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Abstract—Code completion is one of the main features of
modern Integrated Development Environments (IDEs). Its ob-
jective is to speed up code writing by predicting the next code
token(s) the developer is likely to write. Research in this area
has substantially bolstered the predictive performance of these
techniques. However, the support to developers is still limited to
the prediction of the next few tokens to type. In this work, we
take a step further in this direction by presenting a large-scale
empirical study aimed at exploring the capabilities of state-of-
the-art deep learning (DL) models in supporting code completion
at different granularity levels, including single tokens, one or
multiple entire statements, up to entire code blocks (e.g., the
iterated block of a for loop). To this aim, we train and test several
adapted variants of the recently proposed RoBERTa model, and
evaluate its predictions from several perspectives, including: (i)
metrics usually adopted when assessing DL generative models
(i.e., BLEU score and Levenshtein distance); (ii) the percentage
of perfect predictions (i.e., the predicted code snippets that
match those written by developers); and (iii) the “semantic”
equivalence of the generated code as compared to the one written
by developers. The achieved results show that BERT models
represent a viable solution for code completion, with perfect
predictions ranging from ∼7%, obtained when asking the model
to guess entire blocks, up to ∼58%, reached in the simpler
scenario of few tokens masked from the same code statement.

Index Terms—Code Completion, BERT

I. INTRODUCTION

The software development landscape is continuously chang-
ing, with new and evolving programming languages, frame-
works, and APIs. This makes writing code by heart quite
challenging even for the most experienced developers. For this
reason, code completion is considered to be one of the “killer”
features of modern Integrated Development Environments
(IDEs) [1]–[3]: It can provide developers with recommenda-
tions about the next code token (e.g., a method call) to write
given the code already written in the IDE, thus speeding up
software development and preventing mistakes [4], [5].

The existing literature has documented major advances of
code completion tools, with their recommendations ranging
from mere alphabetical lists of the next token to write given
the characters already typed (e.g., a list of possible method
calls matching the first character typed by the developer) to
“intelligent” completions considering the context surrounding
the code [1], [2], the history of code changes [2], and/or coding
patterns mined from software repositories [6]–[12].

Last, but not least, Deep Learning (DL) models have been
applied to code completion [3], [13]–[16], setting new stan-
dards in terms of prediction performance. Although the perfor-
mance of code completion techniques substantially improved
over time, the type of support they provide to developers has
not evolved at the same pace, and are mostly only capable of
predicting a single token. Only a few recent studies focus on
predicting multiple contiguous tokens [14], [15].

We present a large-scale empirical study exploring the limits
and capabilities of state-of-the-art DL models to support code
completion. Besides generating the next token(s) the developer
is likely to write, we apply DL models to the generation
of entire statements and code blocks (e.g., the body of an
if statement). Among the many DL models proposed in the
literature, we decided to adapt the RoBERTa model recently
proposed by Liu et al. [17]. RoBERTa is a BERT (Bidirec-
tional Encoder Representations from Transformers) model
[18] using a pre-training task in which random words in the
input sentences are masked out using a special <MASK> token,
with the model in charge of predicting the masked words. The
RoBERTa pre-training task formulation is particularly suited
for code completion: The input sentences can be seen as code
statements and the masked words as masked code tokens. Also,
as compared to statistical language models, BERT models have
the advantage of considering both the words preceding and
following the masked words to perform the prediction.

One limitation of the RoBERTa pre-training task is that n
<MASK> tokens must be used to mask n code tokens, thus
implicitly suggesting to the model how many code tokens
must be generated to autocomplete the masked statement. This
would not be realistic in a real usage scenario, in which the
code completion engine must guess the tokens to generate,
without the developer suggesting how many tokens must be
generated. For this reason, we adapted the RoBERTa pre-
training objective to be able to guess, from a single <MASK>
token masking one or more code tokens in the given state-
ments, which and how many code tokens must be generated.

Also, note that the goal of our study is not to show that
RoBERTa is the best option for neural-based code completion.
Our work focuses on empirically exploring the capabilities of
DL-based code completion and RoBERTa has been chosen as
representative of the state-of-the-art DL techniques.
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We train three different variants of the RoBERTa model,
specialized in: (i) token-level predictions, namely classic code
completion in which the model is used to guess the last
n tokens in a statement the developer started writing; (ii)
construct-level predictions, in which the model is used to
predict specific code constructs (e.g., the condition of an if
statement) that can be particularly useful to developers while
writing code; and (iii) block-level predictions, with the masked
code spanning one or more entire statements composing a code
block (e.g., the iterated block of a for loop).

We analyze the quality of the generated predictions from
several different perspectives, including: (i) metrics usually
adopted in the literature when assessing DL generative models
(i.e., BLEU score [19] and Levenshtein distance [20]); (ii) the
percentage of perfect predictions (i.e., the predicted code is
exactly the same as the one written by the developer); and (iii)
the “semantic” equivalence of non-perfect predictions, namely
cases in which the code predicted by the model is different
as compared to the one originally written by the developers
but equivalent in terms of provided functionality. We also
compare the RoBERTa model with a state-of-the-art n-gram
model presented by Hellendoorn and Devanbu [12].

The achieved results show that, for the typical code comple-
tion task (i.e., token-level), RoBERTa is able to correctly guess
all masked tokens in 39% to 58% of cases, depending on the
specific dataset and code representation we use. When the code
completion task concerns more challenging scenarios such as
the construct-level predictions, the performance drops by 10%-
15%. Finally, in the most challenging scenario in which we
mask entire blocks, RoBERTa shows its limitations, being able
to correctly reconstruct the masked block only in 7%-9% of the
cases and, in particular, when the masked block is quite short
in terms of tokens. When compared to the n-gram model [12],
the performance of RoBERTa is substantially better. However,
this gain of performance comes at a much higher training cost.

