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Abstract—In today’s world, reducing energy consumption
should be the goal for any organization and any system, including
robotics software systems. However, state of the practice in
robotics software development focuses primarily on achieving
functionality and performance, with minimal recognition of
energy-efficiency as a driving software quality. The goal of this
paper is to identify, synthesize, and empirically evaluate architec-
tural tactics for energy-efficiency applied by practitioners in real
robotics projects. Four tactics were identified by mining software
repository techniques applied to the ROS ecosystem. The tactics
were evaluated via experimentation on a real, commodity robotics
system. Results show that the application of green architectural
tactics tends to largely improve the energy-efficiency of the robot
(7.9% energy savings when all tactics are applied) and that the
movement strategy and the physical environment where the robot
operates strongly influence how energy is consumed by the robot.

I. INTRODUCTION

As of today, energy is a critical resource for any software
system, e.g., in data centers [22] and mobile apps [53].
According to the International Technology Roadmap for Semi-
conductors [7], at the current rate of growth, the total energy
required by ICT alone would be over 1020 Joules by 2040,
i.e., equivalent to today’s global energy production.

Robotics systems play a non-negligible role in this
growth [55]. For example, industrial robots consume about
8% of the total electricity in automotive assembly lines in the
US [51]. Improving the energy-efficiency of robotics systems
can lead to (i) substantial benefits in terms of environmental
sustainability and (ii) an improvement of the quality of service
of battery-operated robotics systems such as autonomous cars
and factories, drones, service robots, etc.

In this context, it is important to understand that software
is becoming the core aspect in robotics. For example, each
new NASA exploration mission uses more control software
than all its prior missions combined, with the Curiosity Mars
Rover having 3M+ LOCs [39]. Despite the initiatives related
to software engineering for robotics of the past years (e.g.,
the IEEE TCSE for Robotics [10]), fundamental challenges
are still affecting robotics software: (i) it is becoming more
and more large, complex, and difficult to write and debug
[31][32][73]; (ii) the development of robotics software is
still a craftsmanship activity instead of following established
engineering practices [35][48]; and (iii) the predominant focus
on performance and functional aspects leads roboticists to ne-
glect crucial software quality attributes [23][25], with energy-
efficiency glaringly missing [14].

Our goal is to identify and empirically evaluate architectural
tactics for energy-efficient robotics software emerging from the
state-of-the-practice, or green tactics for short. Architectural
tactics are design decisions that influence the achievement of
system qualities and can be reused across projects [19]; e.g.,
a tactic for energy-efficiency is to adapt the rate for sampling
a sensor based on the energy-level of the robot. Today there
is no solid body of knowledge on green tactics for robotics
software, leaving roboticists far behind the state of the art in
software development.

To fill this gap, we apply a mixed-method empirical re-
search design composed of two main parts. First, we apply
software repository mining techniques to extract a set of
green tactics for robotics software. In this study we refer to
robotics software as any software running on top of the Robot
Operating System (ROS) [60]. ROS is the de-facto standard
for robotics software [48] and it is used for aerial robots (e.g.,
drones), ground robots (e.g., autonomous cars and warehouse
automation), industrial robots (e.g., manipulator arms), etc.
We use the ROS ecosystem to extract green tactics from real
projects developed in real development contexts. Second, we
perform an empirical evaluation of the identified four green
tactics. Specifically, we implement each green tactic in a
real robot running a common ROS software stack. Then, we
carry out a quantitative assessment of the run-time impact of
each tactic in terms of the energy consumption of the robot
through different missions and physical environments. After
performing 300 individual runs for a total of 10+ hours of
sheer execution time, we provide evidence that (i) three out
of four tactics lead to large energy savings, (ii) applying all
tactics in combination leads to the best results in terms of
energy consumption, and (iii) the movement strategy of the
robot influences how energy is consumed.

The main contributions of this paper are: (i) a reusable
dataset with several repositories, metadata, and discussion
posts about ROS-robotics software, (ii) the identification of
four green tactics for robotics software used in real projects,
(iii) an empirical evaluation of the green tactics on a real
robot performing different missions and in different physical
environments, and (iv) the full replication package for the
study. To the best of our knowledge, this study is the first
empirical investigation on green tactics for robotics software.

Our target audience includes roboticists who want to use
empirically-proven green tactics for architecting their next
ROS-based system, and researchers who can use the green



tactics as a foundation for defining new approaches to automat-
ically improve the energy-efficiency of ROS-based systems.
By providing quantitative evidence about the actual impact of
the green tactics, we advocate more attention to energy-related
aspects of robotics software. At the time of writing, this line
of research has not yet been explored.

II. ROBOTICS SOFTWARE

ROS is the de-facto standard and key technological enabler
for robotics software. It supports more than 140 types of robots
and has a vibrant open-source ecosystem with many GitHub
repositories containing ROS-based software, 4,152 publicly-
available ROS packages, 7,696 ROS Wiki users, and 36,229
ROS Answers users [8][31].

The ROS ecosystem allows for the development of hardware
components and robotics systems independently from their
deployment environment (e.g., Operating System (OS), pro-
gramming language, hardware). As long as the development
environment implements a mutually supported and compatible
ROS version, the two components, whether only a hardware
component added to a robotics system or a complete robotics
system added to a cell of robotics systems, will be able to
communicate with each other.

In ROS, topics allow for many-to-many writing or read-
ing asynchronous, continuous data streams by publishing or
subscribing to a topic, respectively; actions allow for one-
to-one, synchronous and asynchronous client-to-server calls
specifically meant for use with long lasting tasks; and ser-
vices allow for one-to-one, client-to-server synchronous RPCs.
These methods are the only communication methods available
to ROS nodes, which significantly simplifies communication
across nodes and allows one node to make safe assumptions
about another node’s access points.

III. STUDY DESIGN

To foster independent verification and replication, a full
replication package of this study is publicly available [15].

