04:17 AM

As can be seen, the majority of the suspicious timestamps
are the value 0. There are however a handful of other suspi-
cious timestamps. For example, the 8 timestamps on January
2, 1970 at 12:30 all come from a single project that was ported
over from Microsoft’s CodePlex.6 Most likely there was a
problem in that porting process.

In fact, many of these suspicious timestamped commits
seem to come from tools, such as git-svn.7 This tool
was popular in the period between when Subversion was
more common and people were starting to move to Git. It

6https://github.com/KevinHoward/Irony
7https://github.com/maodouzi/PY/commits/master

http://boa.cs.iastate.edu/boa/?q=boa/job/public/90164
http://boa.cs.iastate.edu/boa/?q=boa/job/public/90164
http://boa.cs.iastate.edu/boa/?q=boa/job/public/90169
http://boa.cs.iastate.edu/boa/?q=boa/job/public/90973
http://boa.cs.iastate.edu/boa/?q=boa/job/public/90973
http://boa.cs.iastate.edu/boa/?q=boa/job/public/90189
http://boa.cs.iastate.edu/stats/index.php
http://boa.cs.iastate.edu/boa/?q=content/dataset-notes-october-2019
https://github.com/KevinHoward/Irony
https://github.com/maodouzi/PY/commits/master

Fig. 2. Word Cloud of tokens appearing in suspicious commit messages, excluding commits containing the frequent term “git-svn-id”. English stop words
were removed.

allows maintaining a Git clone of a Subversion repository but
required inserting ‘git-svn-id’ tags into the commit messages
to properly track the SVN repository. We were able to verify
3,122 of the commit logs via GitHub’s API, and 2,847 of those
commits (91%) contain a git-svn-id tag in the message.

Since that tool accounted for such a large portion of
the commits, we investigated all the remaining commits by
generating a word cloud of the commit logs, shown in Fig-
ure 2. We note that several frequent words include ’external/’
and probably indicate a repository tracking another (external)
repository, most likely via some tool.

We also investigated dates that might be in the future. For
this we used a cutoff time of the Boa dataset’s release date
(31 October 2019). Any commit with a time later than that
release date was output. This analysis yielded 11 commits
from 3 projects where the dates were in the years 2025,
2027, and 2037. Clearly these commits have invalid dates.
A manual inspection of these commits showed the commits
were (based on the Git graph) in between commits with dates
that appear valid, indicating the years were off. Most likely
these invalid dates were generated through either user error or
misconfigured clocks.

B. Finding Out-of-order Commits

Another possible problem with Git allowing users and tools
to set the commit date is that the date specified might seem
valid, but actually be wrong. This could lead to a graph where
a particular node has a commit date that is actually older than
its parent node. Obviously such a case should not make sense.
This might be due to a misconfigured clock on a particular

computer8, specifying the wrong time zone9, or any other
number of causes.10 We call these out-of-order commits.

In this section, we investigate how frequently such out-of-
order commits occur in Boa’s dataset. To do this, we traverse
the revision list of each code repository in order and compare
the commit date of a revision to the commit date of the
previous revision. Due to how Boa linearizes the commit graph
using a topological sort, this might not technically be a parent
(indeed, commit nodes might also have multiple parents due
to branching) but it can give us insight into this problem.

In the first attempt at writing this query, we noticed a lot of
results where one of the two commits were explicitly marked
(in the log) as a merge commit. We decided to filter those out
as merging behavior might induce a lot of false positives. The
relevant part of the Boa query in Figure 1 is lines 13–18.

Running this query gave us 26,252 suspicious commits from
4,744 projects. For those projects, this represents 0.55% of
their total commits. For the full dataset, this represents 0.11%
of the commits. We used the GitHub API to download the
JSON metadata for as many of the commits as possible and
for any missing commits attempted to obtain JSON metadata
from Software Heritage. This left us with 25,956 commits,
which we then verified were either older or newer than their
parents.