II. USING ROBERTA FOR FEATURE COMPLETION

Our study leverages an off-the-shelf RoBERTa model,
which is an Encoder-Transformer architecture. Details about
the RoBERTa model are provided in a report by Liu et al.
[17], while we focus on explaining why it represents a suitable
choice for code completion. BERT-based models, such as
RoBERTa, use a special pretraining where random words in
the input sentence are masked out with a special <MASK>
token. This pretraining task is very well-suited to simulate a
code completion task, in which the input is an incomplete code
snippet the developer is writing and the masked tokens rep-
resent the code needed to autocomplete the snippet. However,
one limitation of such a pretraining is that when attempting to
predict multiple tokens, such as an entire masked if condition,
it requires the number of tokens to generate to be known,
due to the fixed sequence length of Transformers [21]. To
overcome this issue, we propose to use a version of the T5
[22] pretraining objective, in which spans of tokens are masked
using a single token. In Fig. 1 four tokens (i.e., X2 to X4) are
masked with a single <MASK> token.

Fig. 1: Modified pretraining task for extending BERT to
predict a span of tokens from a single masked token.

As detailed in Section III, we trained twelve RoBERTa mod-
els dealing with different code completion tasks. It is important
to clarify the choice of training different models in the context
of a BERT model. In the original work presenting BERT [18],
two characteristics of this family of models are presented: (i)
the ability to take advantage of a pre-training task to boost
performance; and (ii) the possibility to fine-tune a pre-trained
model on several tasks, taking advantage of transfer learning.
To make a concrete example, it is possible to pre-train a BERT
model on a corpus of English text (e.g., Wikipedia pages)
by randomly masking some words in the text and asking the
model to predict the masked words. Such a pre-training task is
self-supervised, and can scale to large datasets since it does not
require any manual labeling. Once the model is pre-trained,
it can be specialized (fine-tuned) to support different tasks
such as language translation, sentiment identification, etc. The
result will be a single model able to support different tasks and,
possibly, taking advantage of what it learned for a specific task
(e.g., language translation) to also improve its performance in
a different task (e.g., sentiment identification). In our study,
we do not leverage a pre-training of RoBERTa, because the
fine-tuning tasks (i.e., predict specific parts of code we mask)
would be very similar to what is considered a pre-training (i.e.,
predict masked tokens) in BERT models. The only difference,
as said, is that we mask multiple tokens with a single <MASK>
token. Also, since this is an exploratory empirical study in
which we want to assess the performance of RoBERTa models
in simple and more challenging code completion scenarios
and datasets, we decided to train different models for each
code completion task, avoiding the possible confounding factor
introduced by transfer learning. Indeed, as shown in recent
work [23] fine-tuning a model for several tasks can have a
substantial influence on the model’s performance.

To train the models, we used the Python transformers [24]
library. Besides training the RoBERTa models, we also trained
a tokenizer for each of them. We trained a Byte Pair Encoding
(BPE) [25] model using the HuggingFace’s tokenizers [26]
Python library. BPE uses bytes as vocabulary, allowing it to
tokenize every text without requiring the unknown token often
used in applications of DL to NLP, helping to solve the out-
of-vocabulary problem for code [27].

III. STUDY DESIGN

The study goal is to assess the effectiveness of RoBERTa in
predicting masked code tokens at different granularity levels.
We address the following research questions (RQs):



RQ1: Are BERT models a viable approach to learn how to
autocomplete code? This RQ investigates the extent to which
RoBERTa can be used to predict missing code tokens. We
assess the quality of the generated predictions from both a
quantitative (i.e., BLEU score, Levenshtein distance) and a
qualitative (i.e., perfect predictions, potential usefulness of
wrong predictions) perspective. RQ1 is further detailed in the
following three sub-RQs:

RQ1.1: To what extent does the number of masked tokens
impact the prediction quality? We train and test RoBERTa on
datasets in which masked code tokens span from few contigu-
ous tokens in a given statement to multiple missing statements
composing a code block. RQ1.1 explores the limits of BERT
models when considering simple and more challenging code
completion scenarios.

RQ1.2: To what extent reducing the vocabulary by abstract-
ing the source code helps in the prediction task? Previous
applications of DL to source code applied code abstraction
[28], [29] to avoid the open vocabulary problem typical of
source code. As said, RoBERTa does not suffer from this lim-
itation thanks to the usage of BPE. However, we still want to
investigate whether reducing the vocabulary further helps the
learning. In this research question, we test whether abstracting
the code using the approach proposed in the literature [28],
[29] helps the model learning. We compare the prediction
performances with and without applying abstraction, while
abstraction is not required when using BPE.

RQ1.3: To what extent are the performance of the model
influenced by the specificity of the dataset employed for train-
ing and testing it? While it is reasonable to expect that larger
training datasets tend to help deep learning models, we are
interested in answering RQ1.3 from a different perspective. To
address this RQ, we compare the autocompletion performances
on two different datasets: a first, more general one, composed
of Java methods; and a second, more specific one, composed of
methods from Android apps. While the programming language
is the same, the second dataset makes heavy use of Android
APIs, and it is likely that the same APIs are used for similar
purposes, e.g., app features dealing with GPS positioning share
common API usages. We expect this to create “regularities”
in the Android dataset to help model learning.

RQ2: How does the RoBERTa model compare to a state-
of-the-art n-gram model? An alternative to DL models is
represented by statistical language models based on n-grams.
In this research question, we compare the trained models to
the state-of-the-art n-gram cached model [12].

A. Dataset Construction

To create the Java dataset, we started from the CodeSearch-
Net Java Dataset provided by Husain et al. [30]. This dataset
contains over 1.5M Java methods collected from open-source,
non-fork, GitHub repositories. For details on how the dataset
has been built, see a report by Husein et al. [30]. For our work,
the most important criteria used in the dataset building are: (i)
excluding methods of fewer than three lines; (ii) removing
near-duplicate methods using deduplication algorithm from

CodeSearchNet [31]; and (iii) removing methods with the
name containing the “test” substring in an attempt to remove
test methods; methods named “toString” are removed as well.

To build the Android dataset we adopted a similar proce-
dure. We cloned from GitHub the set of 8,431 open-source
Android apps available in the AndroidTimeMachine dataset
[32]. Then, we extracted from each project’s latest snapshot
the list of methods. This resulted in a total of ∼2.2M methods.
Then, we applied the same filtering heuristics defined for the
Java dataset, ending up with 654,224 methods.

Since one of the goals of our study is also to compare the
performance of RoBERTa when applied on a more generic
(Java) and a more specific (Android) dataset, we randomly
selected from the Java dataset 654,224 methods, to match the
size of the Android dataset.

