
On Improving Deep Learning Trace Analysis with
System Call Arguments

Quentin Fournier
Polytechnique Montréal

Quebec H3T 1J4
quentin.fournier@polymtl.ca

Daniel Aloise
Polytechnique Montréal

Quebec H3T 1J4
daniel.aloise@polymtl.ca

Seyed Vahid Azhari
Ciena

Ottawa K2K 0L1
vazhari@ciena.com

François Tetreault
Ciena

Ottawa K2K 0L1
ftetreau@ciena.com

Abstract—Kernel traces are sequences of low-level events com-
prising a name and multiple arguments, including a timestamp,
a process id, and a return value, depending on the event. Their
analysis helps uncover intrusions, identify bugs, and find latency
causes. However, their effectiveness is hindered by omitting
the event arguments. To remedy this limitation, we introduce
a general approach to learning a representation of the event
names along with their arguments using both embedding and
encoding. The proposed method is readily applicable to most
neural networks and is task-agnostic. The benefit is quantified
by conducting an ablation study on three groups of arguments:
call-related, process-related, and time-related. Experiments were
conducted on a novel web request dataset and validated on a
second dataset collected on pre-production servers by Ciena, our
partnering company. By leveraging additional information, we
were able to increase the performance of two widely-used neural
networks, an LSTM and a Transformer, by up to 11.3% on
two unsupervised language modelling tasks. Such tasks may be
used to detect anomalies, pre-train neural networks to improve
their performance, and extract a contextual representation of the
events.

Index Terms—Tracing, Machine Learning, Deep Learning.

I. INTRODUCTION

In recent years, deep learning has been successfully applied
to an ever-growing range of supervised and unsupervised tasks.
This trend has been enabled by the ever-increasing computa-
tional resources and the novel techniques introduced to take
advantage of these resources. As of today, the largest model
for natural language processing (NLP) comprises 175 billion
parameters and has been trained on half a terabyte of curated
text [1]. The authors showed that the model performance scales
consistently with the number of parameters and the amount of
available data.

A technique that surely generates a large amount of data
is tracing. Tracing is the act of collecting a trace which is
a sequence of low-level events. Such events are produced
whenever a specific instruction called tracepoint is encountered
at runtime and comprises a name, a precise timestamp, and
possibly many arguments. Figure 1 depicts three trace events.

©2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
To appear in: Proceedings of the 18th International Conference on Mining
Software Repositories (MSR ’21), Madrid, Spain.

Traces provide insights on the execution of a piece of code
and have been extensively used to detect intrusions, identify
bugs, and find the root cause of latency issues. The main
advantages of tracers are (1) they do not require to stop the
execution contrary to debuggers, and (2) they do not aggregate
events or metrics contrary to loggers.

In this paper, we consider the events generated by the oper-
ating system also known as kernel events. The benefit of such
events is two-fold: (1) tracepoints are already implemented in
the Linux kernel, which allows tracing virtually any Linux
system without having to modify the source code, and (2) the
behaviour of the whole system is visible from the kernel. In
this paper, we focus on a subset of the kernel events called
system calls. System calls are the only way for an application
to communicate with the operating system.

Although the manual inspection of traces may reveal in-
sights that are virtually impossible to extract automatically,
the amount of human labour required is often prohibitive.
Indeed, the operating system produces thousands of events
every second, most of which may be collected. The sheer
size of traces is the primary reason why automatic analysis
is required. Traces are used to detect unknown intrusions, to
identify unknown bugs, or to locate the unknown root cause of
anomalies, making their analysis often challenging to specify
in practice. Therefore, machine learning techniques, that is,
techniques that learn how to solve a task from examples, are
well suited to analyse traces.

Most machine learning methods take a vector of numerical
features as input. Hand-crafted features of traces have been
proposed, but no representation seems to work universally
well or to encapsulate the true underlying explanatory factors
[2, 3, 4]. Instead of relying on hand-crafted features, neural
networks learn how to extract meaningful features for the
task. By finding a relevant input representation for the task,
neural networks reduce the need for an expert, and the model
performance is improved in most cases.

Although a wide range of deep learning techniques has been
applied on traces by previous works, only a small fraction
of the accessible information has been considered. The event
arguments and, in certain cases, the event ordering inside the
trace, have been left out in the literature. Section II discusses in
more detail the related works and their limitations. We argue
that the increase in resources and the improvement of deep

ar
X

iv
:2

10
3.

06
91

5v
1 

 [
cs

.L
G

] 
 1

1 
M

ar
 2

02
1



timestamp stream context event context event fieldsevent namehostname

Fig. 1. Trace events as displayed by Babeltrace2. The arguments are all the values except the event name. In this example, the arguments are from left to
right: the timestamp, the hostname, the CPU id, the process name, the process id, the thread id, the file descriptor, and the return value.

learning techniques allow fully exploiting traces.
A trace is a sequence of discrete values arguably comprising

a syntax and a semantic. Due to their resemblance to natural
language, the most common approach is to apply deep learning
techniques from natural language processing. Our methodol-
ogy follows the previous works by considering the widely used
Long Short-Term Memory (LSTM) [5]. A recent alternative
to LSTM for processing variable-length sequences called the
Transformer [6] is also evaluated. Although this model is
omnipresent in NLP, it has not yet been applied on traces. The
two models were evaluated on two unsupervised objectives: (1)
left-2-right language model (LM) that allows computing the
likelihood of a sequence, and therefore, detecting anomalies,
and (2) masked language model (MLM) that is used for pre-
training [7].

This paper’s first contribution is the introduction in Sec-
tion III of a novel method to learn a single representation of the
system call names with their arguments. Results are detailed
in Section V and an ablation study is conducted to investigate
the impact of three groups of arguments: call-related, process-
related, and time-related.

The second contribution of this paper is the introduction
of a novel dataset comprising around 250,000 web requests.
The actual dataset is provided, but most importantly, the data
generation methodology is explained in Section IV. One may
argue that our dataset is too simple or that it inaccurately
represents actual web servers. Therefore, every experiment
is validated on a second dataset collected on pre-production
servers by Ciena, the partnering company of this research.