Our verification process indicated that a total of 18,762
commits had at least one parent that was newer than the
commit itself:

8https://stackoverflow.com/questions/633353
9https://stackoverflow.com/questions/52507279
10https://stackoverflow.com/questions/16259105

https://stackoverflow.com/questions/633353
https://stackoverflow.com/questions/52507279
https://stackoverflow.com/questions/16259105

1 $ grep ’: BAD’ order-verified.txt | wc -l
2 18762

Inspecting a small sample of 20 of those commits, we see
the time difference mostly runs under an hour (9 commits)
or under one day (8 commits). One commit was almost 19
days out of order. Although we can’t tell from the commits
themselves, we suspect that bad server clocks and timezone
issues account for most of these observed differences that are
one day or less. In the next sections we look at some common
tools, users, and projects observed in the out-of-order dataset.

1) Common Tools: We further processed the commits sus-
pected to be out of order. Having done so, we collected
all commit messages and removed English stop words to
produce a word cloud (Figure 3) allowing us to visualise terms
frequently used in the bad commits. By doing so, we were able
to note a handful of tools that have a tendency to produce bad
commit timestamps.

1 $ grep ’Reviewed-by’ logs-order.txt | wc -l
2 984
3 $ grep ’Change-Id’ logs-order.txt | wc -l
4 363

5 $ grep ’rebase_source’ logs-order.txt | wc -l
6 390
7 $ grep -i ’\bhg\b’ logs-order.txt | wc -l
8 539

9 $ grep ’MOE’ logs-order.txt | wc -l
10 465
11 $ grep ’push_codebase’ logs-order.txt | wc -l
12 232
13 $ grep ’MOE\|push_codebase’ logs-order.txt | wc -l
14 465

Review systems like Gerrit11 seem to be a frequent contrib-
utor to bad commits, as found by the Change-Id commit
footer (363 times). We suspect this is due to the “push, review,
commit/rebase, force push, GOTO review” method that is used
by many participants in the code review process.

We also frequently found other commit log footers, like
Reviewed-by (984 times total). These are used in other
review processes, which involve either rebasing to edit commit
messages to include them, or passing patch sets via email.

We also noticed another mixed VCS, namely hg-git12,
which allows a Mercurial user to manipulate a Git repository
using Mercurial commands. In particular, we note the addition
of metadata to commits, with the rebase_source footer
(seen 390 times), which is likely a result of rebases on
Git repositories using Mercurial or similar tools. Mercurial’s
abbreviation, hg is also found 539 times.

Google produced a tool, MOE13 (Make Open Easy) which
is used to synchronize two repositories, one internal, and
one open to the public. This tool can synchronize, translate
content between kinds of repositories, and scrub content from
a repository. Because of these features, we suspect that use
of this tool produced a mismatch between repositories, where

11https://gerritcodereview.com
12https://www.mercurial-scm.org/wiki/HgGit
13https://opensource.google/projects/moe

TABLE V
TOP 20 PROJECTS WITH THE MOST FAULTY COMMITS.

Bad Commits Project
584 glob3mobile/g3m
420 mdcurtis/micromanager-upstream
407 openspim/micromanager
333 axDev-JDK/jdk
317 GrammaticalFramework/GF
198 mytskine/mupdf-unofficial
187 oferfrid/PrecisExciteTCP
166 axDev-JDK/hotspot
161 uditrugman/openjdk8-jdk
132 uditrugman/openjdk8-hotspot
113 xapi-project/xen-api
101 zeniko/mupdf
101 muennich/mupdf
101 michaelcadilhac/pdfannot
101 lmurmann/mupdf
101 libretro/RetroArch
101 issuestand/mupdf
101 crow-misia/mupdf
101 clchiou/mupdf
101 ccxvii/mupdf

an open-source repository received patches from an internal
repository after receiving patches from other contributors. We
see MOE related messages show up 465 times across the bad
commits.