1) Dataset Processing: We processed the Java and Android
datasets to create several versions of them with the goal of
answering our RQs. The created datasets are summarized in
Table I and described in the following.

Methods for which parsing errors occurred during the
abstraction process were excluded from both datasets since we
want to compare the performance of the BERT models when
using/not using abstraction. Thus, the same instances should
be included in the raw and in the abstracted datasets. This left
the Java dataset with 634,799 methods, and the Android one
with 532,096. For each of those methods, both the raw and
the abstract versions are available. As a final step, we created
three versions of each dataset, applying the following token
masking procedures to both the raw and the abstract code.

Token masking. For each code line l in each method having
more than one token we mask its last x tokens, where x is a
random number between 1 . . . n− 1, where n is the number
of tokens composing l. The purpose of token-masking is to
simulate a typical code completion scenario: A developer starts
writing a code line, and the tool recommends how to complete
it. Given a method m having k lines with more than one token,
we generate k versions of m, each of them having one and only
one line with the last x tokens masked. We set the maximum
number of masked tokens to 10 (i.e., if x > 10 then x = 10).

Construct masking. We selected a number of code con-
structs for which it could be particularly useful to be sup-
ported with automated code completion. Given a method m,
we use the srcML [33] toolkit to identify all m’s tokens
used to: (i) define the complete condition of an if state-
ment or of a while/for loop (e.g., in a statement hav-
ing for(int i=0; i<data.size(); i++) we iden-
tify all tokens between parenthesis as those used to de-
fine the for loop); (ii) define the parameters in a method
call (e.g., in copyFile(source, target) the tokens
“source”, “,”, and “target” are identified); and (iii)
define the exception caught in a catch statement (e.g., in
catch(IOException io) we identify IOException
io as the involved tokens). For m this results in a set S={T1,
T2, . . . , Tn}, where Ti represents a set of relevant tokens for
one of the previously mentioned constructs (e.g., Ti is the set
of tokens used to define the for loop condition).



Given m, we generate |S| versions of it, each one having
one of the subject constructs masked. Also in this case we set
the maximum number of masked tokens to 10. This means
that if a construct requires more than 10 tokens to be masked,
it is not masked in our dataset.

Block masking. We use srcML to identify in each method
m its code blocks. We define a code block as the code
enclosed between two curly brackets. For example, a block
may be, besides the method body itself, the code executed in
a for/while loop, when an if/else/else if condition
is satisfied, etc. Then, given k the number of blocks identified
in m, we create k versions of m each one having a specific
code block masked. We set the maximum size of the masked
block to two complete statements. This means that if a block
is composed of more than two statements, it is not masked.

TABLE I: Study datasets. One instance corresponds to a
method with masked token(s).

Domain Masking Dataset #Instances #TokensLevel

Token
Training 750k 46.9M
Evaluation 215k 13.4M
Test 219k 13.6M

Construct
Training 750k 48.2M

Java Evaluation 104k 6.7M
Test 106k 6.7M

Block
Training 298k 19.1M
Evaluation 39k 2.5M
Test 40k 2.5M

Token
Training 750k 47.4M
Evaluation 198k 12.5M
Test 201k 12.6M

Construct
Training 750k 48.9M

Android Evaluation 99k 6.4M
Test 101k 6.5M

Block
Training 205k 13.4M
Evaluation 27k 1.7M
Test 27k 1.8M

To address RQ1.2, we used the src2abs tool by Tufano
et al. [28], [29] to generate an abstract version of each
dataset. This abstraction process has been proposed to reduce
the source code vocabulary size, providing an expressive yet
vocabulary-limited representation. For example, all variable
names present in a method are abstracted as VAR_X, where X
indicates the number of the variable in the method (e.g., the
first variable is abstracted as VAR_1, the second as VAR_2,
etc.). All keywords of the language and punctuation symbols
are left unchanged. Similarly, very frequent identifiers and
literals (i.e., i, j, index) are treated as idioms and not
abstracted. The abstraction process is described in [29].

In summary, our study comprises twelve datasets: For each
of the two domains (Java or Android) there are two code
representations (raw or abstract), each of them with three
different masking levels (token, construct, block).

2) Creating Training, Evaluation, and Test sets: Starting
from the twelve datasets, we created the training, evaluation,
and test sets in Table I. Table I only shows six datasets because
of space limitations. However, the data for both the raw and
abstract datasets is exactly the same in terms of the number
of instances/tokens (only the code representation changes).

As a first step, we filtered out specific instances from our
datasets. First, when using generative deep learning models,
the variability in length of the sentences (in our case, methods)
provided as input can affect the training and performance
of the model, even when techniques such as padding are
employed. For this reason, we analyzed the distribution of
methods length in our dataset, finding that two-thirds of them
are composed of at most 100 tokens. For this reason, as done
by Tufano et al. [29], we excluded from our datasets all
methods having more than 100 tokens. Second, the RoBERTa
model cannot efficiently handle cases in which the masked
tokens are more than the non-masked tokens. This often
happens, for example, when masking the entire method body
in the block-level masking approach. Thus, those instances are
excluded as well. Finally, we performed method de-duplication
again, keeping for each group of duplicates one random
instance only. While this was already done in the very first step
of the dataset creation, it could happen that, after abstraction,
two methods are equal even if their raw code is different (e.g.,
they only differ for the value of a variable name that, however,
is abstracted in both cases as V AR1).

After the filtering steps, we split each of the twelve datasets
into training (80%), evaluation (10%), and test (10%) sets.
While the methods in the dataset are randomly ordered, the
splitting we performed was not random to avoid biasing the
learning. To explain this point, let us consider the case of the
block masking dataset. Given a method m having k blocks in
it, we add in the dataset k versions of m, each having one and
only one block masked. Suppose that m contains two blocks
b1 and b2, thus leading to two versions of m: One in which
b1 is masked (mb1 ) and b2 is not and vice versa (mb2 ). With
a random splitting, it could happen that mb1 is assigned to the
training set and mb2 to the test set. However, in mb1 the b2
is not masked. Thus, when the model has to guess the tokens
masked in mb2 it would have the solution in the training set,
resulting in boosted prediction performance. For this reason,
we take the first 80% of the methods in each dataset and
assign all of their masked versions to the training set. Then,
we proceed in the same way with evaluation and test sets.

