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Abstract—A Just-In-Time (JIT) defect prediction model is
a classifier to predict if a commit is defect-introducing. Re-
cently, CC2Vec—a deep learning approach for Just-In-Time
defect prediction—has been proposed. However, CC2Vec requires
the whole dataset (i.e., training + testing) for model training,
assuming that all unlabelled testing datasets would be available
beforehand, which does not follow the key principles of just-in-
time defect predictions. Our replication study shows that, after
excluding the testing dataset for model training, the F-measure of
CC2Vec is decreased by 38.5% for OpenStack and 45.7% for Qt,
highlighting the negative impact of excluding the testing dataset
for Just-In-Time defect prediction. In addition, CC2Vec cannot
perform fine-grained predictions at the line level (i.e., which lines
are most risky for a given commit).

In this paper, we propose JITLine—a Just-In-Time defect pre-
diction approach for predicting defect-introducing commits and
identifying lines that are associated with that defect-introducing
commit (i.e., defective lines). Through a case study of 37,524
commits from OpenStack and Qt, we find that our JITLine ap-
proach is at least 26%-38% more accurate (F-measure), 17%-
51% more cost-effective (PCI@20%LOC), 70-100 times faster
than the state-of-the-art approaches (i.e., CC2Vec and DeepJIT)
and the fine-grained predictions at the line level by our approach
are 133%-150% more accurate (Top-10 Accuracy) than the
baseline NLP approach. Therefore, our JITLine approach may
help practitioners to better prioritize defect-introducing commits
and better identify defective lines.

I. INTRODUCTION

Modern software development cycles tend to release soft-
ware products in a short-term period. Such short-term software
development cycles often pose critical challenges to modern
Software Quality Assurance (SQA) practices. Therefore, con-
tinuous code quality tools (e.g., CI/CD, modern code review,
static analysis) have been heavily adopted to early detect
software defects. However, SQA teams cannot effectively
inspect every commit given limited SQA resources.

Just-in-time (JIT) defect prediction [16, 19] is proposed
to predict if a commit will introduce defects in the future.
Such commit-level predictions are useful to help practitioners
prioritize their limited SQA resources on the most risky
commits during the software development process. In the past
decades, several machine learning approaches are employed
for developing JIT defect prediction models [7, 18, 29, 32].
However, these approaches often rely on handcrafted commit-
level features (e.g., Churn).

Recently, several deep learning approaches have been pro-
posed for Just-In-Time defect prediction (e.g., DeepJIT [9]
and CC2Vec [10]). Hoang et al. [10] found that their CC2Vec
approach outperforms DeepJIT for Just-In-Time defect pre-

diction. CC2Vec requires both training and unlabelled test-
ing datasets for training CC2Vec models, assuming that all
unlabelled testing datasets would be available beforehand.
However, these assumptions of CC2Vec do not follow the
key principles of the Just-In-Time defect prediction: (1) the
predictions of the CC2Vec approach cannot be made immedi-
ately for a newly arrived commit; and (2) it is unlikely that the
unlabelled testing dataset would be available beforehand when
training JIT models. Thus, we perform a replication study to
confirm the merit of previous experimental findings and extend
their experiment by excluding testing datasets and evaluate
with five additional evaluation measures.

RS1) Can we replicate the results of deep learning ap-
proaches for Just-In-Time defect prediction?
Similar to the original study [10], we are able to
replicate the results of CC2Vec.

RS2) How does CC2Vec perform for Just-In-Time defect
prediction after excluding testing datasets?
After excluding testing datasets when developing the
JIT models, we find that the F-measure of CC2Vec is
decreased by 38.5% for OpenStack and 45.7% for Qt.
In addition, CC2Vec achieves a high False Alarm Rate
(FAR) of 0.87 for OpenStack and 0.63 for Qt, indicating
that 63%-87% clean commits are incorrectly predicted
as defect-introducing. Thus, developers still waste many
unnecessarily effort to inspect clean commits that are
incorrectly predicted as defect-introducing.

In addition, Hoang et al. [10] did not compare their
approach with simple JIT approaches, did not evaluate the
cost-effectiveness, did not report the computational time, and
cannot perform fine-grained predictions at the line level. Thus,
it remains unclear about the practical value of the CC2Vec ap-
proach when considering the amount of effort that developers
need to inspect.

In this paper, we propose JITLine—a machine learning-
based Just-In-Time defect prediction approach that can both
predict defect-introducing commits and identify defective
lines that are associated with that commit. We evaluate our
JITLine approach with the state-of-the-art commit-level JIT
defect prediction approaches (i.e., EARL [17], DeepJIT [9],
and CC2Vec [10]) with respect to six traditional measures
(i.e, AUC, F-measure, False Alarm Rate, Distance-to-Heaven,
Precision, and Recall), three cost-effectiveness measures (i.e.,
PCI@20%LOC, Effort@20%Recall, POpt). In addition, we
also compare our approach with a baseline line-level JIT
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defect localization by Yan [43] using four line-level effort-
aware measures (i.e., Top-10 Accuracy, Recall@20%LOC,
Effort@20%Recallline, Initial False Alarm). Through a case
study of 37,524 total commits that span across two large-scale
open-source software projects (i.e., OpenStack and Qt), we
address the following four research questions:
RQ1) Does our JITLine outperform the state-of-the-art

JIT defect prediction approaches?
Our JITLine approach achieves F-measure 26%-
38% higher than the state-of-the-art approaches (i.e.,
CC2Vec). Our JITLine achieves a False Alarm Rate
(FAR) 94%-97% lower than the CC2Vec approach.

RQ2) Is our JITLine more cost-effective than the state-
of-the-art JIT defect prediction approaches?
Our JITLine is 17%-51% more cost-effective than the
state-of-the-art approaches in term of PCI20%Effort.
In addition, our JITLine can save the amount of effort
by 89%-96% to find the same number of actual defect-
introducing commits (i.e., 20% Recall) when compared
to the state-of-the-art approaches.

RQ3) Is our JITLine faster than the state-of-the-art JIT
defect prediction approaches?
Our JITLine is 70-100 times faster than the deep
learning approaches for Just-In-Time defect prediction.