A. Goal and Research Question

Following the template by Basili et al. [18], our goal is to
analyse the ROS ecosystem for the purpose of identifying and
evaluating a set of architectural tactics with respect to their
energy-efficiency from the point of view of roboticists and
researchers in the context of open-source ROS-based systems.
RQ1 – Which architectural tactics are applied in the
development of energy-efficient robotics software? This
research question is answered qualitatively; we identify, ex-
tract, and establish a set of four green tactics used in real-
world robotics projects. The four tactics are synthesized via a
multi-stage experimental study targeting multiple open-source
robotics projects and their related artifacts. We expect that
additional green tactics will emerge in the future (e.g., by
surveying roboticists or via systematic literature studies similar
to [67]), using our results as a foundation based on the
state-of-the-practice. The identified green tactics provide: (i) a
unified vocabulary that roboticists and researchers can use for

discussing energy-related design decisions; (ii) a catalogue of
ready-to-use and validated solutions for energy-related design
problems for future robotic projects; (iii) a foundation for
future fundamental and applied research in energy-efficiency
for robotics software (e.g., finding techniques for automatically
applying green tactics to ROS systems).
RQ2 – To what extent does the application of green tactics
impact robotics software’ energy-efficiency? This research
question is answered quantitatively; for each green tactic we
carry out an empirical assessment of its run-time impact in
terms of energy consumption of a real robot. By answering
this RQ, roboticists are offered objective data on how different
green tactics can make their robotics systems more efficient.

B. Identifying the green tactics (RQ1)

Green tactics identification entails (see Table I and Fig. 1):
Phase 1 – in this phase we build a dataset containing as
much ROS-related data as possible. Specifically, we mine the
following data sources:

• Open-source repositories: We start from a publicly-
available dataset of 335 Git repositories containing real
open-source ROS systems [48]. We then (i) clone the
repositories and extract all source code comments and
Markdown files and (ii) crawl all pull requests/issues
(incl. their discussions) and commit messages.

• Stack Overflow: We crawl all questions with the ROS tag,
their answers, comments, and related metadata.

• ROS Answers: We crawl the same information as in SO
for all its posts, answers, comments, and related metadata.

• ROS Discourse: We crawl all its posts, discussions, and
related metadata.

• ROS Wiki: We crawl all its pages and related metadata.
In this study a data point can be a discussion on Stack

Overflow, a GitHub pull request, a commit message, a source
code file, etc. Given the heterogeneity of the extracted data, we
develop a dedicated extractor for each type of data point. All
extractors persist the extracted data into a single MongoDB
database. We use MongoDB because (i) it stores data as key-
value pairs, making it highly efficient and easy to inspect, and
(ii) it is schemaless, allowing us to easily persist (and query)
the mined data in a single database.

TABLE I: Summary of extracted data for answering RQ1
Phase 1 Phase 2 (a) Phase 2 (b) Phase 3

Source code comments 16,069 172 55 14
Markdown files 1,096 86 21 4
Commit messages 218,385 665 209 38
Issues and PRs 53,310 915 69 25
SO discussions 1,880 32 3 0
ROS Answers discussions 43,672 1227 170 7
ROS Discourse discussions 2,604 197 12 7
ROS Wiki pages 2,547 60 23 2

Total 339,563 3,354 562 97

Phase 2 – In this phase we identify the data points mentioning
energy-related topics. First (Phase 2a), we query the Mon-
goDB database with the pattern expression reported in Figure
1 (we consider all possible combinations of both lower and
upper case for each term in the pattern). We decided to use a



Phase 1: Build dataset
Open-source
repositories

Stack
Overflow

ROS
Answers

ROS
Discourse

Code
Extraction

SO
Extraction

ROSA
Extraction

ROSD
Extraction

Git
Extraction

Extracted data (339,563 data points)

Phase 2:  Identify energy-related 
data points
*batter*	OR	*power*	OR
*energy*	OR	*green*	OR

*sustainab*
a) Initial
search

Energy-related
data points (3,354)

b) False positives
removal

Phase 3:  Identify architectural 
data points

Systematic
selection

Selection criteria

Energy-related and
architectural data
points (97)

Phase 4:  Extract green tactics

Thematic
analysis

3 researchers

4 researchers

4 researchers
Green tactics for
robotics software

Filtered energy-
related data points
(562)

1,880 43,672 2,604

ROS
Wiki

ROSW
Extraction

2,54717,165 271,625

Fig. 1: Phases for identifying the green tactics

pattern matching approach following the intuition that devel-
opers often use semantically similar or related keywords when
considering energy aspects of their systems. The keyword-
based strategy has proven to be a powerful solution for a
number of mining problems [20] and has been successfully
applied in previous studies on mining software repositories and
Q&A platforms about energy-efficiency [24][29][49][52][58].
The keywords were identified by considering, analyzing, and
combining mining strategies in previous empirical studies on
software energy-efficiency [24][49][52][58].

Second (Phase 2b), we manually validate all 3,354 data
points to reduce the number of false positives, e.g., due to
sentences such as “Problems with powering on a robot”, which
are clearly out of scope. The manual validation is performed
in three rounds. In the first round we performed a stratified
random selection of the data points (50 data points for each
type of extracted data, i.e., 50 commit messages, 50 GitHub
issues, etc.) and two researchers independently classified them
as either true or false positives, with a third researcher acting
as arbiter in case of conflicts. The second round follows the
same procedure, but is performed on another subset of the data
points. During both rounds, disagreements were discussed to
ensure high quality of the selected data points. Also, before