Using this procedure, we obtained the datasets described in
Table I. Important to note is that, given the original size of
the datasets using token-level and construct-level masking, we
decided to cap the training set to 750k instances (no changes
were done in the evaluation and test sets). This was necessary
given the computationally-expensive process of training twelve
different RoBERTa models (one for each dataset). Also, the
size of the evaluation and test sets is slightly different since,
as explained before, we split the dataset based on the methods
(not on their masked versions) and each method can result in
a different number of its generated masked versions.

B. Data Collection and Analysis

After having obtained the twelve triplets of 〈training, eval-
uation, test〉 sets, we trained and tested twelve RoBERTa
models using the best configuration we identified through a
hyperparameter tuning procedure.



TABLE II: Hyperparameters Tuned for the RoBERTa Models.
Hyperparameter Experimented Values Best

Learning rate {5e−5, 3e−5, 2e−5} 5e−5

Batch size {16, 32, 64} 64
# Hidden Layers {6, 12, 16} 12
# Attention Heads {6, 12, 16} 16
Hidden Layer Size {256, 512, 768, 1024} 768
Intermediete Size {3072, 4096} 4,096

We performed hyperparameter tuning using the Weights &
Biases’s [34] Python library on a Linux server with an Nvidia
RTX Titan GPU. Table II reports the hyperparameters we
tuned, the range of values we tested for them, and the value
in the best configuration we found. Besides those parameters,
we used an attention dropout probability of 0.1, and an
hidden layer dropout probability of 0.3. For the tokenizer,
the vocabulary size was set to 50k for the raw datasets, and
to the vocabulary size of the dataset for the abstract dataset.
The hyperparameter search was performed using the training
and the evaluation sets of the Android abstract dataset with
raw masking. We picked as the best configuration the one
that, when applied to the evaluation set, was able to obtain
the highest number of “perfect predictions”. We define as
“perfect” a prediction that exactly matches the code written by
the developers. Thus, the model correctly guesses all masked
tokens. If one of the masked tokens is different we do not
consider the prediction as “perfect”. While, in principle, a
different hyperparameter tuning would be necessary for each
dataset, such a process is extremely expensive, and preliminary
investigations we performed on a subset of the other datasets
showed minor differences in the achieved best configuration.

The training was performed across servers using their GPUs.
The first was equipped with an Nvidia Tesla V100S, the second
with an Nvidia RTX Titan, and the third with 3 Nvidia GTX
1080Ti. The training time strongly depends on the size of
the dataset and the used server but ranged between 28 and
114 hours per model. Note that, once trained, each model can
be used to perform predictions in the split of a second (on
average, 0.12 second on a laptop CPU), thus making them a
viable solution for “real-time” code completion.

We train each model for a maximum of 50 epochs. However,
we adopted the following stopping condition. At the end of
each training epoch, we executed the model on the evaluation
set and we compute the number of perfect predictions. If we
observe that, during the training, the performance of the model
is worsening in terms of perfect predictions on the evaluation
set (i.e., the model is likely overfitting to the training set),
we stop the training. In particular, given a model trained for
nth epoch, we stop the training if the number of perfect
predictions on the evaluation set is lower than the number of
perfect predictions achieved after the n−4 epoch. This ensures
that the models can have some fluctuations in performance
for up to three epochs. Then, if it is still not improving, we
stop its training and take the best model (in terms of perfect
predictions on the evaluation test) obtained up to that moment.
None of the models was trained for the whole 50 epochs.

By running each trained model on the corresponding test
set we compute the following metrics:

The BLEU-n score [19]. The BLEU score is a metric for
assessing the quality of automatically translated text [19]. We
use four variants of BLEU, namely BLEU-1, BLEU-2, BLEU-
3, and BLEU-4. A BLEU-n variant computes the BLEU score
by considering the n-grams in the generated text. Most of
previous work in the SE literature adopt the BLEU-4 score
[35]–[37]. However, such a variant cannot be computed when
the target prediction (in our case, the number of masked
tokens) is lower than four. For this reason, we compute the
four different versions: BLEU-1 can be computed for all
predictions, while BLEU-n with n>1 only for predictions
having a length (i.e., number of tokens) higher or equal than
n. The BLEU score ranges between 0% and 100%, with 100%
indicating, in our case, that the code generated for the masked
tokens is identical to the reference one.

The Levenshtein distance [20]. To provide a proxy measure
of the effort needed by developers in order to convert a
prediction generated by the model into the reference (correct)
code, we compute the Levenshtein distance at token-level:
This can be defined as the minimum number of token edits
(insertions, deletions or substitutions) needed to convert the
predicted code into the reference one. Since such a measure is
not normalized, it is difficult to interpret it in our context.
Indeed, saying that five tokens must be changed to obtain
the reference code says little without knowing the number of
tokens in the reference code. For this reason, we normalize
such a value by dividing it by the number of tokens in the
longest sequence among the predicted and the reference code.

The percentage of perfect predictions, which we statistically
compare between abstract and raw datasets using the McNe-
mar’s test [38] and Odds Ratios (ORs). In this, as in other
cases, we cope with multiple tests by adjusting p-values using
the Benjamini-Hochberg correction [39].

We also analyze what happens in the case of non-perfect
predictions. We manually analyzed a sample of non-perfect
predictions to assess whether, while different, they were “se-
mantically equivalent” to the original code written by develop-
ers. This could happen, for example, in case the masked code
is return (x+1); while the predicted code is return
x+1;. To do such an analysis we selected from each of the
twelve test sets we have 100 non-perfect predictions, randomly
picking 25 of them from each of four buckets: predictions
having a Levenshtein distance between (i) n>0 and 0.24 (note
that if n=0 this means that the prediction is perfect; (ii) 0.25
and 0.49; (iii) 0.50 and 0.74; and (iv) 0.75 and 1.00. Then,
one of the authors inspected all 1,200 (100 × 12 datasets) in-
stances, classifying each of them as “semantically equivalent”
or not. Those classified as “semantically equivalent” have been
double-checked by a second author to avoid subjectivity issues.
We report, for each of the four Levenshtein distance intervals,
the percentage of semantically equivalent predictions we found
in each dataset. We statistically compare Levensthein distances
and BLEU scores for the abstract dataset and the raw one
using Wilcoxon signed-rank test, whereas we compare results
for Android and Java using the Wilcoxon rank-sum test.



