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Abstract—With the widespread use and adoption of mobile
platforms like Android a new software quality concern has
emerged – energy consumption. However, developing energy-
efficient software and applications requires knowledge and like-
wise proper tooling to support mobile developers. To this aim, we
present an approach to examine the energy evolution of software
revisions based on their API interactions. The approach stems
from the assumption that the utilization of an API has direct
implications on the energy being consumed during runtime.
Based on an empirical evaluation, we show initial results that
API interactions serve as a flexible, lightweight, and effective way
to compare software revisions regarding their energy evolution.
Given our initial results we envision that in future using our
approach mobile developers will be able to gain insights on the
energy implications of changes in source code in the course of
the software development life-cycle.

Index Terms—software energy profiling, energy consumption,
dynamic program analysis, API mining

I. INTRODUCTION

Developing sustainable software has become an important
issue in mobile software development. Understanding and
subsequently reducing the energy consumption of an appli-
cation has therefore become an essential quality concern for
mobile developers. However, developers often lack the expert
knowledge as well as the tools to improve the energy efficiency
of mobile applications [1]–[4]. As a result, the user acceptance
for an application that drains a devices’ battery is limited.
This was confirmed by several recent studies [1], [4]–[6] that
revealed that poor battery performance is a mobile users’
primary criteria for either purchasing new devices, uninstalling
an app or give it poor ratings.

In recent years the research community has started to focus
on developing methodologies and tools to better understand the
energy implications of software design choices and therefore
support the development of energy optimized applications [4],
[7]–[12]. One key factor in reducing the energy consumption
of an application is to assess an applications’ energy consump-
tion and attribute the recorded energy profiles back to program
structures at a fine granularity, e.g. method-level. Throughout
the years several approaches have been described to tackle
this challenge, either by using power modeling [9], [13],
measurement devices [14] or by interfacing with a devices’
hardware counters, e.g. using Intel’s RAPL interface [12], [15].

However, obtaining an energy profile is a challenging task,
as it takes time to record the relevant data and map it back

to individual program structures. Therefore, researches have
spent effort towards finding proxies which help to explain the
energy consumption without the need for laborious profiling.
Researches have therefore successfully shown a connection
between the frequency of system calls and energy consumption
[9], [10], [16], [17], have proposed an approach to recom-
mend energy-efficient Java collections [18] or did an in-depth
investigation on the energy profiles of Java collection types
[19]. Furthermore, the energy implications of Java IO classes
[12], logging frameworks [20] and the effects of bundling
API calls to achieve better energy performance [4] have been
investigated.

Our work contributes to this field of research, however, in
contrast to the existing work, in this paper we present an
approach to examine the evolution of the energy consumption
of a library through mining its API interactions. This way,
we are able to give feedback to the developer in the course
of the software development life-cycle, whether a change in
code led to an in- or decrease of the energy consumption. As a
result, our work ultimately supports developers to gain insights
about the energy implications and take corresponding actions
already during development. This paper significantly differs
from our previous work [21], as the objective is to assess the
applicability of a previously defined model as a proxy for the
evolution of energy consumption in software revisions in the
context of mobile software development. Consequently, this
paper makes the following contributions:
• An approach to obtain and assess the difference in energy

consumption between software revisions by analysing its
runtime API interaction behaviour.

• Empirical evidence on the effectiveness of the presented
approach to claim the evolution of a software artifact’s
energy consumption.

• A replication package consisting of the recorded data
based on the analysis of software revisions of a publicly
available library over the course of 10 years [22].

II. BACKGROUND

A. Software Energy Consumption Profiling
Software energy profiling is defined as to estimate the con-

sumed energy based on energy/power models [23]. Based on
the kind of input variables that are used to define such a model,
power modeling can be categorized in 3 groups: utilization-
based, event-based and code-analysis-based models [23]. A
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utilization-based model is defined based on the resource
utilization of specific hardware components. An event-based
model is the result of correlating system events like system-
calls [16], API interactions [21] or sequences of API calls [24]
with energy readings. Finally, a code-analysis-based model
allows to estimate the energy consumption based solely on
source code inspection [23].