discussing emerged conflicts, the level of agreement between
the researchers is statistically assessed using Cohen’s kappa
coefficient [28], leading to nearly perfect levels of agreement
(0.9 for round 1 and 0.8 for round 2), making us reasonably
confident about the objectivity of our classification. Finally,
based on the high level of agreement in the first two rounds,
the last round involves a single researcher classifying all the
remaining data points. The result of this filtering step is a set
of 562 data points (fourth column of Table I).
Phase 3 – In this phase we perform an in-depth assessment of
the 562 selected data points to consider only those discussing
architecturally-relevant concerns. In this context, we use the
definition of system concern from [41], where it is defined
as the interest in a system relevant to one or more of its
stakeholders (e.g., presence of integrator nodes, system layers,
interfaces to other systems). Inspired by the systematic litera-
ture review method [74], we manually analyze each data point
and select those fulfilling a set of well-defined inclusion and
exclusion criteria. Two examples of representative inclusion
criteria are: (i) data points concerning a ROS architectural
entity (e.g., ROS nodes, topics, services), (ii) data points
mentioning architecturally-relevant design decisions. The full
set is available in the replication package. Three researchers
are involved in this step and emerging conflicts are resolved by
a fourth researcher. As in Phase 2, we perform this selection in
three rounds and statistically assess the level of agreement via
the Cohen Kappa statistics in rounds 1 and 2 (before discussing
conflicts), with values of 1 and 0.925, respectively. The result
is a set of 97 data points (last column of Table I).
Phase 4 – The 97 architecturally-relevant data points are
analyzed to identify and extract green tactics. This phase is
conducted by applying the thematic analysis methodology
[30]. We chose thematic analysis because architectural infor-
mation can be strongly dependent on project- and system-
specific characteristics and thematic analysis copes well with
context-dependent data [30][48][70]. Four researchers are in-
volved in this phase, whose activities can be decomposed
into four main sequential steps: (i) for each data point two
researchers independently collect the list of mentioned archi-
tectural entities (e.g., ROS nodes and topics) and extract a
brief summary of the main design decisions related to energy
consumption; (ii) three researchers independently analyze each
data point in its context (e.g., by looking at the specific
code changes associated to a pull request) and categorize
them into common themes (e.g., threshold-based mechanisms,
usage of low-power mode); (iii) all researchers collaboratively
organize the themes into a coherent set of distinguishable
tactics via several iterations; and (iv) each identified tactic is
carefully reported according to the tactics template established
in [46]. Out of the 97 initial data points, 87 were about energy
awareness and 10 data points were about energy efficiency.
The result of phase 4 is the set of four architectural tactics for
energy-efficient robotics software described in Section IV-A.

We opt for a systematic methodology for RQ1 because we
want to be reasonably confident about capturing a representa-
tive set of architectural tactics. This approach addresses threats



to validity related to the fact that there are not many data points
to mine for architectural tactics (97 data points) Not applying
a systematic approach might lead to having extremely noisy
data in Phase 4 (which is purely qualitative) and/or missing
relevant data points. Similar approaches have been followed
in other domains [52][58].

C. Empirically Evaluating the Green Tactics (RQ2)

Implementation of the robotics system – For this experiment
we use a ROBOTIS TurtleBot3 [11], a two-wheeled ground
robot. We use the Turtlebot because it is (i) one of the most
popular robots for education and research [1], (ii) open source
(both hardware and software) and thus highly customizable,
(iii) affordable and available worldwide, (iv) small sized, and
(v) designed to be fully compatible with ROS. In the context of
this study, we use the following sensors: (i) a ROBOTIS LDS-
01 LIDAR [3], (ii) an SDK ICM-20648 Inertial Measurement
Unit (IMU) including a 3-axis gyroscope, accelerometer, and
digital motion processor [6], and (iii) a 5-megapixel camera
supporting different frame rates (FPS) [4]. The robot is pow-
ered by a Lithium polymer 11.1V 1800mAh battery.

The application layer of the robotic system is a customiza-
tion of the default implementation provided by ROBOTIS [12];
it includes 6 ROS nodes (e.g., one for the low-level control of
the robot, one for managing the stream of data produced by the
LIDAR, one for the camera), 6 ROS topics (e.g., for velocity
commands, odometry information), and a variable number of
ROS services, depending on the applied green tactic. In our
study the Turtlebot performs always the same mission: to move
at 0.6m/s within a dedicated robotic arena while (i) continu-
ously video-recording the mission at 60FPS and (ii) stopping
every 20s and doing a 360◦rotation at 0.8rad/s. The mission
and the software implementing it are designed so to be (i)
representative of classical robotics scenarios (i.e., environment
exploration), (ii) easily customizable, and (iii) simple enough
to foster independent replication and verification.
Experimental variables – The independent variables are
selected based on the goal of the experiment, to mitigate the
mono-operation bias as much as possible (due for example
to the usage of a single movement strategy), and to keep
the experiment feasible in terms of execution time. The
independent variables are described below.
• Tactic: the applied tactic. It has six treatments: (i) in
the baseline (b) no green tactic is applied, (ii) the EE1,
EE2, EE3 and EE4 treatments represent the system where
the corresponding tactic is applied, and (iii) combined (c)
represents the system where all four tactics are applied.
• Movement: the movement strategy of the robot. It has three
treatments: (i) noMovement, where the position of the robot is
fixed, (ii) autonomous, where the robot moves within the arena
in a pseudo-random fashion, and (iii) sweep, where the robot
executes a grid-based coverage path plan in the arena [33].
Movements (ii) and (iii) have obstacle avoidance capabilities.
• Environment: represents whether the robotic arena has
obstacles or not. It has two treatments: empty, cluttered.

The dependent variable is the total energy consumed by
the robot during the mission. Energy values are computed by
following a sampling-based approach [17], [36], [37], [64],
that is: (i) sampling the power consumption of the robot at
a fixed interval, (ii) applying the E = P × t formula, where
P= measured power and t = 120 seconds (i.e., the duration
of our mission), and (iii) solving the integral of P over t.
We measure the power samples via the technique proposed
by Hindle et al. for mobile apps [37]. We mount an Arduino
NANO [5] onboard the robot that measures voltage, current,
and power (in mW) drawn from the Turtlebot battery via a
INA219 current sensor [40] (sampling rate = 200Hz). This
solution allows us to precisely measure the power consumption
of the robot with minimal impact on the measurement process.
In order to not interfere with the robot under measurement, the
Arduino NANO persists the energy measures to an SD card.
Due to space limitations, we do not provide the details about
the circuitry, code, and auxiliary hardware of our measurement
infrastructure, they are available in the replication package.
Experiment design – Based on the experimental variables
and hypothesis, the experiment follows a 6x3x2 full factorial
design, i.e., all possible combinations of treatments across all
independent variables. However, we do not consider the six
noMovement-cluttered combinations because in those cases
the presence of obstacles does not influence the execution
of the mission. This leads to a total of 30 trials for our
experiment, i.e., (6x3x2)-6 combinations.
Experiment execution – The experiment is carried out in a
4.5m x 3.5m robotic arena where missions can be executed
without interruptions and under the same conditions. Both the
base station and the robot run on the same WiFi network they
are the only devices connected to the network. We keep the
execution environment as clean as possible by having a clean
installation of the Raspbian OS on the robot, configuring both
the robot and the base station to not perform any OS updates,
disabling all services not needed for mission execution, etc.