To address RQ2, for all datasets, we compare the perfor-
mance of RoBERTa with that of the state-of-the-art cached n-
gram model [12] using the implementation made available by
the authors [40]. We tried to design a fair comparison, despite
the fact that the n-gram model is designed to predict a single
token given the n tokens preceding it. Thus, in a scenario
in which we mask more than one token, we use the n-gram
model in the following way: We run it to predict each masked
token in isolation. Then, we join all predictions to generate
the final string (i.e., set of previously masked tokens). The
n-gram models are trained on the same training sets used by
RoBERTa without, however, masked tokens. We compare the
two approaches in terms of perfect predictions generated on
the test sets. A statistical comparison is performed using the
McNemar’s test [38] and ORs.

C. Replication Package

The datasets, the code implementing the RoBERTa models,
and detailed results of statistical tests as well as the scripts
used to run these tests are publicly available [41].

IV. RESULTS DISCUSSION

Fig. 2 depicts the results achieved by the RoBERTa model
in terms of perfect predictions in the different evaluation
scenarios. Each sub-graph reports the results concerning a
specific masking approach, namely (from left to right) token-
masking, construct-masking, and block-masking. The top part
of each subgraph (i.e., black background) shows the overall
percentage of perfect predictions achieved on the Java and
Android datasets when using the raw source code or its
abstracted version. For example, 38% of perfect predictions
are generated by RoBERTa on the Java dataset when using
token masking and the raw source code.

The plots below show the percentage of perfect predictions
by the number of masked tokens. For example, in the token
masking scenario we randomly mask, for each source code
line l having more than one token, its last x tokens, where x
is a random number between 1 . . . n − 1, with n being the
number of tokens of l, and x is capped to a maximum of 10.

The left graph in Fig. 2 shows the percentage of perfect
predictions when we only mask the last token (i.e., one masked
token), the last two tokens, etc. The scale on the x axis is
different when dealing with the block masking scenario since
here we mask entire blocks thus having, in some cases, dozens
of masked tokens. Each point indicates that between x−5 and
x tokens were masked, e.g., for the first data point at most 5
tokens were masked, for the second between 5 and 10, etc.

Table III reports the average BLEU score in the four
considered variants and the average normalized Levenshtein
distance. Also in this case the results are grouped based on
the masking level, dataset, and code representation.

In the following, we summarize the quantitative results
achieved. Then, we present qualitative examples of correct
predictions made by the models and discuss the semantic
equivalence of non-perfect predictions. Finally, we compare
the performances of RoBERTa with that of the n-gram model.

TABLE III: RoBERTa BLEU score and Levenshtein distance.
Token masking

Java Android
Raw Abstract Raw Abstract

BLEU-1 0.60 0.73 0.73 0.78
BLEU-2 0.43 0.59 0.61 0.68
BLEU-3 0.23 0.41 0.44 0.53
BLEU-4 0.10 0.27 0.28 0.39
Levenshtein 0.35 0.25 0.24 0.20

Construct masking

Java Android
Raw Abstract Raw Abstract

BLEU-1 0.51 0.53 0.57 0.55
BLEU-2 0.34 0.34 0.43 0.40
BLEU-3 0.24 0.28 0.33 0.34
BLEU-4 0.14 0.17 0.26 0.28
Levenshtein 0.48 0.45 0.41 0.42

Block masking

Java Android
Raw Abstract Raw Abstract

BLEU-1 0.44 0.44 0.44 0.42
BLEU-2 0.32 0.31 0.31 0.29
BLEU-3 0.21 0.20 0.21 0.19
BLEU-4 0.13 0.11 0.13 0.11
Levenshtein 0.54 0.55 0.55 0.56

A. Quantitative Results

Token masking. The left part of Fig. 2 shows that, as
expected, the lower the number of masked tokens the higher
the perfect predictions. Not surprisingly, the model is very
effective when we only mask the last token in a statement.
Indeed, in most cases, this will be a semicolon, a parenthesis,
or a curly bracket. Thus, it is easy for the model to guess
the last token. When moving to more challenging scenarios
like the last five tokens masked in a statement, the percentage
of perfect predictions is in the range ∼10-40%, with major
differences in the model effectiveness arising on the two
considered datasets (Java and Android), and for the two
code representations. As for the dataset, as we conjectured,
the model achieves significantly better performance on the
Android dataset (Fisher’s test p-value<0.001), which is more
specific and, thus, more subject to regularities in the source
code. The gap in terms of perfect predictions is ∼20% both
when dealing with abstract and raw source code at x = 5 (i.e.,
last five tokens masked), with OR=1.35 and 1.69 respectively.
For token masking, the red lines (Android) are always above
the orange ones (Java), confirming the superior performance
on the Android dataset (a more specific one) as a general trend.

As expected, the abstracted dataset leads to significantly
better performances for both Java and Android datasets (Mc-
Nemar test p-value<0.001, OR=3.66 and 1.96 respectively).
This is due to the smaller vocabulary ensured by the abstrac-
tion and the simplification of the prediction task.

Looking at Table III, the BLEU scores and the Levenshtein
distance confirm what observed for perfect predictions: Per-
formances for the Android dataset are better than for the Java
one, and abstracted code outperforms raw code. All differences
are statistically significant. For Android, 20% and 24% of
predicted tokens must be changed with the abstract and raw
representation, respectively, to obtain the reference code. Such
a percentage grows for Java to 25% (abstract) and 35% (raw).
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Fig. 2: Results achieved by the RoBERTa model.

Construct masking. In this scenario (see central sub-graph
in Fig. 2), RoBERTa achieves above 50% of perfect predic-
tions when a single token is masked for both datasets/code
representations. Note that, in this scenario, also a single-token
prediction is not trivial since we are in a context in which
such a single token represents (i) the complete condition of
an if statement or a while/for loop, or (ii) the parameters
in a method call, or (iii) the exception caught in a catch
statement. When the prediction is represented by a single
token, it is usually related to a Boolean used in an if condition
(e.g.,if(true), if(valid), etc.) or the single parameter
needed for a method invocation.