RQ4) How effective is our JITLine for prioritizing defec-
tive lines of a given defect-introducing commit?
Our JITLine approach is 133%-150% more accurate
than the baseline approach by Yan et al. [43] for
identifying actual defective lines in the top-10 recom-
mendations. Our JITLine approach requires 17%-27%
less amount of effort than the baseline approach in
order to find the same amount of actual defective lines.

Contributions. The contributions of this paper are as follows:
• We conduct a replication study of the state-of-the-art deep

learning approach (CC2Vec [10]) for JIT defect predic-
tion and extend their experiment by excluding testing
datasets with five evaluation measures (Section III).

• We propose JITLine—a machine learning-based Just-In-
Time defect prediction approach that can both predict
defect-introducing commits and identify their associated
defective lines (Section V).

• We evaluate our JITLine approach at the commit level
with the state-of-the-art JIT defect prediction approaches
with respect to six traditional measures, three cost-
effectiveness measures, and at the line level with four
effort-aware line-level measures (Section VI).

• Our results show that our JITLine approach outperforms
(RQ1), more cost-effective (RQ2), faster (RQ3), and more
fine-grained (RQ4) than the state-of-the-art approaches.

II. BACKGROUND

Commits created by developers are often used to describe
new features, bug fixes, refactoring, etc. One commit contains
three main pieces of information, i.e., a commit message, a
code change, and their meta-data information (e.g., churn,

author name). The commit message is used to describe the
semantics of the code changes, while the code change indicates
changed lines (i.e., added/modified/deleted lines).

In large-scale software projects, there is a stream of commits
that developers need to review and inspect. However, due to
the limited SQA resources, Just-In-Time defect prediction ap-
proaches have been proposed to help developers prioritize their
limited SQA resources on the most risky commits [17, 18].
Below, we discuss three state-of-the-art approaches for Just-
In-Time defect prediction.

EALR [17] is an Effort-Aware JIT defect prediction method
using a Logistic Regression model with traditional commit-
level software metrics (e.g., churn). EALR generates a rank
of defect-introducing commits by considering the amount of
inspection effort—i.e., the predicted probability is normalized
by the commit size (i.e., churn). However, such techniques
often rely on handcrafted feature engineering.

DeepJIT [9] is an end-to-end deep learning framework for
Just-in-Time defect prediction. DeepJIT automatically gener-
ates features using a Convolutional Neural Network (CNN)
architecture. Generally, DeepJIT takes the commit message
and the code change as an input into two CNN models in
order to generate a vector representation—i.e, one CNN for
generating commit message vectors and another CNN for
generating code changes vectors. Finally, the concatenation of
both the commit message vector and the code change vector is
input into the fully-connected layer to generate the probability
of defect-introducing commit.

CC2Vec [10] is an approach to learn the distributed rep-
resentation of commit. Traditionally, one commit has a hier-
archical structure–i.e., one commit consists of changed files,
one change file consists of changed hunks, one change hunk
consists of changed lines, one changed line consists of changed
tokens. Unlike DeepJIT that ignores the information about
the hierarchical structure of code commits, CC2Vec has been
proposed to automatically learn the hierarchical structure of
code commits using a Hierarchical Attention Network (HAN)
architecture. The goal of CC2Vec is to learn the relationship
between the actual code changes and the semantic of that
code changes (i.e., the first line of commit messages). Then,
in the feature extraction layer, HAN is used to build vector
representations of changed lines; these vectors are then used
to construct vector representations of hunks; and then these
vectors are aggregated to construct the embedding vector of the
removed or added code. Then, the embedding vectors of the
removed code and added code is input into a fully-connected
layer to generate a vector that represents the code change.

Recently, Hoang et al. has shown that the combination of
CC2Vec and DeepJIT outperforms the stand-alone DeepJIT
approach. In particular, they used CC2Vec to generate a vector
representation of code changes. Then, such code changes
vector is concatenated with the commit message vectors and
the code change vectors that are generated by DeepJIT to gen-
erate a final vector representation. Finally, the concatenation
vector is input into the fully-connected layer to generate the
probability of defect-introducing commit.



TABLE I: The results of our replication study of CC2Vec [10] when using “train+test” and “train only” for model training.

OpenStack Qt
AUC F1 FAR d2h Precision Recall AUC F1 FAR d2h Precision Recall

CC2Vec [Train+Test] Original 0.81 - - - - - 0.82 - - - - -
Ours 0.80 0.39 0.26 0.28 0.27 0.70 0.84 0.35 0.17 0.25 0.24 0.70

CC2Vec [Train Only] Ours 0.77 0.24 0.87 0.61 0.14 0.99 0.81 0.19 0.63 0.45 0.10 0.96

III. A REPLICATION STUDY OF THE STATE-OF-THE-ART
DEEP LEARNING APPROACH FOR JIT DEFECT PREDICTION

In this section, we present the motivation, approach, and
results of our replication study (RS) of CC2Vec for Just-In-
Time defect prediction.

Motivation. One of the key principles of Just-In-Time
defect prediction models is to generate predictions as soon
as possible for a newly arrived commit. Let’s consider T1
as the present (see Figure 1), the whole historical data will
be used for training a JIT model in order to immediately
generate a prediction of a newly arrived commit. However,
CC2Vec requires both training and unlabelled testing datasets
for training CC2Vec models (i.e., the periods of T0-T1 and
T1-T2), assuming that all unlabelled testing datasets would
be available beforehand. In particular, Hoang et al. (Section
3.3.3 of the original study [10]) stated that “CC2Vec is first
used to learn distributed representations of the code changes
in the whole dataset. All patches from the training and testing
dataset are used since the log messages of the testing dataset
are not part of the predictions of the task”. This indicates that
the unlabelled testing dataset needs to be available beforehand
for training CC2Vec models. However, these assumptions of
CC2Vec do not follow the key principles of the Just-In-Time
defect prediction: (1) the predictions of the CC2Vec approach
cannot be made immediately for a newly arrived commit; and
(2) it is unlikely that the unlabelled testing dataset would
be available beforehand when training JIT models. Thus, it
remains unclear what the performance of CC2Vec for Just-In-
Time defect prediction is after considering the key principle of
Just-In-Time defect prediction (i.e., excluding testing dataset
for model training). In addition, several other performance
measures (e.g., F-measure) have not been evaluated in the
original study. Thus, we (RS1) perform a replication study
to confirm the merit of previous experimental findings and
(RS2) extend their experiment by excluding testing datasets
and evaluate with five additional evaluation measures.