2) Common Users: Using the collected commit data, we
analyzed commit author information and counted the number
of commits made by the top 20 contributors of the bad
commits in our dataset. From this, we found that 5,279
commits (28%) were made by the top 20 users (with all ‘(no
name)’ users considered as one).

3) Common Projects: Similarly, we collected the project
each bad commit belonged to and found that the top 20
projects contributed 3,972 of the bad commits (21%), see
Table V.

Note that several of the projects appear to be clones, where
the original repository most likely contained some bad commit
timestamps. Boa only contains non-forked repositories, so
these projects most likely cloned and uploaded the repository
without utilizing GitHub’s fork feature.

C. Summary

To summarize, we were able to find thousands of bad
commit timestamps. Many of these commits seem to originate
from tool use, especially tools that migrate or synchronize
between two version control systems. In addition, we saw a
small number of users and projects seem to contribute a large
number of the bad commit timestamps.

V. THREATS TO VALIDITY

The keyword-based search technique to identify MSR pa-
pers using time-based data is sound, as we manually verified
the results. It is however not complete, as a paper might have
utilized time-based data without using any of the selected
keywords. Thus the 35% of papers identified is a lower bound
and the actual number of papers utilizing time-based data
might be even higher.

https://gerritcodereview.com
https://www.mercurial-scm.org/wiki/HgGit
https://opensource.google/projects/moe

Fig. 3. Word Cloud of tokens appearing in bad commit messages. English stop words were removed.

The use of Boa and the existence of cloned repositories in
its dataset is a potential further threat. In those commits which
were considered suspiciously old, there were 3,412 unique
commit ids, with 821 of these ids repeated (22.7%). In those
which were out of order, there was a total of 18,685 unique
commit ids, with 9,726 repeated (52%). However, due to the
method by which commits were examined (selecting by ID
alone from either GitHub or the Software Heritage archive)
further analysis on commit contents was based on on the
unique commits. This underscores the necessity of careful de-
duplication (relying on things other than just GitHub’s fork
feature to record the creation of forks) as well as serves to
underscore the wide-range of faulty commits.

Note that 869 out of the 4,785 projects (18.2%) identified
with time data problems no longer exist on GitHub (as of
28 December 2020). These projects are however still in the
released Boa dataset, so we maintained their results in this
study. We attempted to mitigate this threat by validating the
data directly with GitHub using their API, and for the projects
that were missing we utilized the Software Heritage Archive.
Note however that the times Boa and Software Heritage
indexed the projects might differ, and thus there were some
commits found by Boa that we were not able to verify. Such
commits were removed from the dataset. Of the 29,896 total
commits found by Boa, 25,012 (83.66%) were still on GitHub,
3,568 (11.93%) were found on Software Heritage, and 1,316
(4.40%) were excluded. We do not believe this is a problem
however, as the point of the analysis was to see if bad time
data exists, not to fully account for all such cases.

Some of the commits might actually suffer from multiple
problems. To quantify how many commits have a bad times-

tamp and also are out of order, we intersect the two results:

1 $ wc -l *-output.txt
2 4735 old-output.txt
3 26252 order-output.txt
4 30987 total
5 $ comm old-output.txt order-output.txt | wc -l
6 29514
7 $ comm -12 old-output.txt order-output.txt | wc -l
8 1473

This shows there are 1,473 (4.99%) commits in Boa’s dataset
that potentially suffered from both the out-of-order error as
well as being suspiciously old. Most of those (all but 11) are
timestamps of 0.

A threat to external validity is that we only studied
Git repositories. However, although we did not quantify
it explicitly, Subversion also allows developers to mod-
ify (and even remove!) the commit date: svn propset
-rXXX --revprop svn:date Running the same
Boa queries on Boa’s older dataset from SourceForge (which
contains Subversion repositories) shows there are both suspi-
ciously old14 and out-of-order15 commits in that data too. The
results however may not generalize to any VCS that disallows
modifying commit timestamps.