Each trial of the experiment is repeated 10 times with a
2-minute idle wait between each run in order to account for
possible fluctuations of the measured energy consumption and
the tail energy phenomenon, where components such as the
network card remain in high power states after completing
a task [54]. As a result, the experiment is composed of 300
individual runs for a total of 600 minutes (10 hours) of sheer
robot time. We randomize execution order of the experiment
runs to avoid potential unpredictable confounding factors.

Each run of the experiment consists of six steps: (1) equip
the robot with a fully-charged battery so that each run starts
with the same battery level, (2) place the robot in its start po-
sition and rearrange the robot arena based on the environment
factor, (3) bring up the robotic mission, (4) start the mission,
(5) (after termination of the mission – 120 seconds), read and
sanity check the measures persisted to the SD card, and (6)
reset and reconfigure the system for the next run.
Data analysis – Firstly, we explore the collected energy
measures via violin plots and summary statistics. Then, we
analyze the distribution of the energy measures in order to



check if a parametric test (e.g., the one-way ANOVA) can be
applied, which can potentially lead to higher statistical power
w.r.t. non-parametric tests [74]. However, the energy measures
across tactics are not normally distributed, even after applying
several data transformations [71], [56]).

We apply the Kruskal-Wallis test (with α = 0.05), a rank-
based non-parametric test for testing whether two or more
samples all come from identical populations [44]. In the
context of our study, we use the Kruskal-Wallis to determine
if there are statistically significant differences of energy con-
sumption for every treatment of the tactic variable. The mag-
nitude of the difference of energy consumption is estimated
via the Eta-squared statistic and interpreted according to [69].

In order to identify which tactics lead to significantly differ-
ent energy consumption, we perform a pairwise comparison
between each tactic and the baseline using the Wilcoxon
test [38] with Benjamini-Hochberg correction [68]. The com-
parison is carried out both globally and across all possible
combinations of movement strategy and physical environment.

We assess the magnitude of the difference of each tactic via
the Cliff’s Delta effect size measure [27]. The values of the
Cliff Delta measures are interpreted according to [34].

IV. RESULTS

A. Tactics for Energy-Efficient Robotics Software (RQ1)

The green tactics identified in this study share the common
goal of saving the energy consumed by a robot. Each tactic
description below includes the number of its occurrences, the
motivation for using the tactic, a component-and-connector
(C&C) view that shows the main components of the tactic
(see Figure 2), a description of the tactic based on the C&C
view, and an example of how it is used in one of the data points
considered in this study. Tactics are intended to be blueprints
for implementation. Roboticists make decisions regarding the
concrete implementation of the different components and
connectors based on their system requirements and constraints.
EE1: Limit Task (5). Context – Robot tasks such as streaming
large videos or robot navigation can consume significant
amounts of energy. Therefore, limiting these tasks when a
robot reaches a critical energy level is important for extending
the time that a robot is operational. Since several robotic
platforms allow roboticists to query the current status of
the battery (e.g., in terms of charge, remaining life time,
temperature), one way to limit execution of energy-hungry
tasks is to place the robot in energy-savings mode once the
energy level reaches an established threshold. For each of these
tasks there is a default mode and an energy-savings mode, as
shown in the examples in Table II.

TABLE II: Default and Energy-Saving Mode for Robot Tasks
Default Mode Energy Savings Mode

Move in any direction at the max power rate Adjust power rate to 50% of set
max power rate

Publish any type of data Do not publish PCL point clouds
Send video stream to the operator display Do not send any video streams

Solution – The Limit Task tactic configures a robot’s task to
execute in energy-savings mode when energy levels reach a

given threshold (see Fig. 2(a)). The Task Requester requests to
execute a task, the Arbiter decides whether to execute the task
in default- or energy-savings mode, the Energy-Savings Mode
Manager provides the task configuration for energy-savings
mode, and the Task Executor executes the task, as such:

1) The Task Requester sends a task to the Arbiter.
2) After receiving the task, the Arbiter checks the energy

level of the robot (provided by another component).
3) If energy level is below the established threshold, the Ar-

biter requests the energy-savings mode task configuration
from the Energy-Savings Mode Manager.

4) The Arbiter forwards the received task to the Task Ex-
ecutor for execution.

5) The Arbiter continues checking the energy level during
the execution of the task.

6) If the energy level is below the threshold, the Arbiter
obtains the task configuration from the Energy-Savings
Mode Manager and instructs the Task Executor to con-
tinue execution of the task in its energy-savings mode.

7) Similarly, if the energy level rises above the threshold, the
Arbiter instructs the Task Executor to continue execution
of the task in its default mode.

8) Once the task is completed the Task Requester is notified.