(RS1) Can we replicate the results of deep learning ap-
proaches for Just-In-Time defect prediction?
Approach. To address RS1, we first download the replication
package of Hoang et al. [10]. We carefully study the repli-
cation package to understand all details. Then, we execute
the source code followed by the instructions and datasets
provided by Hoang et al. [10]. Finally, we compute a relative
percentage between our results and the original paper as
follows: % = ( ours−original

original )× 100%
Results. Similar to the original study [10], we are able
to replicate the results of CC2Vec. Table I (see the green
cells) shows that, in our experiment, CC2Vec achieves an AUC

Training Testing
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CC2Vec Vectors + Labels
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Fig. 1: The comparison between the workflow of JITLine that
can immediately generate predictions and the workflow of
CC2Vec+DeepJIT [10] which requires testing dataset to be
available beforehand for training CC2Vec+DeepJIT models.

of 0.80 for OpenStack and 0.84 for Qt, while the original
paper reported an AUC of 0.81 for OpenStack and 0.82 for
Qt. Our results are only 1%-2% different when compared to
the original paper. This finding confirms that the results of
CC2Vec are replicable for Just-In-Time defect prediction.

(RS2) How does CC2Vec perform for Just-In-Time defect
prediction after excluding testing datasets?

Approach. To address RS2, we repeat the experiment of
Hoang et al. [10] in two settings—i.e., the original experiment
with training and testing datasets and our experiment with
training datasets only. In addition, we extend their experiment
by evaluating the CC2Vec approach using five additional eval-
uation measures (i.e., F-measure, False Alarm Rate, Distance-
to-Heaven, Precision, and Recall).
Results. After excluding testing datasets when developing
the JIT models, we find that the F-measure of CC2Vec
is decreased by 38.5%(0.35→0.19) for OpenStack. and
45.7%(0.39→0.24) for Qt. Table I (see the red cells) shows
the result between two experimental settings (i.e., train-
ing+testing vs. training only) with respect to AUC, F1, FAR,
d2h, Precision and Recall. We find that the values of several
performance measures (i.e, AUC, F-measure, FAR, d2h) are
negatively impacted by the exclusion of the testing datasets.
We find that AUC is decreased by 3.9% for OpenStack and
3.7% for Qt, while False Alarm Rates (FAR) are increased by
234.62% for OpenStack and 270.59% for Qt. Similarly, the
d2h value is increased by 126.92% for Openstack and 80% for
Qt. The higher FAR and d2h of CC2Vec has to do with the
substantial increasing Recall to 0.99 for OpenStack and 0.96



for Qt—i.e., CC2Vec predicts most of the commits as defect-
introducing (higher Recall), but many of the predictions are
incorrect (higher FAR, less Precision). These findings indicate
that the exclusion of testing datasets in model training has
a large negative impact on the performance of CC2Vec (i.e.,
producing higher False Alarm Rates). Thus, developers have
to waste unnecessarily effort on inspecting clean commits that
are incorrectly predicted as defect-introducing.

IV. RELATED WORK AND RESEARCH QUESTIONS

In this section, we discuss the following four main limita-
tions of prior studies with respect to the literature in order to
motivate our approach and research questions.

First, several traditional machine learning-based JIT
approaches have not been compared with the deep learn-
ing approaches for JIT defect prediction. Recently, re-
searchers found that several simple approaches often outper-
form deep learning approaches in SE tasks. For example, Hel-
lendoorn [8], Fu and Menzies [5], Liu et al. [22]. Menzies et
al. [25] suggested that researchers should explore simple and
fast approaches before applying deep learning approaches
on SE tasks. However, Hoang et al. [10] did not compared
their CC2Vec approach with other simple approaches (e.g.,
logistic regression and random forest). Therefore, we wish
to investigate if our approach outperforms the deep learning
approaches for Just-In-Time defect prediction.

Second, the cost-effectiveness of deep learning ap-
proaches for JIT defect prediction has not been investi-
gated. Prior work pointed out that different code changes often
require different amount of code inspection effort [11, 24]—
i.e., large code changes often require a high amount of code in-
spection effort. However, Hoang et al. [10] did not investigate
the cost-effectiveness of their CC2Vec approach. In addition,
the CC2Vec approach does not take into consideration the
effort required to inspect code changes when prioritizing
defect-introducing commits. Therefore, we wish to investigate
if our approach is more cost-effective than the deep learning
approaches for Just-In-Time defect prediction.

Third, the computational time of deep learning ap-
proaches JIT defect prediction has not been investigated.
Several researchers raised concerns that deep learning ap-
proaches are often complex and very expensive in terms of
GPU costs/CPU time. For example, Jiang et al. [12]’s approach
requires 38 hours for training their deep learning models on
NVIDIA GeForce GTX 1070. Menzies et al. [25] found that
a simple approach that is 500+ times faster achieves similar
performance to deep learning approaches. Therefore, we wish
to investigate if our approach is faster than the deep learning
approaches for Just-In-Time defect prediction.

Finally, there exists no machine learning approaches for
fine-grained Just-In-Time defect prediction at line level.
Recently, Pascarella et al. [26] proposed a fine-grained JIT
defect prediction model which based on handcrafted features
to prioritize which changed files in a commit should be review
first. However, this approach cannot identify defective lines
of the changed files. Recently, Yan et al. [43] proposed a

fine-grained JIT defect localization at the line level to help
developers to locate and address defects using less effort.
Yan et al. [43] proposed a two-phase approach—i.e., the
ML model trained on software metrics (e.g., #added lines)
is first used to identify which commits are the most risky,
then the N-gram model trained on textual features is finally
used to localise the riskiest lines. On the other hand, a recent
work by Wattanakriengkrai et al. [42] pointed out that a
machine learning approach outperforms the n-gram approach.
However, their experiment focused solely on file-level defect
prediction—not Just-In-Time defect prediction. Therefore, we
wish to investigate if our approach is more effective than the
two-phase approach for Just-In-Time defect prediction.