Finally, Section VI discusses the possible threats to valid-
ity, and Section VII answers interesting questions about the
pertinence of the proposed approach and future works.

II. RELATED WORK

Over the last two decades, a wide range of machine learning
techniques has been applied to analyze traces, including naive
Bayes [8], random forest [9], and hidden Markov models
[10]. Recently, the trend has shifted toward more flexible
approaches, and especially toward deep learning methods.
Model flexibility relates to the space of functions that the
model is able to learn and increases with the number of param-
eters. Therefore, highly flexible methods, such as large neural
networks, are able to learn complex solutions that typically
perform better than less flexible ones. This section provides an
overview of the main neural networks that have been studied
in the tracing literature as well as their limitations.

2https://babeltrace.org

Recurrent neural networks (RNNs) allow processing
variable-length sequences with a fixed number of parameters.
Such a network produces an output at every time step and is
depicted in figure 2. The Long Short-Term Memory (LSTM)
[5] is a recurrent neural network specifically designed to learn
dependencies across a large number of time steps. This net-
work has been extensively and successfully used across many
fields. Tracing is no exception, and LSTM is by far the most
popular neural network to analyze traces [9, 11, 12, 13, 14].

...

Fig. 2. The unrolled computational graph of a recurrent neural network. The
input and output sequences are depicted in blue and red, respectively. The time
step is indicated in exponent and between parenthesis. Note that the network
parameters W , U , and V , are replicated at every time step. Therefore, the
network can process variable-length input sequences.

Dymshits et al. [11] trained a unidirectional and a bidirec-
tional LSTM on sequences of system call count vectors. Such
vectors are bag-of-words, that is to say, the normalized counts
of system call names, from a fixed-duration window. This
aggregation is a trade-off between computational efficiency
and performance, and is controlled by the window size. The
authors also trained an Inception-like net consisting of multiple
LSTMs with tied weights. They found that simpler LSTMs
performs on par with the more complex ones.

Kim et al. [12] trained an ensemble of LSTMs on sequences
of system call names. Ensemble techniques improve the per-
formance, although not significantly, and the robustness of the
chosen method. While ensemble techniques may be necessary
for industry products, this paper will not leverage them as the
main objective is to show the relative impact of the arguments
rather than the approach’s absolute performance.

Song et al. [9] compared an LSTM with less flexible
machine learning techniques to detect and explain anomalies
from streams of traces. They did not, however, explicitly say
which events were considered or describe their preprocessing.

Recurrent neural networks output a vector at every time
step, so the output sequence must have the same length as the
input sequence (see Figure 2). This property of RNNs may
become a constraint depending on the task. To overcome this

https://babeltrace.org


limitation, Sutskever et al. [15] introduced the sequence-to-
sequence framework where a first network (encoder) encodes
the input sequence into a fixed-size context. A second network
(decoder) then generates the output sequences based on this
context. This framework allows outputting a variable-length
sequence independently of the input sequence length and is
illustrated in Figure 3.

...

Encoder

_

...

Decoder

Fig. 3. Sequence-to-sequence framework. A first network (encoder) encodes
the input sequence into a fixed-size context h(n) shown in red, then a second
network (decoder) generates the output sequences based on this context.

Lv et al. [16] used a gated recurrent unit3 (GRU) [17] in a
sequence-to-sequence fashion to extend sequences of system
calls names and increase the accuracy of intrusion detection.

Recurrent networks, including LSTMs and GRUs, suffer
from an issue related to memory compression [18]. As the
input sequence gets processed, information must be stored
in the fixed-size hidden representation h. Either h is too
large and computational resources are wasted, or h is too
small and information is lost. In the latter case, the model
performance might be significantly impacted. Bahdanau et al.
[19] introduced an alignment mechanism called inter-attention
to mitigate the effect of memory compression. This mechanism
computes a different representation of the input for each output
step, effectively allowing the decoder to “look at” the relevant
part(s) of the input for each output step. Figure 4 illustrates
the inter-attention mechanism.

Brown et al. [20] augmented an LSTM with the dot-product
inter-attention and explored different ways of computing the
attention: fixed, position-based (syntax attention), and context-
based (semantic attention). For the task of system log anomaly
detection, every attention yielded comparable results.

Finally, due to their sequential nature, recurrent networks
do not scale efficiently to longer sequences [6]. Dai et al. [21]
introduced the relative effective context length (RECL), the
largest context length that leads to a substantial relative gain
over the best model. Simply put, increasing the context length
over the RECL yields a negligible increase in performance;
thus, RECL indicates the maximum dependency length that
the model is able to learn. They showed that the RECL of
LSTM is limited to around 400 time-steps. This is problematic
for trace analysis since hundreds of events may be generated
every second.

To overcome this limitation, Vaswani et al. [6] introduced
the Transformer, a sequence-to-sequence model based solely
on the inter-attention and self-attention mechanisms. The self-
attention allows relating any two positions in a sequence

3GRU is similar to LSTM but requires fewer parameters.

...

Encoder

Decoder

...

...

...

Fig. 4. Inter-attention mechanism. The attention weight α(t)
i corresponds to

the strength with which the i-th encoder hidden representation h(i) contributes
to the context of the t-th decoder step.

regardless of their distance thus allowing for a significant
increase in performance in most natural language processing
tasks at the cost of a quadratic complexity with respect to the
sequence length. To the best of our knowledge, this model has
not been applied on traces but has been included considering
its ubiquity in NLP.

None of the aforementioned works considered the sys-
tem call arguments. Arguably, the main reason is that the
community does “[...] not have a compact fixed-dimensional
representation for system call arguments suitable for large-
volume training and classification.” Dymshits et al. [11].