Task
Requester Arbiter

Task

Energy Level
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Mode Manager

Task
Executor

Configured Task

Task Configuration

(a) Limit Task tactic (EE1)
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Fig. 2: C&C view for the identified green tactics

Example scenario – Data point 36 is about a ROS-based
system that uses haptic devices (data point 36). Haptic tele-
operation allows a user to perform manipulation tasks in
distant, scaled, hazardous, or inaccessible environments [62].
In this system, the haptic device controller is a ROS node
that communicates tasks to another ROS node which in turn
controls the robot. When the energy of the robot arm reaches a
critical level, the robot arm controller node adjusts the received
task based on its configuration for energy-savings mode. In
addition, because the haptic device controller is subscribed to



an arm feedback topic, it can inform the user about the arm’s
battery state as an indication for why it is operating at a slower
speed so that haptic user feedback can be adjusted.
EE2: Disable Hardware (3). Context – Hardware components
(e.g., servos, drivetrains) of a robot often consume a significant
amount of energy. For example, in addition to the energy
required to power a motor such as the Dynamixel XC430-
W240 [63], the controller of the motor also consumes energy
due to the CPU usage to process the produced data (e.g., about
its current velocity and temperature). It is therefore important
to prevent unnecessary utilization of hardware resources in
order to extend the operation time of the robot.
Solution – The Disable Hardware tactic disables hardware
components when they are not strictly needed, which results
in less energy consumption by the robot and more efficient
power management (Figure 2(b)). The tactic is implemented
to manage the state of the actual Hardware Device, as such:

1) The Hardware Requester notifies the Hardware State
Controller whether or not the hardware device is needed
for a certain task.

2) The Hardware State Controller instructs the Hardware
Controller to disable or enable the Hardware Device.

3) Before enabling or disabling the Hardware Device, the
Hardware Controller checks if it is safe to change the
state of the HW device (e.g., to toggle a hardware pin).

4) If it is safe, the Hardware Controller enables or disables
the Hardware Device.

5) Note that it is also possible for the Hardware Requester
to obtain the state of the Hardware Device at any time
via the Hardware State Controller.

Example scenario – The ros_control package [9] is one
of the most used ROS packages. In data point 23,
the controller_manager node advertises two services: a
load_controller service (enable hardware) and an un-
load_controller service (disable hardware). If a node needs
to enable the robot hardware, it sends a request to the
load_controller service. If it wishes to disable the robot hard-
ware, it sends a request to the unload_controller service. After
receiving a request, the controller_manager node performs the
request by either enabling or disabling the robot hardware. The
requesting node is notified with the result to ensure that it is
aware of the robot hardware status.
EE3: Energy-Aware Sampling (1). Context – In robotics,
many sensors are designed to provide a continuous stream of
data (e.g., accelerometers, LIDARs, cameras) [21]. However,
sampling data from sensors consumes energy, especially as
incoming data is continuously processed (CPU usage).
Solution – The Energy-Aware Sampling tactic shown in Figure
2(c) adjusts the rates for sensor sampling based on the energy
level of the robot, as such:

1) The Sensor Requester asks the Sampling Rate Controller
to start sampling the Sensor at a given rate.

2) The Sampling Rate Controller instructs the Sensor Con-
troller to start sampling the Sensor at the given rate and
continues checking the energy level during the execution
of the sampling task.

3) If the energy level reaches a critical threshold, the Sam-
pling Rate Controller instructs the Sensor Controller to
start sampling at a lower rate and informs the Sensor
Requester of the adjusted sampling rate.

4) It is also possible for the Sensor Requester to obtain
sensor status at any time from the Sensor Controller.

Example scenario – Data point 51 is about the ROS-based
driver for InvenSense’s 3-axis gyroscope [2]; there, an MPU
controller node subscribes to a battery_state topic to check
the battery level and a sampling_rates topic to which sensor
sampling rates are published by an MPU node. Based on
battery levels, the MPU Controller adjusts sensor sampling
rates accordingly by sending a request to the sampling action
advertised by the MPU node that controls the actual sensor.
EE4: On-Demand Components (1). Context – Continuously
running a ROS node requires the spawning of an operating
system (OS) process which is an energy-consuming task in
terms of CPU/memory usage (i.e., executing a CPU-intensive
loop) and other resources (e.g., sensors, motors, fans for
cooling). Therefore, it is necessary to ensure that OS processes
are not running if they are not needed.
Solution – The On-Demand Components tactic shown in
Figure 2(d) starts new components only when their function-
ality is needed. The Requester represents a component that
requires the functionality of the On-Demand Component. The
Component Manager acts as a controller that either starts up
or shuts down a component based on requests, as such:

1) The Requester indicates to the Component Manager that
it needs the On-Demand Component to be in either the
online or offline state.

2) The Component Manager starts up (online) or shuts
down (offline) the On-Demand Component depending on
its status and the number of clients already using its
functionality.

3) The Component Manager notifies the Requester of the
state of the On-Demand Component.

4) If the On-Demand Component is online, the Requester
can start using its services.

5) Once the Requester no longer requires the functionality
of the On-Demand Component it goes back to Step 1) to
change its state to offline.

Example scenario – In data point 14, in order for the camera
to operate, it requires the camera_driver ROS nodelet to be
up and running. The requester nodelet publishes the required
state for the camera (online/offline) to a camera_status topic,
which is subscribed to by the nodelet manager. Based on the
published required status, the nodelet manager either starts up
or shuts down the camera_driver. Once the camera_driver is
up, it advertises a service that can be called by the requester.

Note that tactics EE4 and EE2 are related, but different.
The main difference is that on-demand components (EE4)
also covers software-only cases (e.g., an intermediate node for
acting as message broker), whereas EE2 focuses specifically
on hardware resources (and their states).



B. Empirical Evaluation of the Tactics (RQ2)

For this study we implement the tactics as minimally
as possible so to (i) avoid the interaction between tactics
implementation and unnecessary confounding factors (e.g., the
communication overhead due to messages exchanged between
additional components), (ii) ease the replication of the experi-
ment, and (iii) facilitate the comprehension of each tactic. We
implement the green tactics into our Turtlebot as follows:

• EE1: limit the movement of the robot by waiting 5
seconds before each 360◦rotation;

• EE2: disable the camera of the robot (i.e., with no video
acquisition) when the robot is moving among locations;

• EE3: lower the frame rate of the camera to 30 FPS;
• EE4: kill the ROS node of the camera when the robot is

moving and bring it up before each 360◦rotation.
As discussed in Section III-C, our experiment also includes

a baseline where no tactics are applied and a combined
treatment where all the tactics are applied simultaneously.
Data exploration. The energy consumption across all tactics
ranges between 1067.08 and 1429.11 Joules (see Table III),
with a median (mean) of 1277.74 (1271.80) Joules. The
standard deviation of the collected energy measures is non
negligible and ranges from 51.70 for the EE1 tactic to 72.78
for the EE3 tactic; overall, the values of the standard deviation
are mainly due to the robot performing different movements
during the execution of the mission and to the intrinsic
fluctuation of energy and it justifies our design choice of
repeating the runs of the experiment 10 times for each trial.
Nevertheless, the coefficient of variation remains between 4%
and 6%, making us reasonably confident about the reliability
of the measurement infrastructure we setup for the experiment.