Considering the limitations yet high impact of prior work,
we propose JITLine—a machine learning-based Just-In-Time
defect prediction approach that can predict both defect-
introducing commits and their associated defective lines. Then,
we formulate the following research questions:
RQ1) Does our JITLine outperform the state-of-the-art JIT

defect prediction approaches?
RQ2) Is our JITLine more cost-effective than the state-of-the-

art JIT defect prediction approaches?
RQ3) Is our JITLine faster than the state-of-the-art JIT defect

prediction approaches?
RQ4) How effective is our JITLine for prioritizing defective

lines of a given defect-introducing commit?

V. JITLINE: A JIT DEFECT PREDICTION APPROACH AT
THE COMMIT AND LINE LEVELS

In this section, we present the implementation of our
JITLine approach. The goal of our JITLine approach is to
predict defect-introducing commits and identify lines that are
associated with that defect-introducing commit (i.e., defective
lines). The underlying intuition of our approach is that code
tokens that frequently appeared in defect-introducing commits
in the past are likely to be fixed in the future.
Overview. Our approach begins with extracting source code
tokens of code changes as features (i.e., token features).
Since our JIT defect datasets are highly imbalanced (i.e.,
8%-13% defective ratio), we apply a SMOTE technique that
is optimized by a Differential Evolution (DE) algorithm to
handle the class imbalance issue on a training dataset. Then,
we build commit-level JIT defect prediction model using the
rebalanced training dataset. Next, we generate a prediction for
each commit in a testing dataset. After that, we normalize the
prediction score by the amount of code changes (i.e., churn)
in order to consider the inspection effort when generating the
ranking of defect-introducing commits. For each commit in the
testing dataset, we extract the importance score of each token
features using a state-of-the-art model-agnostic technique,
i.e., Local Interpretable Model-Agnostic Explanations (LIME).
Finally, we rank defective lines that are associated with a given
commit based on the LIME’s importance scores. We describe
each step in details below.

(Step 1) Extracting Bag-of-Tokens Features. Following
the underlying intuition of our approach, we represent each



commit using Bag-of-Tokens features (i.e., the frequency of
each code token in a commit). To do so, for each commit,
we first perform a code tokenization step to break each
changed line into separate tokens. Then, we parse its removed
lines or added lines into a sequence of tokens. As suggested
by Rahman et al. [27], removing these non-alphanumeric
characters will ensure that the analyzed code tokens will
not be artificially repetitive. Thus, we apply a set of regular
expressions to remove non-alphanumeric characters such as
semi-colon (;) and equal sign (=). We also replace the numeric
literal and string literal with a special token (i.e., <NUM> and
<STR> respectively) to reduce the vocabulary size. Then,
we extract the frequency of code tokens for each commit
using the Countvectorize function of the Scikit-Learn
Python library. We neither perform lowercase, stemming, nor
lemmatization (i.e., a technique to reduce inflectional forms)
on our extracted tokens, since the programming language of
our studied systems is case-sensitive. Otherwise, the meaning
of code tokens may be discarded if stemming and lemmatiza-
tion are applied.

(Step 2) Handling class imbalance using an Optimized
SMOTE technique. Since our JIT defect datasets are highly
imbalanced (i.e., 8%-13% defective ratio), we apply a SMOTE
technique that is optimized by a Differential Evolution (DE)
algorithm to handle the class imbalance issue on a training
dataset. The training dataset is splitted into a new training
set and a validation set. The new training set is used to train
DE+SMOTE, while the validation set is used to select the best
hyper-parameter settings. We select the SMOTE technique, as
prior studies have shown that the SMOTE technique outper-
forms other class rebalancing techniques [2, 37].

The SMOTE technique starts with a set of minority class
(i.e., defect-introducing commits). For each of the minor-
ity class of the training datasets, SMOTE calculates the k-
nearest neighbors. Then, SMOTE selects N instances of the
majority class (i.e., clean commits) based on the smallest
magnitude of the euclidean distances that are obtained from
the k-nearest neighbors. Finally, SMOTE combines the syn-
thetic oversampling of the minority defect-introducing com-
mits with the undersampling the majority clean commits. We
use the implementation of SMOTE function provided by the
Imbalanced-Learn Python library [20]. However, prior
studies pointed out that the SMOTE technique involves many
parameters settings (e.g., k the number of neighbors, m the
number of synthetic examples to create, r the power parameter
for the Minkowski distance metric), which often impact the
accuracy of prediction models [2, 6, 37, 39].

To ensure that we achieve the best performance of the
SMOTE algorithm, we optimize the SMOTE technique using
a Differential Evolution (DE) algorithm (as suggested by
Agrawal et al. [2] and Tantithamthavorn et al. [37]). DE [35] is
an evolutionary-based optimization technique, which is based
on a differential equation concept. Unlike a Genetic Algorithm
technique that uses crossover as search mechanisms, a DE
technique uses mutation as a search mechanism. First, DE gen-
erates an initial population of candidate setting of SMOTE’s

k nearest neighbors with a range value of 1-20. Then, DE
generates new candidates by adding a weighted difference
between two population members to the third member based
on a crossover probability parameter. Finally, DE keeps the
best candidate SMOTE’s parameter setting that is evaluated
by a fitness function of maximizing an AUC value for the
next generation. We use the implementation of the differential
evolution algorithm provided by Scipy Python library [41]. As
suggested by Agrawal et al. [2], we set the population size to
10, the mutation power to 0.7 and a crossover probability (or
recombination parameter in Scipy) to 0.3.

(Step 3) Building commit-level JIT defect prediction
models. We build a commit-level JIT defect model using
both the Bag-of-Tokens features from Step 1 and the commit-
level metrics from McIntosh and Kamei [23]. The details of
commit-level metrics are provided in the replication package.
Prior work found that different classification techniques often
produce different performance measures. Thus, we conduct an
experiment on different classification techniques. We consider
the following well-known classification techniques [1, 2, 39,
40], i.e., Random Forest (RF), Logistic Regression (LR),
Support Vector Machine (SVM), k-Nearest Neighbours (kNN),
and AdaBoost. For each project, we build the JIT model using
the implementation provided by Python Scikit-Learn package.
We find that LR, kNN, and SVM cannot be built with the
Qt project due to the high-dimensional feature space, and the
model training time for such models (which takes few hours)
is considerably larger than RF (which takes few minutes).
Therefore, we only select the Random Forest classification
technique for our study. After we experiment with different
parameter settings of trees (a range of 50 to 1,000), we find
that our approach is not sensitive to the parameter setting of
random forest. Thus, we set the number of tress of random
forest to 300.