In recent years several approaches have been established to
estimate the energy consumption of an application, for each of
the categories stated above. This includes mining for energy
inefficient API patterns [24], recommending energy efficient
Java collections [18], [19] as well as comparing the energy
characteristics of Java IO approaches [12]. Besides that, there
is a growing body of work which examines the impact of
software design on the energy consumption [11]. Additionally,
Intel’s RAPL interface has gathered a lot of research interest
and is widely used to derive software energy profiles [12],
[15].

For the experiments carried out in this paper and to obtain
energy profiles, we rely on measurements obtained using the
Monsoon High Voltage Power Monitor (HVPM) [25], a device
that is commonly used for energy consumption analysis in
mobile ecosystems [13], [21], [26], [27]. In particular, we
use the Monsoon power monitor as part of our test-bed
introduced in Schuler and Kotsis [14]. The test-bed serves as
an environment to execute tests, record the energy profiles at
a sampling rate of 20 Khz and map the resulting profiles back
to program structures.

B. A Model based on API Utilization

The API utilization metric or in short Uapi is a notion of
how a particular method in a library or application interacts
with a provided API. This metric has its foundation in our
previous work [21]. However, for enhanced replicability we
give a description of the model as follows: The metric stems
from the assumption that the way a method interacts with a
provided API has direct influence on its energy characteristics
[21].

The metric is computed by obtaining the dynamic call
graph from a library or application under test. Using said
call graph, all nodes are traversed and the frequency of API
interactions for each method being called is recorded. As API
interaction we define any method call from a particular library
or application under test into the Java-based Android Platform
API. Henceforth, based on a dynamic call graph CG(V,E),
with vertices V for each method being executed and edges
E denoting an API call from one method to another, ad(v)
is defined as all methods that are being called from method
v ∈ V . Thus, ad(v) returns all vertices in CG which have an
incoming edge e ∈ E from v. The formal definition of ad(v)
reads as follows:

ad(v) := {u|v, u ∈ V ∧ (v, u) ∈ E} (1)

Using ad(v) API utilization Uapi of given method v is
defined as:

Uapi(v) = 1 +

|ad(v)|∑
i=1

Uapi(ad(v)i) (2)

With | ad(v) | being the cardinality, hence the number of API
interactions issued by v. Methods with no API interactions
have a Uapi value of 0. In addition to our previously proposed
definition [21] of Uapi, we suggest an adaption to the metric
by dividing the computed Uapi value by the number of total
API interactions N and thus get the relative rUapi, with N
denoting the sum of all API interactions for a particular library
under test:

rUapi(v) =
Uapi(v)

N + 1
(3)

III. APPROACH

Figure 1 presents our approach which aims to support
developers in the course of the software development life-cycle
in order to determine if a change in code results in an alteration
of the energy consumption of the artifact being analysed.
Furthermore, the proposed approach builds the foundation to
assess the change in energy consumption between different
software revisions and thus enables developers to take timely
counter measures in order to decrease the overall energy.

Our approach is structured in a series of consecutive steps.
The initial step, as depicted in Figure 1 consists of selecting
and obtaining a software artifact from a version control system.
Next, the approach extracts all revisions of the artifact from the
respective repository. Each revision is further instrumented to
collect runtime traces for when the artifact is being executed.
This is achieved by locating all available unit tests in the
library and inserting probes to collect the call trace during
execution using the Android Debug class.

Once an artifact is instrumented, it is wrapped in an Android
application package, and deployed to the test-bed described in
section II. The unit tests are executed on the Android device.
For each test we record its energy profile using the Monsoon
HVPM as well as its call trace. To account for possible outliers
in the recorded energy profiles, each test execution is sampled
and energy data is averaged.

Using the collected call traces, a dynamic call graph is
constructed per test method and the rUapi metric is computed
for each obtained graph. By applying the rUapi computation
based on the packages the methods being called reside in,
it is possible to derive a distribution of the API interactions
per method. Additionally, we record package, class, method
name and thread-id as well as start and duration of all methods
being called along the call trace. Finally, the recorded energy
profile is attributed to individual methods, by determining start
and end in the energy profile relative to the recorded method
attributes obtained via the collected call traces.