Nonetheless, Nedelkoski et al. [13] used a bimodal LSTM
that is the concatenation of two LSTM hidden representations
trained on the real-valued duration and one-hot-encoded texts,
respectively. Albeit their work considered logs rather than
traces, one may view their method as leveraging a temporal
argument. The neural network proposed by Ezeme et al. [14] is
the closest to actually considering multiple arguments values.
The authors trained an LSTM using the system call name, the
CPU cycles count, and the distribution of characters in the
arguments’ values.

As far as we know, only two works by Tandon and Chan
[22, 23] considered the actual values of multiple system call
arguments. The authors trained a conditional rule-learning
algorithm called LERAD, which, contrary to neural networks,
does not require to learn a fixed-size representation of the
arguments.

III. PROPOSED APPROACH

Before introducing the proposed approach, let us clarify the
different categories of system call arguments. One may group
them depending on whether they are part of the stream context,
the event context, or the event fields (see Figure 1). In this
work, the arguments are grouped based on their semantic. The



first category comprises all call-related arguments such as the
return value, the file descriptor, the type of futex operation, and
the number of bytes to write – depending on the event. The
second category consists of all process-related arguments such
as the process name, the thread id, and the process id. Note that
this category corresponds exactly to the event context. Finally,
the third group consists of time-related arguments such as the
timestamp and the timeout duration.

The scope of this work is limited to the arguments that
are common to virtually all system calls. Namely, the return
value (ret), whether the event corresponds to the start or
end of a system call execution (entry), the process name
(procname), the thread id (tid), the process id (pid), and
the timestamp (timestamp). As explained later, extending
this work to other arguments is simple but may require a
substantially larger dataset. Table I recapitulates the considered
arguments.

TABLE I
THE STUDIED SYSTEM CALL ARGUMENTS.

Category Argument Notation Type

call-related
return value ret integer
start/end of execution entry boolean

process-related
process name procname string
process id pid integer
thread id tid integer

time-related timestamp timestamp integer

In order to determine how to represent the arguments, one
must identify the intrinsically meaningful ones. In other words,
one has to assess whether the argument values convey meaning
in themselves – without any context. As an example, let us
consider the process name “apache”. This value means that
an Apache web server has generated the system call, hence
procname is inherently meaningful. On the contrary, the
process id “12523” is only meaningful in the context of the
trace. Indeed, the pid allows relating events that have been
generated by the same process; the value “12523”, however,
may well be associated with two distinct processes at different
points in time.

The procname, the return value, and the entry are
intrinsically meaningful arguments, and hence, an embedding
will be learned for them. On the contrary, the pid, the tid,
and the timestamp are not inherently meaningful and an
encoding will be applied.

A. Embedding

One way to represent textual words is through a sparse
binary vector called one-hot-encoding. The i-th word of the
vocabulary is mapped to a row vector ewi

whose dimension is
equal to the size of the vocabulary. Such vector is filled with 0
except for the i-th position which is equal to 1. Given a toy vo-
cabulary of three system call names {open,close,timer},
their one-hot-encoding would be [1, 0, 0], [0, 1, 0], and [0, 0, 1],
respectively.

One-hot-encoding has two major drawbacks: (1) the vector
dimension is equal to the vocabulary size which may be
large, and (2) the encoding of any two distinct words are per-
pendicular, meaning that words are equidistant. For instance,
one would expect dist(eopen, eclose) < dist(eopen, etimer) as
open is semantically closer to close than to timer.

A better representation is expected to be more compact
and to encapsulate semantic knowledge about the word. Such
representation is called an embedding. Note that in the natural
language processing community, an embedding refers to both
the general mapping from a textual space to a semantic vector
space and the actual dense vectorial representation of a word.

Formally, an embedding is defined by a dense matrix
W ∈ Rdv×de with dv the size of the vocabulary and de the
dimension of the embedding such as de � dv . The embedding
xwi of the word wi is computed by multiplying its one-hot-
encoding ewi with the embedding matrix W which effectively
acts as a lookup table (see example below). The embedding
matrix is typically treated as any other model parameter in that
it is randomly initialized and learned with gradient descent.

[ 0 0 1 0 ]︸ ︷︷ ︸
One-hot vector ewi

×


5 6 2 1 4

0 1 7 3 1

4 8 1 6 9

3 1 2 8 2


︸ ︷︷ ︸

Embedding matrix W

= [ 4 8 1 6 9 ]︸ ︷︷ ︸
Word embedding xwi

B. Encoding

It would be ill-advised to learn an embedding of a value that
is not inherently meaningful – whose interpretation depends
entirely on the context. Instead, one should use a determin-
istic transformation without any parameter that is called an
encoding.

Once more, let us consider the process id. Neural networks
take as input a vector of numerical values. Therefore one may
provide the actual pid as input. It is, however, a best practice
to normalize the input vector to mitigate numerical instabili-
ties, help training, and improve the model performance. Since
the pid is not inherently meaningful in general4, any bijection
from the argument space to a small interval such as [0, 1] or
[−1, 1] works well. The simplest solution would be to map
the pid uniformly to real values between [0, 1]. In practice,
the number of distinct pid within a trace varies and is often
unknown beforehand.

A practical way to encode a numerical value is to apply
the cosine function. Indeed, the codomain is [−1, 1], and the
function requires no knowledge about the distribution or the
extremum of the input variable. The cosine function is not,
however, a bijection. As a result, collisions may occur: two
different values assigned to the same encoding. Consider x =
1 and x′ = 1 + 4π:

cos(1) = cos(1 + 4π)

4There are exceptions. Notably, pid 0, pid 1, and kernel-reserved pids
are meaningful and could be considered separately.



The number of collisions may be reduced by dividing x by
an appropriately large number which effectively controls the
period of the cosine function. Note that if the denominator is
too small, collisions may still occur.

cos(1/2) = cos((1 + 4π)/2)

If the denominator is too large, the encodings will be
extremely close, hence difficult for a model to distinguish.

cos(1/1000) ≈ 0.9999995

cos((1 + 4π)/1000) ≈ 0.99991

Instead, the denominator should be equal to the estimated
maximum value that x can take.