(Step 4) Computing a defect density of each commit.
We then generate the prediction probability for each commit
in the testing dataset using the predict_proba function
provided by the Scikit-learn Python library. Then, we compute
the defect density as the probability score normalized by the
total changed lines of code of that commit ( Y(m)

#LOC(c) ). The use
of defect density is suggested by prior studies [17, 24] who
argued that the cost of applying quality assurance activities
may not be the same for each code changes. In other words,
a prediction model that prioritizes the largest commit as
most defect prone would have a very high recall, i.e., those
commits likely contain the majority of defects, yet inspecting
all those commits would take a considerable amount of time.
In contrast, a model that recommends slightly less defect-
prone commits that are smaller to inspect would be more cost-
effective [17].

(Step 5) Generating a ranking of defective lines for a
given commit. In our studied projects, we found that the
average size of the commit varies from 73 to 140 changed
lines, but the average ratio of actual defective lines is as low as
51%-53%. Thus, developers still spend unnecessarily effort on
locating actual defective lines of that commit [42]. To address



TABLE II: The statistics of our studied datasets.

#Commits
%Defect-

Introducing
Commits

#Unique
Tokens

Avg. of
Commit

Size

Avg. of
%Defective

Lines
Openstack 12,374 13% 32K 73 LOC 53%
Qt 25,150 8% 81K 140 LOC 51%

this challenge, we propose to generate a ranking of defective
lines for a given commit. For each commit, we compute the
importance score of token features using a Local Interpretable
Model-agnostic Explanations (LIME) technique. LIME [30] is
a model-agnostic technique that aims to mimic the behavior of
the predictions of the defect model by explaining the individual
predictions. Given a commit-level JIT defect prediction model
and a commit in the testing dataset, LIME performs the
following steps:

1) Generate neighbor instances of a test instance x. LIME
randomly generates n synthetic instances surrounding the
test instance x using a random perturbation method with
an exponential kernel function on cosine distance.

2) Generate labels of the neighbors using a commit-level JIT
defect prediction model. LIME uses the commit-level JIT
defect prediction model to generate the predictions of the
neighbor instances.

3) Generates local explanations from the generated neigh-
bors. LIME builds a local sparse linear regression model
(K-Lasso) using the randomly generated instances and
their generated predictions from the commit-level defect
model. The coefficients of the K-Lasso model indicate
the importance score of each feature on the prediction of
a test instance according to the K-Lasso model.

The LIME’s importance score of each token feature ranges
from -1 to 1. A positive LIME score of a token feature (0 <
e ≤ 1) indicates that the feature has a positive impact on the
estimated probability of the test instance (i.e., risky tokens).
On the other hand, a negative LIME score of a token feature
(−1 ≤ e < 0) indicates that the token feature has a negative
impact on the estimated probability (i.e., non-risky tokens).
Once the importance score of each token is computed, we
generate the ranking of defect-prone lines using the summation
of the importance score for all tokens that appear in that line.
We use the implementation of LIME provided by the lime
Python package.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the studied datasets and present
the experimental results with respect to our four research
questions.

Studied Datasets. In this paper, we select the dataset of
McIntosh and Kamei [23] due to the following reasons. First,
we would like to establish a fair comparison, using the same
training and testing datasets with previous work [9, 10], where
this dataset was used. Second, we would like to ensure that
our results rely on high quality datasets. Recently, researchers
raised concerns that the SZZ algorithm [33] may produce
many false positives and false negatives [31]. However, the

datasets of McIntosh and Kamei [23] have been manually
verified through many filtering steps (e.g., ignore comment
updates, ignore white space/indentation changes, remove mis-
labelled defect-introducing commits). Finally, we select the
datasets of McIntosh and Kamei [23] with two open-source
software systems, i.e., OpenStack and Qt. Openstack is an
opensource software for cloud infrastructure service. Qt is a
cross-platform application development framework written in
C++. Table II presents the statistics of the studied datasets.

Below, we present the approach and the results with respect
to our four research questions.

(RQ1) Does our JITLine outperform the state-of-the-art JIT
defect prediction approaches?

Approach. To answer this RQ, we evaluate our JITLine using
the same training/testing datasets as prior studies [9, 10, 23]
to establish a fair comparison. For training, we use 11,043
commits for OpenStack and 22,579 commits for Qt. For
testing, we use 1,331 commits for OpenStack and 2,571 for Qt.
Since our JIT defect datasets are time-wise, we do not perform
cross-validation to avoid the use of testing data in the training
data [15]. Then, we compare our JITLine with the following
three state-of-the-art JIT defect prediction approaches (i.e.,
EARL, DeepJIT, CC2Vec). The details of the state-of-the-
art approach is provided in Section II. Finally, we evaluate
these approaches using the following six traditional evaluation
measures [2, 9, 10, 42].

1) AUC is an Area Under the ROC Curve (i.e., the true
positive rate and the false positive rate). AUC values
range from 0 to 1, with a value of 1 indicates perfect
discrimination, while a value of 0.5 indicates random
guessing.

2) F-measure is a harmonic mean of precision and recall,
which is computed as 2×Precision×Recall

Precision+Recall . We use the
probability threshold of 0.5 for calculating precision and
recall.

3) False Alarm Rate (FAR) [1] measures the ratio of in-
correctly predicted defect-introducing commits and the
number of actual clean commits FP

FP+TN . The lower the
FAR value is, the fewer the incorrectly predicted defect-
introducing commits that developers need to review. In
other words, a low FAR value indicates that developers
will spend less effort on reviewing the incorrectly pre-
dicted defect-introducing commits.