TABLE III: Descriptive statistics of the energy consumption
in Joules (SD=standard deviation, CV=coefficient of variation)

Tactic Min. Max. Median Mean SD CV

Baseline (B) 1151.93 1416.81 1336.96 1318.11 60.92 4.62
EE1 1164.58 1386.37 1293.06 1291.62 51.70 4.00
EE2 1089.45 1369.67 1258.91 1255.11 62.44 4.97
EE3 1130.56 1429.11 1337.52 1313.29 72.78 5.54
EE4 1084.92 1321.92 1250.00 1239.13 63.67 5.14
Combined (C) 1067.08 1322.60 1225.36 1213.56 59.18 4.88
Global 1067.08 1429.11 1277.74 1271.80 72.77 5.72

Result 1 – On average the application of green tactics tend to
improve energy-efficiency, however not all tactics impact the energy
consumption of the system with the same magnitude.

As shown in Figure 3, tactic EE4 is the one impacting
energy the most, making the Turtlebot consume an average
of 78.55 Joules less than the baseline treatment, followed
by EE2 and EE1 with an average saving of 63.0 and 26.49
Joules, respectively. The EE3 tactic shows a slightly different
behaviour; even though on average it saves 4.82 Joules, when
it is applied the system tends to consume the same (or
even more) energy w.r.t. the baseline (the median energy
consumption of EE3 is 0.56 Joules higher w.r.t. the baseline).
This result may seem surprising, however it can be explained
by the way we implemented the EE3 tactic. Indeed, EE3
just changes the frame rate of the sensor to 30 FPS but the

Turtlebot does not use the acquired video stream, e.g., by
persisting, manipulating, or streaming the recorded video. We
decided to implement EE3 in this way so to completely isolate
the application of the tactic from the business logic managing
the data produced by the camera. In summary, in the specific
context of our experiment the application of EE3 did not lead
to energy savings (the is also statistically confirmed). This
phenomenon is also confirmed in the mobile apps domain [61],
where lowering the frame rate of a camera does not impact its
energy consumption per se, rather energy is impacted the most
by how the recorded video stream is used in other components
of the system (e.g., streaming the recorded video to the cloud).
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Fig. 3: Energy consumption across architectural tactics
(B=baseline, EEi=ith applied tactic, C=combined, �=mean)

These results are statistically confirmed, with the Kruskal-
Wallis test producing a p-value of 2.74 × 10−18 (with large
effect size), which allows us to reject the null hypothesis that
the energy measures at each tactic come from identical popu-
lations [66]. The pairwise comparison between each tactic and
the baseline with the Wilcoxon test further confirm our results;
the p-value for EE1, EE2, and EE4 is lower than 4 × 10−3,
thus rejecting the null hypothesis that the median difference
between the baseline-EE1, baseline-EE2, and baseline-EE4
pairs is zero. We find a medium effect size for EE1 (0.34) and
a large effect size for EE2 and EE4. These results provide
evidence about the fact that the application of the EE1, EE2,
and EE4 tactics lead to a significantly different amount of
energy consumption in the context of our experiment.

Result 2 – The combination of all green tactics improves energy-
efficiency more than each tactic in isolation.

The median (mean) energy consumed by the Turtlebot with
all combined tactics is 111.6 (104.55) Joules less than the
baseline. This difference is far higher than those related to
the individual tactics: the application of the tactics leads to
a 7.9% energy saving on average. To put this result into
perspective, considering that the total energy of the battery
of the Turtlebot is 71928 Joules and that on average our 2-
minute missions consume 1271.8 Joules, the total lifetime of
a Turtlebot without tactics is about 109 minutes, whereas the
application of the tactics would like to a total lifetime of about
119 minutes (a 10-minute improvement over a mission of
less than 2 hours). The previously mentioned Wilcoxon tests
statistically confirm this result with a p-value of 5.75× 10−11

and the Cliff’s delta measure reveal a large effect size (0.78).

Result 3 – The movement strategy and the physical environment
influence how energy is consumed during the mission.



Figure 4 shows the power measurements collected dur-
ing one randomly-chosen mission for each combination of
movement strategy and physical environment. Among others,
here we can clearly notice (i) the generally lower power
consumption of the robot with the applied tactics with respect
to the baseline, (ii) the low power consumption of the robot
with the noMovement strategy in the first 20 seconds of
the mission, where the robot still does not use at all the
wheel actuators (Figure 4a), and (iii) the more chaotic power
consumption in the cluttered environment due to the avoidance
of the encountered obstacles (Figures 4c and 4e).
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a) No movement, empty environment
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b) Autonomous movement, empty environment
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c) Autonomous movement, cluttered environment
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d) Sweep movement, empty environment
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Fig. 4: Examples of power measurements across all move-
ments and environments (baseline, combined)

By looking at the combinations of tactic, movement strategy,
and physical environment (see Figure 5), we can witness that
different amounts of energy are consumed when the robot
is moving. This result is expected since additional energy is
consumed by the two actuators for rotating the wheels of the
robot. More interestingly, we can also confirm the general
results obtained when discussing results 1 and 2. Specifically,
almost all tactic-movement-environment combinations lead

to a statistically significant difference in terms of energy
consumption, with the exception of EE3. Moreover, when the
results are statistically significant, their effect size is always
large. This gives evidence about the fact that applying tactics
EE1, EE2, and EE4 (and their combination) likely leads to
higher energy-efficiency, with a large effect on it.
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Fig. 5: Energy consumption across all movements strategies
and environments

We have three other exceptions to the main trend,
namely the EE1-noMovement-empty, EE1-sweep-empty, and
EE2-autonomous-cluttered combinations. About the EE1-
noMovement-empty combination, we speculate that it is due to
the fact that movement is a fundamental component of EE1,
thus having the robot standing still for the whole duration of
the mission (the noMovement treatment) would have penalized
the EE1 tactic. At the time of writing we do not have
hard evidence for explaining the results about the other two
combinations since they all involve different combinations of
factors. Further analysis and replications of the experiment are
already planned for clarifying this specific part of the study.