VI. DISCUSSION

We showed that time-based data is utilized by a large
number of MSR research (at least 35% of papers). We then
described some possible problems with timestamps in Git data,
the most used data kind, and attempted to quantify how often

14http://boa.cs.iastate.edu/boa/?q=boa/job/public/91547
15http://boa.cs.iastate.edu/boa/?q=boa/job/public/91552

http://boa.cs.iastate.edu/boa/?q=boa/job/public/91547
http://boa.cs.iastate.edu/boa/?q=boa/job/public/91552

TABLE VI
PERCENT OF FAULTY COMMITS REMOVED BY FILTERING COMMITS FROM

OR BEFORE A GIVEN YEAR.

Filter Date Percent Removed
≤ 2015 100.00%
≤ 2014 99.85%
≤ 2013 98.28%
≤ 2012 70.93%
≤ 2011 51.15%
≤ 2010 36.72%
≤ 2009 25.41%
≤ 2008 18.69%
≤ 2007 13.39%
≤ 2006 11.60%
≤ 2005 10.58%
≤ 2004 9.50%
≤ 2003 8.70%
≤ 2002 8.66%
≤ 2001 8.52%
≤ 2000 8.37%
≤ 1999 8.29%
≤ 1998 8.28%
≤ 1997 8.25%
≤ 1996 8.20%
≤ 1994 8.19%
≤ 1992 7.18%
≤ 1970 7.18%

those problems occur in the most used data source, GitHub.
In this section, we discuss some guidelines for handling time-
based data.

When order is a component of an analysis, handling sus-
picious commits is recommended. To do this, we recommend
that any commit with a timestamp less than 1 is removed. For
the data we observed, this filter would remove about 98% of
suspicious commits.

In general, we also recommend searching the commit logs
for projects that contain a ‘git-svn-id’ tag.

To handle the problem of out-of-order commits, we recom-
mend four strategies: 1) filtering commits before a certain date;
2) filtering commits belonging to certain projects; 3) filtering
only commits which are out-of-order; and/or, 4) using a robust
method of mining commits with rebasing. We will discuss
each of these in turn, including the benefits and the potential
problems each brings to the table.

1) Filtering Before a Specific Date: The first filtering
method we suggest is removing commits from before a specific
date. We suggest this method due to its relative simplicity,
as well as its effect (see Table VI). In particular, we suggest
removing all commits before 1 January 2014, as doing so could
remove 98.28% of all out-of-order commits. Even filtering this
much data still leaves (at the time of writing) seven years of
historical data to study.

If the research question requires longer history, this method
may not be feasible and one of the other two methods is
recommended.

2) Filtering Specific Projects: Given the exceedingly wide
range of projects available on GitHub and similar sites, the
removal of projects known to have a large number of out-of-
order commits still leaves a large available corpus. The benefit
is that a longer history can be maintained. This is a bit more

complicated than simply filtering by a specific date though,
as a list of so called “bad” projects would need to be known.
The MSR community could work toward maintaining such a
list.

3) Filtering only Out-of-Order Commits: This filtering
method is the most complex, requiring each commit to be
examined in turn, however, this method has the benefit of not
removing other history, and could be used to enable study
of a repository that otherwise may be problematic, or has
substantial pre-2014 history. Further, this method has been
used previously (e.g., [28]).

4) Ordering on Author Date: Git commits store two
timestamps: the author date and the committer date. The
author date is the date the commit was originally made. The
committer date is essentially the last date the commit was
modified. Certain commands, e.g. cherry picking and rebasing,
modify the commits and thus will change the committer date.

We recommend most studies utilize the author date instead
of committer date. Most of the time, the two dates are iden-
tical. However, for repositories with rebase-heavy workflows,
such as those utilizing Gerrit and similar review platforms,
techniques such as those recommended by Paixao and Maia
[16] might be required.