4) Distance-to-Heaven (d2h) [1] is a root mean square
of recall and FAR values, which can be computed as√

(1−Recall)2+(0−FAR)2

2 . A d2h value of 0 indicates that
an approach can correctly predict all defect-introducing
commits without any false positive. A high d2h value
indicates that an approach is far from perfect, e.g.,
achieving a high recall value but also have high FAR
value and vice versa.

5) Precision measures the ability of an approach to cor-
rectly predict defect-introducing commits, which can be
calculated as follows: Precision = TP

TP+FP . The higher
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Fig. 2: (RQ1) The evaluation result of our JITLine approach compared with the state-of-the-art approaches for Just-In-Time
defect prediction (i.e., CC2Vec(Train only), DeepJIT, and EALR).

precision, the better model to correctly predict defect-
introducing commits.

6) Recall measures the ability to correctly retrieve defect-
introducing commits when making a prediction. The
calculation of this measure is Recall = TP

TP+FN . High
recall indicates that the model can obtain a lot of defect-
introducing commits during prediction.

Results. Our JITLine approach achieves an AUC 28%-
73% higher and an F-measure 26%-38% higher than the
state-of-the-art approaches (i.e., CC2Vec). Figure 2 presents
the experimental results of our approach and the state-of-
the-art approaches with respect to six evaluation measures,
i.e., AUC, FAR, d2h, precision, and recall for Openstack and
Qt. We find that our JITLine approach achieves the highest
AUC value of 0.83 for Openstack and 0.82 for Qt, which is
1%-8% higher than CC2Vec, 8%-10% higher than DeepJIT,
and 28%-73% higher than EALR. We also find that our
JITLine approach achieves the highest F-measure value of 0.33
for Openstack and 0.24 for Qt, which are 26%-38% higher
than CC2Vec, 300%-3,300% higher than DeepJIT, and 500%-
3,200% higher than EALR. This finding indicates that our
approach outperforms the state-of-the-art approaches in terms
of AUC and F-measure.

Our JITLine approach achieves a False Alarm Rate
(FAR) 94%-97% lower than the CC2Vec approach. We find
that our JITLine approach achieves a False Alarm Rate (FAR)
of 0.05 for Openstack and 0.02 for Qt, which is similar to
DeepJIT (FAR=0.01) and EALR (FAR=0). Similarly, our JIT-
Line approach also achieves a d2h of 0.52 for OpenStack and
0.59 for Qt, which is lower than the state-of-the-art approaches
(i.e., DeepJIT and EALR). However, we observe that the d2h
of our approach for Qt project is higher than the CC2Vec
approach. For Qt project, we find that the lower d2h value of
the CC2Vec approach has to do with the high recall value of
0.96—i.e., the CC2Vec approach predicts most of the commits
as defect-introducing, but 63%-87% of them are incorrect (i.e.,
many of them are false positives)— indicating that developers
may spend unnecessarily effort to inspect actual clean commits

that are incorrectly predicted as defect-introducing commits
when the CC2Vec approach was used. On the other hand, the
high d2h value of our approach has to do with the low recall of
0.16, but our approach achieves a low FAR of 0.02, indicating
that the predictions from our JITLine approach is less likely
to predict actual clean commits as defect-introducing. After
considering both the ability of identifying defect-introducing
commits (i.e., Recall) and the additional costs (i.e., FAR),
our approach still outperforms state-of-the-art approaches (i.e.,
CC2Vec (only for OpenStack), DeepJIT, and EALR).

(RQ2) Is our JITLine more cost-effective than the state-of-
the-art JIT defect prediction approaches?
Approach. To answer this RQ, we evaluate our JITLine and
compare with the four state-of-the-art JIT defect prediction
approaches (as mentioned in RQ1) using the following cost-
effective measures [1, 11, 17, 24, 44]:

1) PCI@20%LOC measures the proportion of actual defect-
introducing commits that can be found given a fixed
amount of effort, i.e., the Top 20% LOC of the whole
project. A high value of PCI@20%LOC indicates that
an approach can rank many actual defect-introducing
commits so developers will spend less effort to find actual
defect-introducing commits.

2) Effort@20%Recall measures the amount of effort (mea-
sured as LOC) that developers have to spend to find the
actual 20% defect-introducing commits divided by the
total changed LOC of the whole testing dataset. A low
value of Effort@20%Recall indicates that the developers
will spend a little amount of effort to find the 20% actual
defect-introducing commits.

3) Popt is defined as 1-∆opt, where ∆opt is the area of the
effort-based (i.e., churn) cumulative lift chart between
an optimal model and a prediction model. The effort-
based (i.e., churn) cumulative lift chart is the relationship
between the cumulative percentage of defect-introducing
commits from a prediction model (y-axis) and the cumu-
lative percentage of the inspection effort (x-axis). Similar
to prior studies [1, 24, 44], we use the normalized version
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Fig. 3: (RQ2) The cost-effectiveness of our JITLine ap-
proach compared to the state-of-the-art approaches for Just-
In-Time defect prediction with respect to PCI@20%Recall,
Effort@20%Recall, and POpt.

of Popt, which is defined as 1− Area(Optimal)−Area(Our)
Area(Optimal)−Area(Worst) .

For the optimal model and the worst model, all commits
are ranked by the actual defect density in descending and
ascending order, respectively. For our model, all commits
are ranked by the estimated defect density ( Y(m)

#LOC(c) ) in
descending order.

Results. Our JITLine approach is 17%-51% more cost-
effective than the state-of-the-art approaches in term of
PCI@20%LOC. Figure 3 presents the cost-effectiveness of
our JITLine approach compared to the state-of-the-art ap-
proaches for Just-In-Time defect prediction with respect to
the PCI@20%LOC, Effort@20%Recall and Popt measures.
We find that our JITLine approach is more cost-effective
than the state-of-the-art approaches for three cost-effectiveness
measures. We find that our JITLine achieves a PCI@20%LOC
of 0.56 for Openstack and 0.70 for Qt, while the state-of-
the-art achieves a PCI@20%LOC of 0.06-0.37 for OpenStack
and 0.06-0.60 for Qt. This finding indicates that given a fixed
amount of inspection effort at 20%LOC, our JITLine approach
can correctly predict 17%-51% higher number of actual defect-
introducing commits than the state-of-the-art approaches.