The number of collisions may be further reduced by apply-
ing multiple cosine functions with different periods. In that
case, the encoding is a vector comprising the output of each
cosine function. In other words, the output of every cosine
function is concatenated into a vector which is the encoding.

Our approach relies on the encoding proposed by Vaswani
et al. [6] which leverages an alternation of cosine and sine
functions with an increasing denominator. More formally, the
encoding of a numerical value x is a vector pex of dimension
d whose j-th value is given either by equation 1 or 2 depending
on whether j is even (j = 2i) or odd (j = 2i+1), respectively.

pex,2i = sin(x/100002i/d) (1)

pex,2i+1 = cos(x/100002i/d) (2)

As the authors underlined, there exists a linear relation
between the pex and pex+k, which they hypothesized should
facilitate learning. Figure 5 illustrates the encoding.

Fig. 5. Encoding of the value x = 80 using Vaswani et al. [6] formula and
a dimension d = 4.

C. Addition or Concatenation

Let us now investigate how to combine the arguments
embedding and encoding into a single event representation.
The two most common approaches are the addition and the
concatenation.

One may describe the addition of two vectors x and y as
the translation of a point x by a vector y – or equally a point
y by a vector x. Let us consider the system call name and
the argument entry which has two possible values, “entry”
and “exit”. Furthermore, let us consider the system call name
embedding as a point and the entry embedding as a vector.
The addition effectively shifts the system call name embedding
depending on whether the event corresponds to the start or the
end of the system call execution. As illustrated by figure 6,

the relation has been explicitly modelled in the same space as
the embedding of the system call name, which simplifies their
visualization and interpretation.

open

close

entry_open

entry_close
exit_open

exit_close

Explicit relation

Implicit relation

Fig. 6. The embedding of the system call names “open” and “close”. The
green and red dashed lines represent the explicitly modelled “entry” and “exit”
relations, respectively. The blue dotted line represents the implicitly modelled
relation between the two system call names.

The addition preserves the dimension, which may be too
small to store all the information, thus creating a bottleneck.
Instead, the concatenation allows combining vectors without
such a bottleneck. Indeed, the dimension of the resulting vector
is the sum of the dimensions of the concatenated vectors.
That may, however, be a drawback if the model size scales
with the input dimension as larger models are computationally
expensive to train and prone to overfitting. One may mitigate
the overfitting by collecting a sufficiently large dataset.

Although the embedding visualization is outside of the
scope of this work, we believe interesting to model the system
call name, the argument entry, and the argument ret in
the same space. One may gain insights into the system by
investigating the relations between those vectors. Therefore,
only those values will be added, and the remaining arguments
will be concatenated. Note that it would be ill-advised to add
an encoding to an embedding since the former is not inherently
meaningful.

D. Event Representation

Figure 7 illustrates the computational graph of the event
representation. For the call-related arguments, the embedding
of the sysname, the entry, and the ret are added. Note
that the return value is simplified to either “success” if the
numerical value is greater or equal to zero, or “failure”
otherwise. For the process-related arguments, the procname
embedding is concatenated with the pid and tid encodings.
For the time-related argument, the timestamp is converted
from nanoseconds to microseconds and is encoded. Finally, the
representation of each category of arguments is concatenated.

Neural networks take numerical values as input that may be
arranged as vectors, matrices, or, more generally, tensors. In
the case of traces, the network’s input is typically a sequence
of vectors corresponding to the events. Such vectors may
be the one-hot encoding of system call names, or better,
their embedding. The proposed approach outputs a vectorial
representation of the event with its arguments; therefore, it
applies to most deep learning models.



sysname entry ret

Addition

procname pid tid

Concatenation

Concatenationtimestamp

time-related

process-relatedcall-related

Event
representation

Fig. 7. Computational graph of the event representation. Blue rounded rectangles represent the arguments. Green rectangles indicate that the transformation is
learned (embedding), and the parametrization is noted next to the incoming arrow. White rectangle indicates that the transformation is not learned (encoding,
addition, or concatenation).

The proposed event representation is non-contextual: a sys-
tem call with its arguments will have the same representation
regardless of the other trace events. Some tasks greatly benefit
from a contextual representation which may be obtained
with a Transformer trained on the masked language model
objective [7]. Although such a model has been evaluated,
contextual representations are outside the scope of this paper.

IV. DATA COLLECTION

Over the years, many tracing datasets have been explored;
however, most of them are not publicly available. Conse-
quently, the now-obsolete UNM [24] and KDD98 [25] datasets
are still widely used [2]. Those datasets were collected more
than two decades ago and are clearly not representative of
modern systems anymore. Therefore, they should not be used
to evaluate recent approaches. In 2013, Murtaza et al. [2]
and Creech and Hu [26] addressed this issue by introducing
two new datasets: FirefoxDS and ADFA-LD, respectively.
Unfortunately, the former is unavailable, and the system call
arguments were omitted from the latter.

As indicated by Brown et al. [1], increasing the size of lan-
guage models greatly improves their performance regardless
of the task. As larger models require more data to be properly
trained, the dataset must not only be modern but also massive.
To the best of our knowledge, no massive and modern datasets
comprising the system call arguments are publicly available.
To that extent, we propose to generate such a dataset using
requests. A request is a task delimited by specific start and
end events. Examples include database queries, micro-services,
and application functions. Notably, web requests have been
extensively studied in the literature as they are ubiquitous.
We introduce a methodology to generate a massive dataset
of web request traces using a simple client-server framework

(see Figure 8). The source code and the dataset are publicly
available on GitHub5 and Zenodo6, respectively.

wrk2

Thread

Thread

Thread

Thread

Client

Apache 2

Process

Process

Server

MySQL

Thread

Thread

Network

Noise

Fig. 8. Client-server framework. The client and the server are two distinct
physical machines that communicate over the network. The server may be
executing other software while handling a request which is considered to be
noise from a request point of view.