5) Summary: The exact method(s) utilized will depend
highly on the specific research questions being answered. For
example, if the research questions require a long history then
filtering by date might not be the best approach. Additionally,
researchers need to decide if it is acceptable to simply drop the
bad commits alone, or if a project with bad commits should
be excluded entirely.

VII. CONCLUSION

The use of time-based data in MSR studies is wide-spread,
in at least 35% of MSR papers. Properly handling this time-
based data is thus very important. However, the diversity of
tools and workflows used to generate the time-based data can
present challenges. In particular, ensuring that time data is
consistent and maintains linearity is important. Further, we
have found that many papers do not describe cleaning or fil-
tering of time data, with those that do describe filtering tending
towards simple techniques like selection from a defined time
span or selection of data before a certain date. Some papers
have used more robust or rigorous techniques, and may thus
avoid some of the time-related problems found in data such
as Git repositories.

To remedy potential time-based issues in VCS data, such
as that coming from GitHub, we recommend a simple filter
to drop any timestamp less than 1 as well as a more com-
plex filtering to remove out-of-order commits. Ideally, each
repository would be analyzed to detect and remove the out-
of-order commits, but depending on the need a simple cutoff
filter removing commits prior to 2014 might suffice. Applying
both filters (the second filter actually implies the first) is very
simple and would remove around 98% of all observed bad
commits.

In the future, we would like to sample some datasets from
prior publications to quantify how often bad time-based data
occurred in those studies and quantify how it may have
affected the published results. We would also like to investigate
potential problems in other kinds of time data, such as issue
reports. We would also like to investigate how time-based data
is used when training machine learning models and if issues
arise from training on later observed data and then classifying
on older data.

ACKNOWLEDGMENT

The authors would like to thank Yijia Huang, Tien N.
Nguyen, and Hridesh Rajan for insightful discussions that
inspired this paper. We also thank the anonymous reviewers
for several suggestions that have substantially improved this
paper.

REFERENCES

[1] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen,
“Boa: A language and infrastructure for analyzing ultra-
large-scale software repositories,” in Proceedings of the
2013 International Conference on Software Engineer-
ing, ser. ICSE ’13, IEEE Press, 2013, pp. 422–431. DOI:
10.5555/2486788.2486844.

[2] ——, Boa: Mining ultra-large-scale software reposito-
ries, http://boa.cs.iastate.edu/, Accessed: 2020-12-28,
2020.

[3] R. D. Cosmo and S. Zacchiroli, “Software Heritage:
Why and how to preserve software source code,” in
iPRES 2017: 14th International Conference on Digital
Preservation, Kyoto, Japan, Sep. 25, 2017.

[4] T. S. H. developers, Software heritage archive, https:
//archive.softwareheritage.org/, Accessed: 2020-12-28,
2020.

[5] S. W. Flint, J. Chauhan, and R. Dyer, Replication pack-
age for ”Escaping the Time Pit: Pitfalls and Guidelines
for Using Time-Based Git Data”, version 1.1.0, Zenodo,
Mar. 2021. DOI: 10 .5281 /zenodo .4625288. [Online].
Available: https://doi.org/10.5281/zenodo.4625288.

[6] S. Demeyer, A. Murgia, K. Wyckmans, and A.
Lamkanfi, “Happy birthday! a trend analysis on past
MSR papers,” in Proceedings of the 10th Working Con-
ference on Mining Software Repositories, ser. MSR ’13,
San Francisco, CA, USA: IEEE Press, 2013, pp. 353–
362, ISBN: 9781467329361.

[7] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian, “The promises and
perils of mining github,” in Proceedings of the 11th
Working Conference on Mining Software Reposito-
ries, ser. MSR 2014, Hyderabad, India: Association
for Computing Machinery, 2014, pp. 92–101, ISBN:
9781450328630. DOI: 10 . 1145 / 2597073 . 2597074.
[Online]. Available: https://doi.org/10.1145/2597073.
2597074.