Also in this case, a higher number of masked tokens implies
lower performance, and the RoBERTa model confirms signif-
icantly better performance for the Android dataset although
the gap is smaller (OR=1.19 for the raw and 1.12 for the
abstract dataset). Again, code abstraction significantly helps
the prediction (OR=1.72 for Java and 1.46 for Android).

In terms of BLEU score and Levenshtein distance, the
achieved values are worse as compared to the token-level
masking, confirming the more challenging prediction scenario
represented by the construct-level masking. On average, the
developer may need to modify ∼40% of the predicted tokens
to obtain the reference code (small variations are observed
among Java/Android and raw/abstract code).

Block masking. This represents the most challenging pre-
diction scenario for RoBERTa: The masked part can involve an
entire statement or even span over two statements (maximum
boundary we set). The performance of RoBERTa in terms of
perfect predictions are above 30% when dealing with small
masked blocks, up to five tokens. These blocks are mostly
related to return statements representing a code block (e.g.,
the value to return when an if condition is satisfied), such as
{ return false; }, { return null; }, etc.

For longer blocks, the performances substantially drop.
When considering blocks having between six and ten masked
tokens, the percentage of perfect predictions is around 10%
for both datasets and code representations. The largest masked
block reporting a perfect prediction is composed of 13 tokens
for the Android raw and abstract datasets, 15 for the Java raw
dataset, and 11 for the Java abstract dataset.

Thus, at least with the amount of training we performed
and the model architecture we used, RoBERTa is only able to
correctly predict “small” masked blocks with good accuracy.
When masking code blocks, the performances of the abstract
dataset are worse (OR=0.60 for Java and 0.71 for Android),
whereas results for Android are only slightly better than for
Java (OR=1.18 for the abstract and 1.08 for the raw dataset).

As expected, the BLEU scores are the lowest in this scenario
(Table III), and the developer may need to revise, on average,
∼55% of the predicted tokens, independently from the dataset
of interest and the used code representation.

B. Qualitative Analysis
Fig. 3 reports qualitative examples of perfect predictions

generated by RoBERTa. The black (top) code represents the
masked code and the blue (bottom) one the code completion
recommended by RoBERTa. Due to lack of space, we only
report examples for the raw datasets. All predictions are
available in our replication package [41].

Besides this, as explained in Section III, we also manually
analyzed 100 non-perfect predictions in each test dataset, to
understand how many of them could be considered seman-
tically equivalent to the reference code. We only found 35
out of the 1,200 cases in which the prediction could be
considered as semantically equivalent. For example, the refer-
ence code was return bitmap; but RoBERTa predicted
{return bitmap;}. Thus, we can estimate a 3% of non-
perfect predictions that could be counted as perfect ones. Not
surprisingly, 33 of them had a Levenshtein distance lower than
0.25. Basically, the performance estimation provided in our
study through the counting of the perfect predictions should be
considered as a precise assessment of the model performances.

C. Comparison with an n-gram Model
Table IV reports the comparison in terms of perfect pre-

dictions between the RoBERTa models and the n-gram model
[12]. One important clarification is needed to properly interpret
the results of Table IV. Since the two models use different
scripts to tokenize the code, we excluded from the test sets
cases in which the tokens to predict (i.e., the masked ones)
are tokenized differently between the two approaches (e.g.,
one identifies 4 tokens and the other one 5).



Android Token Raw
public <MASK> super.onViewCreated(view, savedInstanceState); final ListView 
listView = getListView(); listView.setSelector(android.R.color.transparent); }
void onViewCreated(View view, Bundle savedInstanceState) {

Java Token Raw
public String getSubNameFromPseudoDestination(String pseudoDestinationName) 
{ if (TraceComponent.isAnyTracingEnabled <MASK> SibTr.entry(tc, 
"getSubNameFromPseudoDestination", pseudoDestinationName); […]
() && tc.isEntryEnabled())

Android Construct Raw
public boolean onTouch(int position, View v, MotionEvent event) { if 
(<MASK>) { updatingDownloads = false; return false; } else if […]

event.getAction() == MotionEvent.ACTION_DOWN

Java Construct Raw
public static Field field(String name, Class<?> clazz) { for (Field field : 
fields(clazz)) { if (<MASK>) { return makeAccessible(field); } } return null; }
field.getName().equals(name)

Android Block Raw
private static String convertStreamToString(InputStream inputStream) { […] 
InputStream in = new BufferedInputStream(inputStream); byte[] buffer = new 
byte[1024]; int n = 0; try { while (-1 != (n = in.read(buffer))) <MASK> } finally […]
{ out.write(buffer, 0, n); }

Java Block Raw
@Override public Double geodist(String key, String member1, String member2) { Jedis 
jedis = null; try { jedis = jedisPool.getResource(); return jedis.geodist(key, 
member1, member2); } finally <MASK> }
{ if (jedis!= null) jedis.close(); }

Fig. 3: Examples of perfect predictions generated by RoBERTa

This resulted in the exclusions of a few hundred instances
from each test set and explains the slightly different perfor-
mances reported for RoBERTa between Table IV and Fig. 2.
RoBERTa achieves better performance in all experimented
datasets/code representations, and McNemar’s test always in-
dicates significant differences, with ORs ranging between 1.90
(block masking for Android raw) and 18.87 (construct masking
for Android abstract). In the token masking scenario, the per-
formance of the n-gram model are very good and, especially
on Java raw, close to the ones of RoBERTa. When masking
specific constructs, the gap in performance becomes stronger
(see Table IV) with a substantial gap especially when dealing
with abstract code. Finally, in the block masking experiment,
both techniques struggle to obtain a high percentage of perfect
predictions. However, RoBERTa consistently achieves a few
percentage points more than the n-gram model.

While RoBERTa showed superior performance, there are
two important aspects to consider. First, the n-gram model
allows for faster training. We estimate three to five times less
training time needed for the n-gram model as compared to
RoBERTa. We do not report precise data since such a study
would require executing the training many times on the same
machine, and such an analysis is out of the scope of this work.
Once trained both models can generate predictions in fractions
of a second. Second, in our evaluation, the n-gram cache
model can leverage information about other code components
coming from the same project (e.g., same file or package [12])
of the method in which the prediction is performed. This is
one of the advantages of the cache model [12] and, in a real
scenario, it should be possible to use this information assuming
that the method on which the prediction is performed is not
the first one written in the whole system.