A. Methodology

On the client-side, a benchmark tool is used to send many
concurrent requests to the server via the hypertext transfer
protocol (HTTP). We chose wrk27, an open-source multi-
threaded equivalent of the Apache benchmark, as it guarantees
a constant throughput load with an accuracy up to 99.9999%
for sufficiently long runs. Moreover, wrk2 yields a latency
summary which allows extracting statistics about the dataset
without processing it.

On the server-side, a web server handles the client requests
and communicates with a database to retrieve the necessary
information. For the web server, we chose Apache2 for its
omnipresence and its modularity. Indeed, Apache2 is the most

5https://github.com/qfournier/syscall args
6https://zenodo.org/record/4091287#.X4hhGNjpNQI
7https://github.com/giltene/wrk2

https://github.com/qfournier/syscall_args
https://zenodo.org/record/4091287#.X4hhGNjpNQI
https://github.com/giltene/wrk2


popular web server since 1996, and its vast community has
developed many optional modules, including app servers and
database connection managers. For the database, we chose
MySQL for its ease of use and performance. MySQL is filled
with the Sakila Sample Database8 which includes an author
table comprising ids, first names, and last names. Finally, PHP
was installed as an Apache module to query the database.

One may be interested in simulating different behaviours
such as slow or abnormal requests. In order to increase the
likelihood of such requests, the server must be overloaded,
which is done by restricting the amount or speed of the
resources (CPU, memory, network, and disk). Consequently,
Apache2 is deployed in a virtual machine using Virtual Box.

Physical servers often execute multiple tasks simultane-
ously. Since our server was dedicated, Firefox was automati-
cally and randomly called from the console to take screenshots
of random Wikipedia pages. The monitoring tools htop and
bmon were also running in separate terminals. This allows
creating a load on the CPU, the disk, and the network, as well
as generating random events in the trace which adds variability.

In this work, we focus on the server-side since it is the
source of most delays. A single trace is collected during
the entire benchmark, therefore containing many individual
requests. Depending on the task at hand, one may consider
the whole trace as a single sequence or individual requests
as separate sequences. Several tracers are available; however,
the Linux Tracing Toolkit: next generation (LTTng) [27] is
often the prefered choice given its lightweight and rapidity.
Although only some system calls arguments are considered in
this work, all arguments have been collected in order to have
a complete view of the system.

B. Dataset Analysis

The server was deployed on a virtual machine with two
cores from an Intel Core i7-8700 (up to 4.6 GHz), 1 Gb of
DDR4 RAM, and an NVME SSD. The operating system was
Ubuntu 18.04. Different throughputs were used to simulate
different usages: idle, low, medium, and high. High usage
means that the server is barely able to handle requests in
real-time and that some end up with a timeout. Note that the
training set and the test set were collected separately using
different throughputs to avoid any overlap.

We collected around 250,000 requests which amount to
almost 150 million system calls. One would likely have
to collect a larger dataset in order to consider additional
arguments such as the file descriptor without overfitting.

Figure 9 depicts the distribution of process names. As
expected, the three most frequent processes are those that
handle requests, namely the web server, its workers, and the
database. Note that Firefox is responsible for issuing 13% of
the system calls.

Figure 10 depicts the distribution of system call names. The
two most frequent system calls are futex and poll which
provide a method for waiting until a condition becomes true

8https://dev.mysql.com/doc/sakila

Fig. 9. Distribution of process names

and until a file descriptor becomes available to perform IO
operations, respectively. This behaviour is to be expected in
networked multicore systems, especially when many remote
requests are being handled concurrently.

Fig. 10. Distribution of system calls

For an equivalent analysis of Ciena’s dataset, we refer the
reader to the GitHub repository.

V. COMPUTATIONAL EXPERIMENTS

This section introduces the neural networks and objectives
on which the system call arguments’ impact was evaluated.
The source code, hyperparameters, and trained models are
publicly available on GitHub9.

A. Networks

The first model evaluated is a deep unidirectional Long
Short-Term Memory (LSTM) network with two hidden layers
comprising 96 units. The vast majority of existing works
to analyze traces apply an LSTM on system call names
only [9, 11, 12, 13, 14]; therefore, those methods would
require almost no modification to leverage the arguments with
the proposed approach.

The second model evaluated is a Transformer. Transformers
are highly parallelizable and are able to learn dependencies
across an unlimited number of steps at the price of quadratic
complexity. Many works address this limitation; however,
since this paper aims to demonstrate the usefulness of the
system call arguments, we settled for the vanilla Transformer

9https://github.com/qfournier/syscall args

https://dev.mysql.com/doc/sakila
https://github.com/qfournier/syscall_args


introduced by Vaswani et al. [6]. In particular, the network
consists of six layers, each comprising 8 attention heads and
a feedforward network with 128 units.

Contrary to LSTMs, Transformers are agnostic to the event
position in the sequence. To solve this shortcoming, Vaswani
et al. [6] injected positional knowledge by summing a posi-
tional encoding with the embedding. In our experiments, the
model achieved better results when the positional encoding
was concatenated to the event embedding.

The dimensions of the arguments embedding and encod-
ing have a significant impact on the model performance;
thus, various configurations were evaluated. The following
dimensions performed well in all experiments: 32 for the
sysname, entry, and ret, 16 for the procname, 4 for
the pid and tid, and 8 for the timestamp. Consequently,
the dimension of the whole event representation is 64. Note
that the dimension of the positional encoding was equal to that
of the timestamp.

B. Objectives

The first objective is the left-to-right language model (LM),
which predicts the conditional probability of the next system
call name given the previous system calls. The chain rule
allows computing the joint probability of the whole sequence,
that is, its likelihood, and therefore may be used to detect
changes in the system behaviour, intrusions, and anomalies.
Notably, Kim et al. [12] used language modelling for host-
based intrusion detection.