[8] ——, “An in-depth study of the promises and perils of
mining github,” Empirical Softw. Engg., vol. 21, no. 5,
pp. 2035–2071, Oct. 2016, ISSN: 1382-3256. DOI: 10.
1007/s10664- 015- 9393- 5. [Online]. Available: https:
//doi.org/10.1007/s10664-015-9393-5.

[9] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings
from GitHub: Methods, datasets and limitations,” in
2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR), 2016, pp. 137–141.

[10] G. Robles, “Replicating MSR: A study of the potential
replicability of papers published in the Mining Software
Repositories proceedings,” in 7th IEEE Working Con-
ference on Mining Software Repositories, ser. MSR ’10,
2010, pp. 171–180. DOI: 10.1109/MSR.2010.5463348.

[11] G. Ghezzi and H. C. Gall, “Replicating mining studies
with SOFAS,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, ser. MSR
’13, San Francisco, CA, USA: IEEE Press, 2013,
pp. 363–372, ISBN: 9781467329361.

[12] Z. Kotti and D. Spinellis, “Standing on shoulders or
feet? the usage of the MSR data papers,” in Proceed-
ings of the 16th International Conference on Mining
Software Repositories, ser. MSR ’19, Montreal, Quebec,
Canada: IEEE Press, 2019, pp. 565–576. DOI: 10.1109/
MSR.2019.00085.

[13] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W.
Wang, R. Holmes, and M. W. Godfrey, “The MSR cook-
book: Mining a decade of research,” ser. MSR ’13, San
Francisco, CA, USA: IEEE Press, 2013, pp. 343–352,
ISBN: 9781467329361.

[14] L. Gasser, G. Ripoche, and R. J. Sandusky, “Research
infrastructure for empirical science of F/OSS,” in Pro-
ceedings of the 1st International Workshop on Mining
Software Repositories, 2004.

[15] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton,
D. M. German, and P. Devanbu, “The promises and
perils of mining git,” in 2009 6th IEEE International
Working Conference on Mining Software Repositories,
2009, pp. 1–10. DOI: 10.1109/MSR.2009.5069475.

[16] M. Paixao and P. H. Maia, “Rebasing in code review
considered harmful: A large-scale empirical investiga-
tion,” in 2019 19th International Working Conference
on Source Code Analysis and Manipulation (SCAM),
Cleveland, OH, USA, pp. 45–55. DOI: 10.1109/SCAM.
2019.00014.

[17] T. Durieux, C. Le Goues, M. Hilton, and R. Abreu,
“Empirical study of restarted and flaky builds on Travis
CI,” in Proceedings of the 17th International Confer-
ence on Mining Software Repositories, ser. MSR ’20,
Seoul, Republic of Korea: Association for Computing
Machinery, 2020, pp. 254–264. DOI: 10.1145/3379597.
3387460.

[18] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire,
“A large-scale study about quality and reproducibility
of Jupyter notebooks,” in Proceedings of the 16th Inter-
national Conference on Mining Software Repositories,

https://doi.org/10.5555/2486788.2486844
http://boa.cs.iastate.edu/
https://archive.softwareheritage.org/
https://archive.softwareheritage.org/
https://doi.org/10.5281/zenodo.4625288
https://doi.org/10.5281/zenodo.4625288
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1109/MSR.2010.5463348
https://doi.org/10.1109/MSR.2019.00085
https://doi.org/10.1109/MSR.2019.00085
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/SCAM.2019.00014
https://doi.org/10.1109/SCAM.2019.00014
https://doi.org/10.1145/3379597.3387460
https://doi.org/10.1145/3379597.3387460

ser. MSR ’19, Montreal, Quebec, Canada: IEEE Press,
2019, pp. 507–517. DOI: 10.1109/MSR.2019.00077.