The final result, as depicted in Figure 1, constitutes the
executed methods each with attributed energy consumption
and computed rUapi profile. The collected data serves as a
foundation for further analysis on the evolution of a software



obtain library instrument deploy & execute

Experiment
Execution

Coordinator

Monsoon
Power
Monitor
(HVPM)

energy profile

dynamic call graph

analyse

version X.a

version Y.a

version Z.a

version X.a

version Y.b

version Z.c

Online Source Code
Repository

(Github, Gitlab, etc. )

Fig. 1. Approach to assess the API profile and the energy characteristics partly composed of our energy test-bed introduced in [omitted for review].

artifact with respect to its Android Platform API interactions
and the resulting implications on its energy characteristics.

IV. EMPIRICAL EVALUATION

By applying the presented approach to a software artifact,
we aim to answer, if it is feasible to detect changes in
energy consumption between software revisions by solely
examining the differences in the API interactions. To achieve
this, we carry out an empirical study based on a selection of
software revisions taken from an open source library for JSON
document processing.

A. Research Questions

Using the presented approach we seek to answer the fol-
lowing research questions (RQ):
• RQ1: How does the energy consumption of Google Gson

library evolve between software revisions? Whether it is
new features that are being added or simply by fixing
a reported bug, a software’s code base is subject to
regular change. In order to determine how such a change
affects its energy footprint, we seek to investigate, how
the energy consumption differs amongst selected software
revisions of Google Gson library.

• RQ2: How can a change in energy consumption be
inferred between different software revisions by analysing
its API interactions? By applying the defined metric in
section II to different software revisions of a library
examined, we want to verify whether it is possible to
infer how a change in the API profile affects the energy
consumption by looking at the evolution of the rUapi

profile only.

B. Studied Sample

We based our study on the Google Gson library, a library
which is commonly used for JSON document processing in
mobile ecosystems. From its GitHub repository we obtained
released revisions over the course of 10 years, starting from
2009 till 2019. In total 14 revisions were collected which serve
as an input for our approach. We focused on major and minor
revisions solely and discarded revisions only consisting of bug-
fixes and patches. For an overview on the selected revisions,
refer to Figure 2. Details about the selected revisions can be
found in the description provided as part of the replication
package [22]. As we base our analysis on the available unit
tests, we selected a sub set of the available tests, to ensure each
test being analysed is present in every revision. This is due to
the fact that the number of available test cases in the examined

library rapidly grows between revisions, which would lead
to an uneven number of sample sizes, and therefore reduce
statistical power of the applied analysis of variance. Hence, we
selected the 100 most energy demanding tests and evaluated
their presence in all of the 14 revisions which ultimately results
in a curated list of 41 unit tests.

C. Methodology

To answer RQ1 we record the energy consumption for each
library revision being examined using the approach presented
in section III. To determine how the energy consumption of a
particular library evolves between the different revisions, we
record its average wattage in milliwatts, energy consumption
in joules and duration in milliseconds over the set of selected
tests. In order to account for possible outliers we sample test
executions 10 times. Finally, we apply statistical analysis and
compare the energy characteristics of examined revisions for
significant changes.

To answer RQ2 we additionally compute the rUAPI for
each of the selected unit test methods. By computing the
profiles based on the selected unit test methods, each method
is attributed with a distribution of the API utilization, thus
providing an insight on how the examined revisions and
the selected tests interact with the Android Platform API,
respectively. For a detailed overview on the covered APIs, refer
to our replication package [22]. We further apply statistical
analysis to the obtained data to evaluate if a significant change
in the API profile of a library revision is also reflected in
a significant change in energy consumption. First, we group
the recorded and attributed unit tests by their library version.
Second, we apply one way ANOVA individually for energy
consumption, average power and computed rUAPI values
between all selected revisions. Finally, we apply a post-hoc
Tukey test to determine, if changes in energy consumption,
average power and rUAPI values amongst revisions are signif-
icant. Given the results obtained this way, we further compute
the accuracy of using rUAPI as a proxy to determine a signif-
icant change in energy and power consumption, respectively.