The second objective is the masked language model (MLM),
which independently estimates the probability of masked
words given the rest of the sequence. The more events are
masked, the less context is available, and the more difficult
is the training. In practice, MLM is often used to pre-train
neural networks, and it has been shown to improve the model
performance on downstream tasks, that is, the tasks of interest.
Therefore, we evaluated the pre-trained model on LM in a
zero-shot manner and determined that masking 25% of the
events performed reasonably well on both datasets (see Table
V). In particular, we followed the methodology of Devlin
et al. [7] by randomly selecting 25% of the events, of which
80% were entirely masked, 10% were replaced by a random
system call name with the same argument values, and 10%
were left unchanged. Randomly replacing the selected events
generates noise which increases the robustness of the model.
The proportion of random events is identical to Devlin et al. [7]
as their ablation study showed it worked well for pre-training.
Note that masked LMs are technically not language models
as they are not trained to maximize the joint probability of
sentences. Figure 11 illustrates the masked language model.

C. Data

Due to memory constraints on the graphics processing unit
(GPU), the models must be trained on small sequences. There-
fore, the traces were split into non-overlapping sequences of
256 events. Note that those sequences do not correspond to
requests. One would need to implement the proposed approach

Neural Network

sysname1 
args1

sysname2 
args2

MASK
sysname4 
args4

sysname1 
args5

sysname6 
args6

sysname1 
args1 

sysname2 
args2

sysname3 
args3

sysname4 
args4

sysname5 
args5

sysname6 
args6

sysname1 sysname2 sysname3 sysname4 sysname5 sysname6

Sequence

Masked Sequence

Predicted Sequence ^ ^ ^ ^ ^ ^

Fig. 11. Masked language model. Events in green have been randomly
selected, and system call names in red are the predictions independently
considered.

with a lower computational complexity model in order to
process whole requests as they usually contain thousands of
events.

The first dataset studied has been introduced in Section IV
and comprises 318,674 training sequences and 258,190 test
sequences. The second dataset has been collected by Ciena
on pre-production servers executing proprietary software and
comprises 190,924 training sequences and 64,628 test se-
quences. Although smaller, this dataset is designed to be
representative of a real-world use case.

A quarter of each test set was randomly selected to create a
validation set on which the hyperparameters were fine-tuned,
and the model was evaluated at train time for early stopping.

D. Results

For each combination of datasets, objectives, and neural
networks, two event representations have been compared: the
system call name without any argument (none) and with every
argument as described in Figure 7 (all).

Arguments may affect the performance differently; how-
ever, the computational cost of evaluating the impact of
each argument, or worse, each combination of arguments, is
prohibitive in practice. Instead, we evaluated the global impact
of three groups of arguments: call-related (entry and ret),
process-related (procname, pid, and tid), and time-related
(timestamp).

Because the arguments embedding and encoding are con-
catenated, considering additional arguments increases the
event representation dimension, which also increases the
model size. On one side, the additional information allows the
network to be larger without overfitting; hence one may see
the increase in size as a byproduct of the arguments. On the
other side, one may argue that a larger model only considering
the system call name would perform better. In order to
test these hypotheses, a compensated model considering no
argument is evaluated (none cmp.). The dimension of the
sysname embedding is increased from 32 to 64, which is the
event representation’s dimension when all the arguments are
considered.

The model performance was measured in terms of cross-
entropy (lower is better) and top-1 accuracy (higher is better).
The cross-entropy is a measure of the difference between two
distributions, in our case, the model output and the label. In the
usual case of one-hot labels, the cross-entropy is defined as the



negative logarithm of the correct event’s predicted probability.
The top-1 accuracy is the percentage of correct predictions,
where a prediction is the system call name with the highest
predicted probability. Results are detailed in Table II.

In every experiment, the models that consider all the ar-
guments achieved the lowest cross-entropy and the highest
accuracy. The compensated models perform on par or better
than their smaller counterpart; however, they are systematically
outperformed by the models considering all the arguments.
These results indicate that the increase in performance is
not only due to the increase in model size but also to the
additional arguments. Therefore, the arguments must contain
useful information for language modelling tasks. Interestingly,
the masked language model objective benefits more from call-
related arguments than process-related ones.

The time-related argument has a negligible impact on the
LSTMs; consequently, the temporality must be of little use
for the left-to-right language model objective. Nonetheless,
Transformers appear to benefit from the timestamp and,
as a result, an ablation study of the timestamp and the
position was conducted to quantify their impact. The re-
sults shown in table III reveal that timestamp does increase
the performance over a model without any arguments, although
not as much as the position, which indicates that Trans-
formers are able to leverage the redundancy of the positional
information embedded in the timestamp. However, with an
equal number of parameters, a model considering only the
position performs on par or better than one considering
both values. Such behaviour is to be expected since the
positional information in the timestamp is harder to extract.
One may be tempted to dismiss the timestamp; however, it
should be noted that some downstream tasks, including latency
detection, may greatly benefit from the timestamp.

As shown in Table IV, the computational overhead imposed
by the additional arguments was negligible compared to the
overall training cost, making the proposed approach suitable
for real-world applications. This is to be expected as the
embedding is simply a matrix multiplication, and the encoding
is only a small number of cosine and sine functions.

VI. THREATS TO VALIDITY

The main threat to validity is the limited scope of the
evaluation. Indeed, the approach has only been evaluated
on two unsupervised language modelling tasks due to the
lack of a publicly available dataset comprising the system
call arguments. To mitigate this limitation, we provide the
source code as well as the trained models for researchers and
practitioners to evaluate our approach to their task.

The second threat to validity is the simplicity of the en-
vironment on which our dataset was collected. Consequently,
the dataset may not represent real-world use cases and may
not reflect the approach’s actual benefit. This limitation is
addressed by evaluating the two objectives on a second dataset
collected by Ciena on pre-production servers. Additionally, our
dataset is unlabelled. Consequently, it is challenging to use for
supervised tasks such as anomaly detection. To alleviate this

shortcoming, we provide a tutorial and the scripts required
to generate the dataset such that users can produce their own
labels.