V. DISCUSSION

Energy is infrequently discussed by roboticists. Of the
339,563 ROS data points only 562 (0.17%) mention energy-
related topics. This result is quite counter-intuitive, considering
that (i) the majority of the discussed systems involve battery-
powered mobile robots and (ii) the lifetime of current battery-
operated robots is low. This phenomenon might also relate to
the lack of testing/debugging tools for energy-efficient or at
least energy-aware robotics software (e.g., accessible energy
measurement tools, libraries for energy-aware programming
for robots); concern also confirmed in other domains, e.g.,
mobile apps [57], where two main problems are developer
awareness and lack of tools. We do not have hard evidence
explaining whether the infrequence of energy-related data
points is due to lack of awareness, tools, or simply interest
by roboticists. A follow-up qualitative study might shed light
on this phenomenon. Our answer to RQ2 empirically demon-
strates that the software design choices of roboticists do impact



the energy-efficiency of robots, often with large effects. This
should motivate researchers on energy-efficiency to focus on
robotics software, and developers to adopt the green tactics
we identified and seek (and document) new ones.
Roboticists tend to not document architecture. The advan-
tages of architecture documentation are widely reported [26],
including facilitating the onboarding of newcomers to open-
source projects, and being able to discuss/reason about trade-
offs between system-level quality attributes like energy and
performance. However, none of the 97 analyzed data points
include a documented architecture, e.g., via a diagram or a
thorough description of the involved components, connectors,
and their configuration; finding also confirmed by another
study on the architecture of ROS-based systems [48]. We
suggest roboticists to document the architecture of the (part
of) system they want to discuss in order to better clarify their
general points, design decisions, and rationale to the reader
of their posts in discussion and social coding platforms and
code/comments in their own source code.
There are other green tactics out there. The green tactics
we identified are not meant to be complete. We designed our
study so to let the green tactics emerge from the practice; there
may be other sources for the tactics, like robotics textbooks,
interviews with robotics experts, grey literature. Our choice is
motivated by two main forces: (i) to empirically assess how
and to what extent practitioners deal with energy-efficiency
at the architectural level, and (ii) to focus on tactics that
are applied in real contexts. In principle, the latter point
makes the green tactics directly applicable in real projects. The
identified tactics provide evidence of how roboticists achieve
energy efficiency by having tradeoffs with respect to other
robot functionalities. Also, the quantitative evidence provided
in RQ2 help in promoting a more careful treatment of energy-
related aspects of robotics software and the tradeoffs and
related side-effects for the specific application domain, thus
leading to better robotics software in general.
The green tactics should be refined and used in context.
The tactics should be used and refined depend on the specific
context of the system being developed. For example, the main
component of tactic EE1 (i.e., Limit Task) is the Arbiter, which
decides whether to execute a task in default or energy-saving
mode. However, there are many different types of tasks (e.g.,
paint a wall, drive to a point of interest) and many definitions
of modes depending on the specific robot at hand (see Table
II). Thus, roboticists must understand the context-sensitive
tradeoffs implied by the system under development and apply
the tactics accordingly. This observation is specially true
when considering performance and maintainability since the
presented tactics can involve having additional tactic-specific
components/roles (e.g., the Arbiter in EE1, the Component
Manager in EE4), potentially leading to (i) communication
and computation overhead and (ii) higher complexity of the
system, thus hindering future improvements over time.
Know the Physics of your robot. One of the lessons learned
during the execution of our experiment is that sensors and
actuators might behave in counter-intuitive ways from the

perspective of software developers. For example, the first
implementation of tactic EE1 consisted in limiting the robot
to 30% of its nominal speed; the intuition was that slower
robots would make less “work” than faster robots, thus saving
energy. Some pilot runs showed that this assumption was
completely wrong. Indeed, the electric motors for rotating the
wheel of the Turtlebot actually was consuming more energy
at slower speeds! This is mainly due to the fact that the
majority of the input power at slower speeds was used to
overcome the dynamic friction inside the motors and as the
speed was increasing, friction played a smaller and smaller role
in their overall efficiency [63], [13]. We suggest researchers
and roboticists to have the energy-related behaviour of their
robots under control by (i) carefully studying the technical
specifications of all hardware components of the robots and,
based on that, (ii) benchmarking the energy consumption of
their robots under different conditions and configurations.

VI. THREATS TO VALIDITY

External validity. The data sources for answering RQ1 might
not be representative of the complete state of the practice on
robotic systems, e.g., not all types of robots might be covered
or roboticists might discuss their technical concerns using
other platforms. This potential threat to validity is mitigated
by considering multiple (heterogeneous) data sources while
building the dataset and by mining all the contents of social
discussion platforms (e.g., ROS Answers) in full. Moreover,
the mined open-source repositories underwent a strict search
and selection process [48], making us reasonably confident of
their representativeness (e.g., no toy or demo projects).