Our JITLine approach can save the amount of effort
by 89%-96% to find the same number of actual defect-
introducing commits (i.e., 20% Recall) when compared
to the state-of-the-art approaches. Our JITLine approach
achieves an Effort@20%Recall of 0.04 for Openstack and
and 0.02 Qt, while the state-of-the-art approaches achieve an
Effort@20%Recall of 0.11-0.36 for Openstack, and 0.03-0.53

TABLE III: (RQ3) The average CPU and GPU computational
time (minutes±95% Confidence Interval) of the model train-
ing of JIT defect prediction approaches after repeating the
experiment 5 times.

CPU GPU
Openstack Qt Openstack Qt

JITLine 36±1 secs 175±1 secs - -
DeepJIT 70±7 mins 143±7 mins 2±0.01 mins 5±0.01 mins
CC2Vec 146±16 mins 300±6 mins 13±0.05 mins 30±0.10 mins
EARL 8±1 secs 97±1 secs - -

for Qt. Similarly, our JITLine approach achieves a Popt of 0.82
for OpenStack and 0.89 for Qt, which is 116% and 178%
higher than the state-of-the-art approaches for OpenStack and
Qt, respectively. In particular, our Popt is 7% to 19% higher
than EALR, 116% to 178% higher than DeepJIT, and 105% to
112% higher than CC2Vec. This finding suggests that, to find
the same amount of actual defect-introducing commits, our
JITLine approach can reduced the amount of effort by 85%
and 96% when compared to the state-of-the-art approaches,
which may provide the best return on investment.

(RQ3) Is our JITLine faster than the state-of-the-art JIT
defect prediction approaches?
Approach. To answer this RQ, we measure the CPU com-
putational time of the model training of our approach,
and the CPU and GPU computational time of the model
training of deep learning approaches (i.e., DeepJIT and
CC2Vec). For our approach, we set n_jobs argument of
the RandomForestClassifier function of Scikit-Learn
library to -1 to ensure that all available CPU cores are used in
parallel. For the deep learning baselines, we use cpu function
provided by the Pytorch deep learning library to ensure that
all available CPU cores are used in parallel. We perform the
experiment using the following equipment: AMD Ryzen 9
5950X 16 Cores/32 Threads Processor, RAM 64GB, NVIDIA
GeForce RTX 2080 Ti 11GB. To ensure that our measurement
is accurate and strictly controlled, we reserve the computing
resources and ensure that the resources are idle with no other
running tasks. To combat the randomization bias, we repeat
the experiment 5 times.
Results. Our JITLine approach is 70-100 times faster
than the deep learning approaches for Just-In-Time defect
prediction. Table III presents the average CPU and GPU
computational time (minutes) of the model training of JIT
defect prediction approaches after repeating the experiment 5
times. We find that the model training time of our JITLine ap-
proach takes approximately 1-3 minutes, while the model
training time of the deep learning approaches for Just-In-Time
defect prediction require 1-5 hours (70 to 300 minutes). Given
the same running cost (on CPU), this finding suggests that
our approach is more cost-efficient than the deep learning
approaches.

The computation time of the deep learning approaches can
be accelerated by using a high-end GPU hardware. However,
we find that the model training time of the deep learning
approaches on the GPU device is relatively faster than using
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Fig. 4: (RQ4) The results of our JITLine at the line
level when compared to the N-gram-based line-level JIT
defect prediction approach of Yan et al. [43] with
respect to Top-10 Accuracy(↗), Recall@20%Effort(↗),
Effort@20%Recall(↘), and IFA(↘). The higher (↗) or the
lower (↘) the values are, the better the approach is.

the CPU hardware with an additional GPU cost. Nevertheless,
the model training time of deep learning approaches on GPU
(2-30 minutes) still takes relatively longer than the model
training time of our approach on CPU (1-3 minutes).

(RQ4) How effective is our JITLine for prioritizing defective
lines of a given defect-introducing commit?

Approach. To address this RQ, we first need to collect the
line-level ground-truth data. To do so, we start from cloning
a git repository of the studied projects. Then, we use Py-
Driller [34], a Python library for mining GitHub repository,
to identify defect-fixing commits that are associated with each
defect-introducing commit that is provided by McIntosh and
Kamei [23]. Once identified, we examine the diff (a.k.a. code
changes) made by the defect-fixing commits to identify lines
that are modified/deleted by defect-fixing commits. Similar to
prior work [4, 31], the lines that were modified or deleted
by defect-fixing commits are identified as defective lines,
otherwise clean. Then, we compare our JITLine with the
state-of-the-art line-level JIT defect prediction approach by
Yan et al. [43]. We implement the N-gram approach using
the implementation provided by Hellendoorn et al. [8], Since
Yan et al. [43] found that the Jelinek-Mercer (JM) smoothing
method is the best choice, and the N-gram length has no
substantial impact on the average performance, we followed
their advice by using the Jelinek-Mercer (JM) smoothing
method and the N-gram length of 6. Finally, we evaluate our
approach and Yan et al. [43] using the following evaluation
measures at the line level [42, 43]:

1) Top-10 Accuracy measures the proportion of actual de-
fective lines that are ranked in the top-10 ranking. Tra-
ditionally, developers may need to inspect all changed
lines for a given commit—which is not ideal when SQA

resources are limited. A high top-10 accuracy indicates
that many of the defective lines are ranked at the top,
which is considered effective.

2) Recall@20%LOC measures the proportion of defective
lines that can be found (i.e., correctly predicted) given
a fixed amount of effort (i.e., the top 20% of changed
lines of a given defect-introducing commit). A high value
of Recall@20%LOC indicates that an approach can rank
many actual defective lines at the top.

3) Effort@20%Recallline measures the percentage of the
amount of effort that developers have to spend to find the
actual 20% defective lines of a given defect-introducing
commit. A low value of Effort@20%Recallline indicates
that the developers will spend a little amount of effort to
find the 20% actual defective lines.

4) Initial False Alarm (IFA) measures the number of clean
lines that developers need to inspect until finding the
first actual defective line for a given commit. A low IFA
value indicates that developers only spend time inspecting
only a few number of clean lines to find the first actual
defective line.