Finally, although the proposed approach’s computational
overhead is negligible, neural networks still require power-
ful GPUs to be trained. The models’ average training time
described in Table II was less than 2 hours, with the slowest
model taking about 5 hours on a single NVIDIA RTX2080Ti
and two Intel Xeon Bronze 3104 1.7Ghz. Therefore, the ex-
periments are easily reproducible with modest computational
resources.

VII. CONCLUDING REMARKS

In practice, it is often difficult to determine whether a
specific deep learning approach is beneficial for the task at
hand. In this section, we answer two general questions to
help researchers and practitioners decide whether to adopt the
proposed method.

Do the arguments invariably increase the model perfor-
mance? We argue that the performance either improves or
remains the same, provided two conditions. Firstly, the model
must be flexible enough to be able to extract relevant infor-
mation from the arguments. Such a model would be able to
leverage the additional information in order to make more
informed predictions, hence more accurate. If the arguments
only contain irrelevant information to the task, the perfor-
mance cannot increase. It may, however, decrease. Indeed,
larger inputs translate into larger embeddings, which increase
the model size, hence its flexibility. As the model flexibility
increases, it becomes prone to overfitting, that is, to learn pe-
culiarities from the dataset that do not reflect real explanatory
factors. It is well-known that the difference between training
and generalization errors grows with the model flexibility and
shrinks with the number of training examples [28]. Therefore,
the second condition is that enough samples must be available
to prevent the model from overfitting. Large datasets of traces
are typically easy to obtain, so the amount of data is not a
limiting factor. Notably, this work introduced a methodology
to generate a massive dataset of requests. Furthermore, many
techniques such as dropout [29], batch normalization [30], and
early stopping [31] allow mitigating the overfitting that may
occur. Nonetheless, the arguments should be omitted if one
knows beforehand that the information is irrelevant to the task.
For instance, if a single thread is recorded, the tid is constant
and may be safely omitted.

In practice, how does one know when to consider additional
arguments? It seems that one would need to estimate a priori
(1) if the model is complex enough, (2) if the dataset is large
enough, and (3) if the arguments could be relevant to the task
at hand. Fortunately, in the case of neural networks, the models
are generally more flexible than necessary – they contain many
more parameters than there are samples in the dataset [31].
As explained above, collecting large datasets of traces is often
trivial, and the risk of overfitting may be significantly reduced.
When possible, we recommend considering the arguments and
comparing the model with a baseline that does not.



TABLE II
IMPACT OF THREE CATEGORIES OF SYSTEM CALL ARGUMENTS (CROSS-ENTROPY/ACCURACY).

none none cmp. time call process all

Web
Requests

LM
LSTM 0.528 / 83.1 0.529 / 83.1 0.526 / 83.2 0.451 / 85.6 0.443 / 85.7 0.423 / 86.4

Transformer 0.609 / 80.3 0.506 / 83.3 0.599 / 80.6 0.489 / 84.3 0.452 / 85.0 0.380 / 87.3

MLM Transformer 0.535 / 81.7 0.485 / 82.8 0.524 / 81.8 0.400 / 87.2 0.423 / 85.0 0.182 / 94.1

Ciena
LM

LSTM 0.294 / 91.8 0.301 / 91.5 0.301 / 91.6 0.277 / 92.2 0.283 / 91.9 0.264 / 92.4

Transformer 0.323 / 90.4 0.292 / 91.3 0.310 / 90.8 0.290 / 91.5 0.271 / 91.9 0.238 / 92.8

MLM Transformer 0.285 / 90.8 0.264 / 91.3 0.270 / 91.2 0.202 / 94.0 0.245 / 91.8 0.125 / 96.2

TABLE III
IMPACT OF THE EVENT’S POSITION AND TIMESTAMP ENCODING

DIMENSIONS ON THE TRANSFORMER WITHOUT ARGUMENTS
(CROSS-ENTROPY/ACCURACY). A DIMENSION OF ZERO IS EQUIVALENT

TO OMITTING THE ARGUMENT.

timestamp position Web Requests Ciena

0 0 0.730 / 76.9 0.444 / 86.9

8 0 0.661 / 78.4 0.337 / 89.8

0 8 0.609 / 80.3 0.323 / 90.4

8 8 0.599 / 80.6 0.310 / 90.8

0 16 0.587 / 80.9 0.313 / 90.8

TABLE IV
AVERAGE EPOCHS TIME (± STD) IN MILLISECONDS OF THE

TRANSFORMERS TRAINED ON THE WEB REQUESTS.

LM MLM

none 99.3 (± 2.0) 232.2 (± 8.2)

none cmp. 102.2 (± 1.6) 232.8 (± 5.3)

time 104.1 (± 2.6) 228.5 (± 3.8)

call 102.4 (± 2.1) 227.0 (± 6.6)

process 103.6 (± 1.7) 234.3 (± 6.9)

all 106.0 (± 2.4) 238.5 (± 4.5)

TABLE V
IMPACT OF THE PERCENTAGE OF SELECTED EVENTS FOR PRE-TRAINING

THE TRANSFORMER WITH ALL ARGUMENTS AS EVALUATED ON LM
(CROSS-ENTROPY/ACCURACY).

pmask Web Requests Ciena

0.05 3.826 / 54.6 1.738 / 80.1

0.10 3.881 / 55.7 1.641 / 80.2

0.15 3.314 / 56.7 1.639 / 80.2

0.20 3.543 / 56.1 1.617 / 80.4

0.25 3.334 / 56.1 1.647 / 80.4

0.30 3.387 / 56.3 1.548 / 80.2

In this work, we introduced a massive dataset of web
requests and a general approach to learning a representation
of the system call names along with their arguments. By
leveraging the left-out information, we were able to system-
atically increase the performance of two neural networks on
two language-modelling tasks at a negligible computational
cost. Possible future works include extending the embedding
to userspace events, applying the models to downstream tasks
such as anomaly detection, and applying the embedding to the
many previous works that rely on LSTMs.