[19] J. Hayashi, Y. Higo, S. Matsumoto, and S. Kusumoto,
“Impacts of daylight saving time on software develop-
ment,” in Proceedings of the 16th International Con-
ference on Mining Software Repositories, ser. MSR
’19, Montreal, Quebec, Canada: IEEE Press, 2019,
pp. 502–506. DOI: 10.1109/MSR.2019.00076.

[20] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and
K. A. Schneider, “Mining duplicate questions in Stack
Overflow,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR
’16, Austin, Texas: Association for Computing Ma-
chinery, 2016, pp. 402–412. DOI: 10 . 1145 / 2901739 .
2901770.

[21] G. Antoniol, V. F. Rollo, and G. Venturi, “Linear
predictive coding and cepstrum coefficients for mining
time variant information from software repositories,”
in Proceedings of the 2005 International Workshop on
Mining Software Repositories, ser. MSR ’05, St. Louis,
Missouri: Association for Computing Machinery, 2005,
pp. 1–5. DOI: 10.1145/1083142.1083156.

[22] P. Wang, C. Brown, J. A. Jennings, and K. T. Stolee,
“An empirical study on regular expression bugs,” in
Proceedings of the 17th International Conference on
Mining Software Repositories, ACM, 2020. DOI: 10 .
1145/3379597.3387464.

[23] R.-M. Karampatsis and C. Sutton, “How often do
single-statement bugs occur?” In Proceedings of the
17th International Conference on Mining Software
Repositories, ACM, 2020. DOI: 10 . 1145 / 3379597 .
3387491.

[24] J. Zhu and J. Wei, “An empirical study of multiple
names and email addresses in OSS version control
repositories,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR),
IEEE, 2019. DOI: 10.1109/msr.2019.00068.

[25] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S.
Zumberi, and H. C. Gall, “An empirical analysis of
the Docker container ecosystem on GitHub,” in 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), IEEE, 2017. DOI: 10 .
1109/msr.2017.67.

[26] Y. Liu, J. Lin, and J. Cleland-Huang, “Traceability
support for multi-lingual software projects,” in Proceed-
ings of the 17th International Conference on Mining
Software Repositories, ser. MSR ’20, Seoul, Republic
of Korea: Association for Computing Machinery, 2020,
pp. 443–454. DOI: 10.1145/3379597.3387440.

[27] R. Kikas, M. Dumas, and D. Pfahl, “Using dynamic and
contextual features to predict issue lifetime in GitHub
projects,” in Proceedings of the 13th International Con-
ference on Mining Software Repositories, ser. MSR ’16,
Austin, Texas: Association for Computing Machinery,
2016, pp. 291–302. DOI: 10.1145/2901739.2901751.

[28] M. Steff and B. Russo, “Co-evolution of logical cou-
plings and commits for defect estimation,” in Pro-
ceedings of the 9th IEEE Working Conference on
Mining Software Repositories, ser. MSR ’12, Zurich,
Switzerland: IEEE Press, 2012, pp. 213–216, ISBN:
9781467317610.

[29] T. Zimmermann and P. Weißgerber, “Preprocessing
CVS data for fine-grained analysis,” in Proceedings
of the 1st International Workshop on Mining Software
Repositories, ser. MSR ’04, Edinburgh, Scotland, 2004,
pp. 2–6.

[30] R. J. Walker, R. Holmes, I. Hedgeland, P. Kapur,
and A. Smith, “A lightweight approach to technical
risk estimation via probabilistic impact analysis,” in
Proceedings of the 2006 International Workshop on
Mining Software Repositories, ser. MSR ’06, Shanghai,
China: Association for Computing Machinery, 2006,
pp. 98–104. DOI: 10.1145/1137983.1138008.

[31] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining se-
quences of changed-files from version histories,” in
Proceedings of the 2006 International Workshop on
Mining Software Repositories, ser. MSR ’06, Shanghai,
China: Association for Computing Machinery, 2006,
pp. 47–53. DOI: 10.1145/1137983.1137996.