The mission we implemented for answering RQ2 might not
be representative of all possible robotic missions. Also, differ-
ent missions might obviously change the energy consumption,
or even the tactics. This threat is mainly due to the feasibility
of the performed experiment and we mitigated it by (i) using
one of the most used robots within the ROS community
(i.e., the Turtlebot), and (ii) performing tasks which are very
common in the robotics domain, such as navigating within
an environment and avoiding obstacles. This study focuses on
ROS-based systems and therefore the identified tactics might
not apply to other types of systems. However, given that tactics
by definition are described at a high level of abstraction in
order to support multiple implementations, we are reasonably
confident that they can also apply to non ROS-based systems.
Internal validity. The qualitative analysis for answering RQ1
could lead to subjective results, specially because it involved
the manual categorization of several heterogeneous data points.
This potential threat is mitigated by involving three researchers
in phases 1, 2, and 3 and by always jointly discussing conflicts,
with one of the researchers acting as arbiter.

When answering RQ2, history and maturation threats [74]
are mitigated by (i) using three different batteries and always
fully charging and alternating the one used in each run, (ii)
executing every run at 2-minute intervals, (iii) rebooting the
robot and clearing its execution environment between runs,
and (iv) carefully checking the status of the hardware at every



run. We further mitigated this threat by setting up a minimal
and replicable measurement infrastructure (see Section III-C).
Also, we could assume that the noise produced by the execu-
tion environment of the mission is similar for all runs [16].
Construct validity. For RQ1, we are confident about the
correct implementation of all data extractors for building the
dataset (phase 1) because we carefully checked each of them
in isolation via subsets of data for which we already knew the
expected results. Their implementation is publicly available
in the replication package. In phase 2 the main threat is
related to the use of a pattern-based approach for identifying
energy-related data points. We mitigated this potential threat
by letting energy-related keywords emerge from previous
empirical studies on software energy-efficiency. In Phase 3,
the architectural data points are selected by systematically
applying a set of selection criteria defined a priori, similarly
to common practices in systematic literature studies [42].

For RQ2, we are reasonably confident about the correctness
of the implementation of the green tactics because they were
developed after all green tactics were fully defined and their
source code underwent several reviews before running the
experiment. The measured energy consumption could suffer
from a systematic measurement bias. This threat is mitigated
by the fact that the readings from the INA219 sensor have
been retrieved redundantly; this allowed us to reconstruct the
consumed energy for every run in multiple ways and to cross-
check them against each other. Moreover, we repeated every
trial of the experiment ten times to take into account possible
fluctuations of the measured energy consumption [16].
Conclusion validity. For RQ1, other researchers might iden-
tify and organize the collected data points differently, thus po-
tentially leading to different tactics. We mitigated this threat to
validity by (i) carefully documenting the process we followed
for all phases for the tactics identification (see Section III-B),
(ii) having Phases 2, 3, and 4 collaboratively conducted by
multiple researchers and by statistically analysing their level
of agreement, and (iii) making the raw data produced in every
phase available for independent verification.

For RQ2, we first checked if parametric statistical tests were
applicable (in principle parametric tests are more powerful
than non-parametric ones). The assumptions underlying the ap-
plied statistical tests were checked (e.g., normality), and when
their assumptions could not be met: (i) data was transformed in
order to make it compatible with the required assumptions [71]
and (ii) if the data was still incompatible, non-parametric tests
were used. We are reasonably confident about the absence of
fishing for certain results because we (i) corrected the obtained
p-values when performing multiple statistical tests and (ii) did
not remove any data from our experimental runs (e.g., outliers).

VII. RELATED WORK

Energy-Efficiency in Robotics Software. Mei et al. [50]
present an approach for energy-efficient robot exploration.
Their approach determines the next position for the robot to
visit based upon orientation information and it is validated
on a simulated robot. Licea et al. [47] focus on an algorithm

for energy-efficient wireless communication. The robots visit
different locations and share sensed data in a way that mini-
mizes their energy consumption. Siar and Fakharian [65] use
optimized control algorithms to minimize the energy consump-
tion of arm robots. To validate the results, various simulations
are carried out. Robots using Mecanum wheels [72] have a
limited energy-budget so research on improving their energy-
efficiency is abundant. For example, Xie et al. [75] incorporate
an improved obstacle detection and avoidance algorithm to
improve the energy-efficiency of Mecanum-wheeled robots.
Our study complements the studies mentioned above since it
focuses on energy-efficiency solutions (i.e., our green tactics)
defined at the architectural level instead of dealing with low-
level algorithms, control strategies, and network optimizations.
Architectural Tactics for Energy-Efficiency. Studies have
been conducted on green tactics for other domains, e.g., for
cyber-foraging [45] or cloud-based software [59], although
missing empirical evaluation. A work similar to ours has been
conducted for Android and iOS applications [29]: commits,
issues, and pull requests from GitHub are inspected via a
thematic analysis to identify energy patterns, like dark UI col-
ors, (open/start resources only when strictly necessary (similar
to our EE4 tactic), and increase time between syncs/sensors
sampling (similar to our EE3 tactic). As future work we
would like to conduct a thematic analysis on our dataset to
complement our results with a discussion of recurring energy
patterns. Kjærgaard and Kuhrmann [43] present a catalog of
green tactics for mobile sensing, along with a preliminary
validation. Some of their tactics are (i) provide sensor data in
an on-demand manner and (ii) provide requested information
in an on-demand manner (both similar to our tactic EE4).

VIII. CONCLUSIONS

Based on an extensive mining of the ROS software ecosys-
tem, in this paper we identify and empirically evaluate a
first body of architectural tactics for energy-efficient robotics
software. The results show that (i) the green tactics signif-
icantly help improve the energy-efficiency of the robot and
(ii) context and SW-HW interplay play an important role
for their most-effective selection. Given the surprising lack
of focus of the studied roboticists on energy-related topics,
this green-tactics body of knowledge can help roboticists start
changing their practice by (i) adopting these green tactics
and (ii) becoming aware of the benefit of documenting and
communicating their architecture design decisions, possibly
leading to a new (energy-aware) development mindset. Further,
the specific application domain or context (e.g., pedestrian
safety in driver-less automotive) influence significantly the
tradeoffs one can or cannot make between energy-efficiency
and e.g., functionality. To ensure that mission-criticality is
prioritized, future research should explore contextualizing the
tactics for specific situations.
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