VIII. ACKNOWLEDGMENT

We would like to gratefully acknowledge the Natural Sci-
ences and Engineering Research Council of Canada (NSERC),
Prompt, Ericsson, Ciena, and EffciOS for funding this project.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCand
lish, A. Radford, I. Sutskever, and D. Amodei, “Lan-
guage Models are Few-Shot Learners,” arXiv e-prints, p.
arXiv:2005.14165, May 2020.

[2] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and
M. Couture, “A host-based anomaly detection approach
by representing system calls as states of kernel modules,”
in 2013 IEEE 24th International Symposium on Software
Reliability Engineering, ISSRE 2013, 2013.

[3] H. Nemati, S. V. Azhari, and M. R. Dagenais, “Host
hypervisor trace mining for virtual machine workload
characterization,” in 2019 IEEE International Conference
on Cloud Engineering (IC2E), 2019, pp. 102–112.

[4] Q. Fournier, N. Ezzati-jivan, D. Aloise, and M. R.
Dagenais, “Automatic cause detection of performance
problems in web applications,” in 2019 IEEE Interna-
tional Symposium on Software Reliability Engineering
Workshops (ISSREW), 2019, pp. 398–405.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Comput., vol. 9, no. 8, pp. 1735–



1780, Nov. 1997, http://www.bioinf.jku.at/publications/
older/2604.pdf.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is All you Need,” in Advances in Neural Infor-
mation Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds. Curran Associates, Inc., 2017, pp.
5998–6008.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding,” CoRR, vol.
abs/1810.04805, 2018.

[8] K. Asmitha and P. Vinod, “A machine learning approach
for linux malware detection,” Proceedings of the 2014
International Conference on Issues and Challenges in
Intelligent Computing Techniques, ICICT 2014, pp. 825–
830, 2014.

[9] F. Song, A. Stiegler, Y. Diao, J. Read, and A. Bifet,
“EXAD: A System for Explainable Anomaly Detec-
tion on Big Data Traces,” in ICDMW 2018 - IEEE
International Conference on Data Mining Workshops,
Singapore, Singapore, Nov. 2018.

[10] Z. Xu, X. Yu, Y. Feng, J. Hu, Z. Tari, and F. Han,
“A multi-module anomaly detection scheme based on
system call prediction,” in 2013 IEEE 8th Conference on
Industrial Electronics and Applications (ICIEA), 2013,
pp. 1376–1381.

[11] M. Dymshits, B. Myara, and D. Tolpin, “Process Mon-
itoring on Sequences of System Call Count Vectors,”
CoRR, vol. abs/1707.0, 2017.

[12] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon, “LSTM-
Based System-Call Language Modeling and Robust En-
semble Method for Designing Host-Based Intrusion De-
tection Systems,” CoRR, vol. abs/1611.0, 2016.

[13] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly de-
tection from system tracing data using multimodal deep
learning,” in 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), July 2019, pp. 179–186.

[14] O. M. Ezeme, Q. Mahmoud, and A. Azim, “A Frame-
work for Anomaly Detection in Time-Driven and Event-
Driven Processes using Kernel Traces,” IEEE Transac-
tions on Knowledge and Data Engineering, p. 1, 2020.

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Advances in
Neural Information Processing Systems 27, Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2014, pp.
3104–3112.

[16] S. Lv, J. Wang, Y. Yang, and J. Liu, “Intrusion prediction
with system-call sequence-to-sequence model,” CoRR,
vol. abs/1808.01717, 2018.

[17] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representa-
tions using RNN encoder-decoder for statistical machine
translation,” CoRR, vol. abs/1406.1078, 2014.

[18] J. Cheng, L. Dong, and M. Lapata, “Long short-term
memory-networks for machine reading,” CoRR, vol.
abs/1601.06733, 2016.

[19] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine
Translation by Jointly Learning to Align and Translate,”
CoRR, vol. abs/1409.0473, 2014.

[20] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols,
“Recurrent neural network attention mechanisms for in-
terpretable system log anomaly detection,” CoRR, vol.
abs/1803.04967, 2018.

[21] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and
R. Salakhutdinov, “Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context,” CoRR, vol.
abs/1901.0, 2019.

[22] G. Tandon and P. K. Chan, “On The Learning Of Sys-
tem Call Attributes For Host-based Anomaly Detection,”
International Journal on Artificial Intelligence Tools,
vol. 15, no. 06, pp. 875–892, 2006.

[23] ——, “Learning Useful System Call Attributes for
Anomaly Detection,” in Proceedings of the Eighteenth
International Florida Artificial Intelligence Research So-
ciety Conference, Clearwater Beach, Florida, {USA},
2005, pp. 405–411.

[24] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, “A sense of self for unix processes,” in Pro-
ceedings 1996 IEEE Symposium on Security and Privacy,
1996, pp. 120–128.

[25] D. Fried, I. Graf, J. Haines, K. Kendall, D. Mcclung,
D. Weber, S. Webster, D. Wyschogrod, R. Cunningham,
and M. Zissman, “Evaluating intrusion detection systems:
The 1998 darpa off-line intrusion detection evaluation,”
vol. 2, 05 2000.

[26] G. Creech and J. Hu, “Generation of a new ids test
dataset: Time to retire the kdd collection.” in WCNC.
IEEE, 2013, pp. 4487–4492.

[27] M. Desnoyers and M. R. Dagenais, “The lttng tracer:
A low impact performance and behavior monitor for
gnu/linux,” in OLS (Ottawa Linux Symposium) 2006,
2006, pp. 209–224.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing. MIT Press, 2016, http://www.deeplearningbook.org.

[29] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to prevent
neural networks from overfitting.” Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” 2015.

[31] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting
in neural nets: Backpropagation, conjugate gradient, and
early stopping,” in NIPS, 2000.

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.deeplearningbook.org