[32] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive
comparison of bug prediction approaches,” in 2010 7th
IEEE Working Conference on Mining Software Repos-
itories (MSR 2010), 2010, pp. 31–41. DOI: 10 .1109/
MSR.2010.5463279.

[33] J. M. Gonzalez-Barahona, G. Robles, and D. Izquierdo-
Cortazar, “The MetricsGrimoire database collection,” in
Proceedings of the 12th Working Conference on Mining
Software Repositories, ser. MSR ’15, Florence, Italy:
IEEE Press, 2015, pp. 478–481, ISBN: 9780769555942.

[34] G. Robles, J. M. González-Barahona, C. Cervigón,
A. Capiluppi, and D. Izquierdo-Cortázar, “Estimating
development effort in free/open source software projects
by mining software repositories: A case study of Open-
Stack,” in Proceedings of the 11th Working Conference
on Mining Software Repositories, ser. MSR 2014, Hy-
derabad, India: Association for Computing Machinery,
2014, pp. 222–231. DOI: 10.1145/2597073.2597107.

[35] M. Goeminne, M. Claes, and T. Mens, “A historical
dataset for the Gnome ecosystem,” in 2013 10th Work-
ing Conference on Mining Software Repositories (MSR),
2013, pp. 225–228. DOI: 10.1109/MSR.2013.6624032.

[36] C. Sadowski, C. Lewis, Z. Lin, X. Zhu, and E. J.
Whitehead, “An empirical analysis of the FixCache
algorithm,” in Proceedings of the 8th Working Confer-
ence on Mining Software Repositories, ser. MSR ’11,
Waikiki, Honolulu, HI, USA: Association for Com-
puting Machinery, 2011, pp. 219–222. DOI: 10.1145/
1985441.1985475.

[37] M. Claes and M. V. Mäntylä, “20-MAD: 20 years of is-
sues and commits of Mozilla and Apache development,”
in Proceedings of the 17th International Conference on

https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00076
https://doi.org/10.1145/2901739.2901770
https://doi.org/10.1145/2901739.2901770
https://doi.org/10.1145/1083142.1083156
https://doi.org/10.1145/3379597.3387464
https://doi.org/10.1145/3379597.3387464
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.1109/msr.2019.00068
https://doi.org/10.1109/msr.2017.67
https://doi.org/10.1109/msr.2017.67
https://doi.org/10.1145/3379597.3387440
https://doi.org/10.1145/2901739.2901751
https://doi.org/10.1145/1137983.1138008
https://doi.org/10.1145/1137983.1137996
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1145/2597073.2597107
https://doi.org/10.1109/MSR.2013.6624032
https://doi.org/10.1145/1985441.1985475
https://doi.org/10.1145/1985441.1985475

Mining Software Repositories, ser. MSR ’20, Seoul, Re-
public of Korea: Association for Computing Machinery,
2020, pp. 503–507. DOI: 10.1145/3379597.3387487.

[38] Y. Xu and M. Zhou, “A multi-level dataset of Linux ker-
nel patchwork,” in Proceedings of the 15th International
Conference on Mining Software Repositories, ser. MSR
’18, Gothenburg, Sweden: Association for Computing
Machinery, 2018, pp. 54–57. DOI: 10.1145/3196398.
3196475.

[39] O. Baysal, R. Holmes, and M. W. Godfrey, “Mining
usage data and development artifacts,” in 2012 9th IEEE
Working Conference on Mining Software Repositories
(MSR), 2012, pp. 98–107. DOI: 10.1109/MSR.2012.
6224305.

https://doi.org/10.1145/3379597.3387487
https://doi.org/10.1145/3196398.3196475
https://doi.org/10.1145/3196398.3196475
https://doi.org/10.1109/MSR.2012.6224305
https://doi.org/10.1109/MSR.2012.6224305