While our design ensures that RoBERTa and the n-gram
model leverage the same training information, we also exper-

TABLE IV: RoBERTa vs n-gram: Perfect Predictions.
Token masking

Java Android
Raw Abstract Raw Abstract

RoBERTa 38.9% 50.7% 51.8% 58.2%
n-gram 30.4% 35.1% 35.3% 41.1%

Construct masking

Java Android
Raw Abstract Raw Abstract

RoBERTa 33.4% 40.4% 37.7% 43.1%
n-gram 12.5% 10.7% 17.6% 10.7%

Block masking

Java Android
Raw Abstract Raw Abstract

RoBERTa 8.7% 6.8% 9.3% 8.0%
n-gram 4.5% 3.6% 6.6% 5.4%

imented with the n-gram cache model in a scenario where the
code from the “test project” is available when generating a
prediction. For a given method mt in the test set, we clone
its repository and check if the source code of mt in the latest
system snapshot is exactly the same as in the test set. If this
is the case, we run the prediction on mt providing the cloned
repository as a test folder, in such a way that it is leveraged by
the cache model (this is done through the implementation of
Hellendoorn et al. [12]). If the method changed, we discard
it and move to the next one. Since such a process is very
expensive, we collected 200 data points on each raw test set,
and we compare the performance of the n-gram model when
such additional information is provided (and not) on these 200
instances. Table V reports the achieved results. As expected,
the performances of the n-gram model increase thanks to the
use of the information in the test project. On these same 200
data points, the performances of RoBERTa are always superior
but in the case of Java token masking.

TABLE V: Perfect predictions of n-gram model when provid-
ing the cloned repository as test folder.

Dataset n-gram RoBERTaWithout Cloning With Cloning

Android token masking 34.9% 42.2% 50.9%
Java token masking 32.5% 43.8% 42.2%
Android construct masking 13.9% 22.0% 37.8%
Java construct masking 14.5% 20.5% 38.0%
Android block masking 8.9% 11.8% 13.0%
Java block masking 5.2% 8.4% 8.5%

V. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. One threat, also discussed by
Hellendoorn et al. [42], is related to how we simulate the
extent to which code completion intervenes during develop-
ment, i.e., by masking source code elements. As explained
in Section III-A1, we consider different masking levels, not
only to evaluate the amount of code completion that can be
predicted but also to simulate different ways a developer writes
source code, especially because we cannot assume this is
done sequentially. However, we are aware that the considered
masking levels cover a limited number of cases that may not
completely reflect how developers write code.



Threats to internal validity concern factors, internal to our
study, that could influence its results. To this extent, an impor-
tant factor that influences DL performance is the calibration
of hyperparameters, which has been performed as detailed in
Section III-B. We are aware that due to feasibility reasons we
only calibrated the hyperparameters on the abstract Android
dataset, hence it is possible that a more specific calibration for
each dataset would produce better performances.

Threats to external validity are related to the generalizability
of our findings. On the one hand, we have evaluated RoBERTa
performances on two large datasets, a generic one, and a
specific one. At the same time, we do not know whether the
obtained results generalize to different domains than Android,
and other programming languages than Java. A further threat
is that our study is limited to the RoBERTa model for DL
and, as a baseline for n-gram models, the one Hellendoorn
and Devanbu [12]. Both represent the current state-of-the-art,
however, it would be desirable to investigate how alternative
approaches would work for the different evaluation scenarios.

VI. RELATED WORK

We detail the literature related to approaches (partially)
automating the writing of new code. Due to lack of space, we
do not discuss recently proposed techniques for automating
bug-fixing [29], [44], [45], learning code changes [28], [46],
as well as source code search engines that can be used to
identify pieces of code for reuse [47]–[52].

The Prospector tool by Mandelin et al. [53] pioneered the
area of code completion approaches, and aimed at suggesting,
within the IDE, variables or method calls from the user’s code
base. Prospector was then followed by improvements such as
the InSynth tool by Gvero et al. [54] which, given a type
expected at a given point in the source code, searches for type-
compatible expressions. Other approaches focus on specific
elements of API usage completion. The work from Zhang
et al. [55] aims at recommending parameter usages, achieving
64% of useful recommendations and 53% of perfect ones.

Bruch et al. [1] introduced the intelligent code completion
system, able to filter out from the list of candidate method
calls recommended by the IDE those that are more relevant to
the current working context. Their results show the capability
to correctly predict up to 82% of method calls actually needed
by developers, and up to 72% of those that are relevant to the
current development context. The approach by Bruch et al. has
been improved by Proksch et al. [56], by adding further con-
textual information and by proposing a Pattern-based Bayesian
Networks approach. Differently from the aforementioned ap-
proaches, we do not restrict code completion to method calls.

Robbes and Lanza [2] used information extracted from
the change history of software systems to support the code
completion of method calls and class names.

Asaduzzaman et al. [9] proposed a technique named CSCC
(Context Sensitive Code Completion). They collect code ex-
amples from software repositories and, for each method call,
represent its context as a set of methods, keywords, class and
interface names appearing within four lines of code.

This contextual information is then used to filter out
method call recommendations. CSCC outperforms previous
approaches, achieving 86% precision and 99% recall.

Hindle et al. [6] pioneered the work on statistical language
models applied to software. They conceived the idea of “nat-
uralness of source code” and used n-gram models to create
a language-agnostic algorithm that is able to predict the next
token in a given statement.

Raychev et al. [57] approach the code completion problem
through statistical language models. They extract sequences of
method calls from a large code base, and use this dataset to
train a language model able to predict API calls. Their model
achieves a 90% accuracy in the top-3 recommendations.

Nguyen et al. [7] proposed GraPacc, a context-sensitive
code completion model trained on a database of API usage
patterns. These patterns are then matched to a given code under
development to support code completion. GraPacc achieves
up to 95% precision and 92% recall. A similar approach was
later on proposed by Niu et al. [11] for API completion in
Android: Given an API method as a query, their approach
recommends a set of relevant API usage patterns. They report
a 18% improvement of F-Measure when comparing to pattern
extraction using frequent-sequence mining.