V. RESULTS

In total, we recorded 41 test executions per each of the
14 revision. Each test was further sampled 10 times which
results in a total of 5740 recorded test executions. For an-
swering research question RQ1, we analysed the selected
software revisions for their average power usage and energy
consumption. For each library we instrumented the selected
tests, deployed it to the test-bed and collected their average



power, their energy consumption as well as their runtime. We
further computed the total average power and average energy
consumption per examined revision. Referring to Figure 2,
we can observe that starting from revision 1.3 the trend
in the energy consumption is slightly increasing between
versions. However, between revision 2.1 and 2.2. the energy
consumption recordings show a substantial rise. To investigate
the cause for this substantial rise, we compared the changes of
revisions 2.1 and 2.2 using git diff command. Apparently, in
version 2.2 a new class com.google.gson.internal.StringMap
was added. The class was created as a replacement for the
java.util.LinkedHashMap implementation which is part of the
Android Platform API. Our assumption is that it is likely that
StringMap is responsible for the observed behaviour. However,
to claim if our assumption is correct, we need to carry out
further experiments, which we leave to future work.

Fig. 2. Comparison of rUAPI profiles and energy consumption for the
studied samples.

To answer RQ2 we seek to investigate if by solely examin-
ing the API interactions of a particular version, we are able to
infer the evolution of the energy characteristics of a revision.
To achieve this, besides the recorded energy attributes and
the computed the rUapi for each test method selected, we
computed the sum of rUapi per revision. Let alone from visual
inspection we can observe that the API utilization follows the
trend of both the energy consumption (cf. Figure 2) and the
average power (cf. Figure 3). We applied analysis of variance
(ANOVA) which yields a significant variation among the revi-
sions, regarding their energy consumption (F = 2527.74, p <
.001), their average power (F = 93.56, p < .001) as well as
their rUapi values (F = 24997.37, p < .001).

We further applied a post-hoc Tukey test to examine the
differences between revisions for statistical significance. We
compared the results from the post-hoc test for rUapi with the
scores obtained for the average power and energy consump-
tion. Henceforth, we computed the accuracy of the presented
approach as the ratio between cases that were determined
correctly using the presented model for API interactions in
relation to all available cases. A correctly determined case is
considered a case where the API profile is able to correctly

Fig. 3. Comparison of rUAPI profiles and average power consumption for
the studied samples.

state that the energy characteristics stay the same or signifi-
cantly change between compared revisions. Consequently, our
model for API interactions, when compared with the energy
consumption, shows an accuracy of 85%. When comparing
the model with the recorded average power it still reaches an
accuracy of 74.7% percent. Due to the fact that the examined
data is not symmetrically distributed, e.g. there are more
cases where there is a change in energy consumption or
recorded power compared to cases where there is no change,
we additionally report the F1-score for energy consumption
(F1 = 0.91) and power (F1 = 0.82).

Given the results, we are confident that the applied model
for API interactions can serve as a simple approach to as-
sess the evolution of energy consumption amongst software
revisions for libraries and applications utilizing CPU, memory
and I/O bound APIs. However, we cannot draw a definitive
conclusion as we evaluated the presented approach solely
using one library. To account for this threat to its validity, for
future work we want to extend our initial research approach
and apply it to more libraries, with different Android Platform
API interaction characteristics.

VI. CONCLUSION

In this paper we introduced an approach to mine the API
interactions of software revisions and use respective data as
a proxy for the evolution of energy consumption. Our results
show that our approach is both effective and lightweight in
nature, as it does not involve any alterations on the target
device. We believe that the presented approach, when applied
as part of a development environment, can support develop-
ers in order to make proper design decisions with energy
consumption in mind. For future work, we want to examine
which change could be responsible for an in or decrease,
especially with cases where there is a substantial rise between
revisions, as depicted in Figure 2 between Gson version 2.1
and 2.2. Besides that, we are currently focusing on including
weights in the Uapi metric computation to better account for
the attribution of different APIs to the overall metric.
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