Tu et al. [8] introduced a cache component to exploit the
“localness of code” in the n-gram model. Results show that
since code is locally repetitive, localized information can be
used to improve performance. The enhanced model outper-
forms standard n-gram models by up to 45% in accuracy.

Hellendoorn and Devanbu [12] proposed further improve-
ments to the cached models aimed at considering specific
characteristics of code (e.g., unlimited, nested, and scoped
vocabulary). Then, they compare their model with DL-based
models, showing its superiority. Also, they show that the two
families of techniques can be combined together, leading to
an unprecedented 1.25 bits of entropy per token. The findings
of this study showed that DL, with the considered limitations,
was not the best technique for modeling source code.

Karampatsis et al. [13], a few years later, suggested instead
that neural networks are the best language-agnostic algorithm
for code completion. They proposed to overcome the out of
vocabulary problem by using Byte Pair Encoding [25]. In
addition, the proposed neural network is able to dynamically
adapt to different projects. Their best model outperforms n-
gram models, achieving an entropy of 1.03 bits.

Kim et al. [3] leveraged the Transformers neural network
architecture for code completion. They provide the syntactic
structure of code to the network by using information from the
Abstract Syntax Tree to fortify the self-attention mechanism.
Among the several models they experiment with, the best one
reached a MRR up to 74.1% in predicting the next token.

Alon et al. [14] addressed the problem of code completion
with a language-agnostic approach named Structural Language
Model. It leverages the syntax to model the code snippet as a
tree. The model, based on LSTMs and Transformers, receives
an AST representing a partial expression (statement), with
some missing consecutive tokens to complete.



TABLE VI: Summary of previous studies using deep learning for generative code completion.
Reference Model Granularity Training Performance metrics

Alon et al. (2019) [14]
The authors leverage the Transformers architecture to complete
multiple contiguous masked tokens in a given statement.

LSTM and
Transformers

Multiple contiguous tokens in a
statement

1.3M Java exam-
ples
16k C# examples

Exact match accuracy

Karampatsis et al. (2019) [13]
The authors overcome the out of vocabulary problems when using
neural networks for token-level code completion through BPE.

GRU Neural
Language Model
with BPE

Single token Java (1.5B tokens)
C (1.7B tokens)
Python (1B tokens)

Entropy and MRR

Kim et al. (2020) [3]
The authors leverage the Transformers architecture and exploit struc-
ture information of code to support token-level code completion.

Transformers Single token 100k Python2
source code files

MRR

Liu et al. (2020) [43]
The authors propose a multi-task code completion, with pre-training
plus fine tuning on token types.

Transformers
with pre-training

Single token Java (6.9M tokens)
Typescript (1.1M
tokens)

Top-1 accuracy

Svyatkovskiy et al. (2020) [15]
The author propose a general-purpose multilingual code completion
tool based on Transformers and BPE.

Transformers
with BPE

Multiple contiguous tokens in a
statement

1.2B lines of code Similarity and Per-
plexity

Our work
Experiment with BERT language model to test its limits for code
completion.

RoBERTa with
BPE

Multiple contiguous tokens in a
statement
Specific code constructs
Entire statement(s)

Java (446M tokens) Exact match accuracy
BLEU score
Levenshtein distance
Manual Analysis

Their best model reached state-of-the-art performance with
an exact match accuracy for the top prediction of 18.04%.

Svyatkovskiy et al. [15] introduced IntelliCode Compose, a
general-purpose multilingual code completion tool capable of
predicting code sequences of arbitrary token types. They do
not leverage high-level structural representation, such as AST,
and use subtokens to overcome the out of vocabulary problem.
Their model can recommend an entire statement, and achieves
a perplexity of 1.82 for Python programming language.

Liu et al. [43] presented a Transformer-based neural archi-
tecture pre-trained with the goal of incorporating both code
understanding and generation tasks. Afterwards, the model was
then fine-tuned on the classic code completion task.

A problem related to code completion has also been tackled
by Watson et al. [37]: The authors exploit a sequence-to-
sequence model to recommend assert statements for a given
Java test case. This technique is able to generate a specific type
of code statement, with a top-1 accuracy of 31%. Also, Kanade
et al. [58] show how code embeddings can support code-
related tasks, including variable misuse and repair, related
to code completion when focusing on a single token.

Svyatkovskiy et al. [59] proposed a different perspective
on neural code completion, shifting from a generative task
to a learning-to-rank task. Their model is used to rerank the
recommendations provided via static analysis, being cheaper in
terms of memory footprint as compared to generative models.

In terms of other studies related to the applicability of code
completion to practice, Hellendoorn et al. [42] studied 15,000
real code completions from 66 developers and found that
typically-used code completion benchmarks — e.g., produced
by artificially masking tokens — may misrepresent actual code
completion tasks. The study by Hellendoorn et al. suggests that
further research is needed to assess the actual applicability of
DL-based code completion to the real-world. This is however
out of scope for our work, because our aim is to assess the
capability of DL models to predict non-trivial portions of code
going beyond a single method call or parameter.

Table VI summarizes the most related works (i.e., the ones
related to DL generative models for code completion) and
compares it to our work. To the best of our knowledge, our
work is the first to present a comprehensive study on the
effectiveness of a BERT model for the task of code completion.
Indeed, all the previous techniques/studies dealing with code
completion are limited to the generation of missing tokens in
a single statement, while we push this problem forward by
attempting the automatic generation of an entire code block
(e.g., the body of a for statement).

VII. CONCLUSION

We empirically evaluated the performances of RoBERTa
models in the task of code completion. We considered several
code completion scenarios, moving from a few code tokens
masked to entire code blocks. In a nutshell, the achieved results
showed that: (i) RoBERTa achieves promising results, superior
to a state-of-the-art n-gram model [12]; (ii) the models learn
better on more specific datasets (e.g., on Android rather than
Java) and when code abstraction is used; (iii) while effective
when a limited number of code tokens is masked (up to
ten), RoBERTa models suffer from more challenging code
completion tasks involving a higher number of tokens.

Our future research agenda in pushing forward automatic
code generation includes experimenting with other DL-based
architectures (e.g., T5 [22]).
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