Results. Our JITLine approach is 133%-150% more ac-
curate than the baseline approach by Yan et al. [43] for
identifying actual defective lines in the top-10 recommen-
dations. Figure 4 shows that our approach achieves a median
Top-10 Accuracy of 0.7 for OpenStack and 0.5 for Qt, while
the baseline approach achieves a Top-10 Accuracy of 0.3
for Openstack and 0.2 for Qt. In addition, we find that our
JITLine approach can find actual defective lines 25%-50%
higher than the baseline approach, given the same amount
of effort at 20%LOC. Figure 4 shows that our approach
achieves a median Recall@20%LOC of 0.20 for OpenStack
and 0.21 for Qt, while the baseline approach achieves a median
Recall@20%LOC of 0.16 for OpenStack and 0.14 for Qt.

Our Wilcoxon signed-ranked test also confirms that the dif-
ference of Top-10 Accuracy and Recall@20%Effort between
our approach and the baseline is statistically significantly (p-
value < 0.05) with a Cliff’s |δ| effect size of large (|δ| =
0.49−0.67) for both Top-10 Accuracy and Recall@20%LOC.

Our JITLine approach requires 17%-27% less amount
of effort than the baseline approach in order to find the
same amount of actual defective lines. Figure 4 shows
that our approach achieves a median Effort@20%Recallline
of 0.20 for Openstack and 0.19 for Qt, while the baseline
approach achieves a median Effort@20%Recallline of 0.24 for
OpenStack and 0.26 for Qt. Similarly, our approach achieves
a median IFA of 0 for OpenStack and 1 for Qt, while the
baseline approach achieves a median IFA of 3 for OpenStack
and 4 for Qt. Our Wilcoxon signed-ranked test also confirms
that the difference of Effort@20%Recallline and IFA between
our approach and the baseline is statistically significant (p-
value < 0.05) with a Cliff’s |δ| effect size of large (|δ| =
0.52− 0.69) for Effort@20%Recallline and a Cliff’s |δ| effect
size of medium (|δ| = 0.36− 0.39) for IFA.



VII. DISCUSSION

A. Implications to Practitioners

Our JITLine approach may help practitioners to better pri-
oritize defect-introducing commits and better identify defective
lines, since we find that our JITLine approach outperforms
(RQ1), more cost-effective (RQ2), faster (RQ3), and more
fine-grained (RQ4) than the state-of-the-art approaches (i.e.,
EALR, CC2Vec, and DeepJIT). Traditionally, Just-In-Time
defect prediction methods only prioritize defect-introducing
commits, saving a lot of code inspection effort. However, we
find that the average ratio of actual defective lines for each
commit is 50%. Thus, developers still spend unnecessarily
effort on inspecting clean lines. In addition to predict defect-
introducing commits, our JITLine approach can also accurately
predict defective lines within a defect-introducing commit,
saving 17%-20% effort that developers need to spend when
compared to the baseline approach [43].

B. Implications to Researchers

Researchers should consider the key principles of Just-In-
Time defect prediction models (i.e., to generate predictions as
soon as possible), since the results of our replication study
show that, when excluding testing datasets, the F-measure of
CC2Vec approach is decreased by 38.5% for OpenStack and
45.7% for Qt. In reality, it is unlikely that the unlabelled
testing dataset would be available beforehand when training
JIT models. Thus, when conducting an experiment, testing data
should be excluded when developing AI/ML models.

Researchers should explore simple solutions (i.e., Explain-
able AI approaches [13, 14, 28, 38, 42]) first over complex
and compute-intensive deep learning approaches for SE tasks,
since we find that our JITLine approach outperforms the deep
learning approaches for Just-In-Time defect prediction. This
recommendation has been advocated by prior studies in other
SE tasks [5, 8, 22, 25]. For example, Menzies et al. [25]
suggested that researchers should explore simple and fast
approaches before applying deep learning approaches on SE
tasks. Hellendoorn [8] found that a careful implementation of
NLP approaches outperform deep learning approaches. Liu et
al. [22] found that simple k-nearest neighbours approach
outperforms neural machine translation approaches.

C. Threats to Validity

Threats to construct validity relates to the impact of parame-
ter settings of the techniques that our approach relies upon (i.e,
SMOTE, DE, Random Forest, and LIME) [6, 39, 40]. To miti-
gate this threat, we apply a Differential Evolution algorithm to
optimize the parameter setting of the SMOTE technique. We
use the parameter settings of DE, suggested by Agrawal et
al. [2]. We use the default settings of LIME (i.e., the number
of samples = 5,000). For the baseline approaches, we use the
best parameter settings provided by the implementation of the
DeepJIT [9] and CC2Vec approaches [10].

Prior work raised concerns that the ground-truths data
collection of defect-introducing commits could be delayed
[3, 36]. Thus, it is possible that our studied JIT datasets may be

missing some of the false negative commits when defects are
not fixed (i.e., defect-fixing commits that are not yet fixed).
However, the goal of this paper is not to improve the data
construction approach. Instead, we use the same datasets that
were used in the prior work for a fair comparison. Thus, future
work should consider addressing this concern.

Threats to external validity relates to the limited number
of the studied datasets (i.e., OpenStack and Qt) to ensure a
fair comparison with the CC2Vec approach [10]. Thus, other
commit-level datasets can be explored in future work.

Threats to internal validity relates to the randomization of
several techniques that our approach relies upon [21]. After we
repeat our experiments with different random seeds, we ob-
serve minor differences (e.g., ±0.01 for AUC). Nevertheless,
our JITLine approach is still the best performer for all RQs.
The used random seed number is reported in our replication
package at Zenodo: http://doi.org/10.5281/zenodo.4433498.

We follow the experimental setting of the original study [9,
10] (i.e., one single training/testing data split without cross-
validation). Therefore, statistical analysis and effect size anal-
ysis are not applied for RQ1, RQ2, and RQ3, since we have
only one performance value for each project.

VIII. CONCLUSIONS

In this paper, we propose JITLine approach, a machine
learning-based JIT defect approach for predicting defect-
introducing commits and identifying defective lines that are
associated with that commit. Then, we conduct our empirical
study to demonstrate that our JITLine approach is better
(RQ1), more cost-effective (RQ2), faster (RQ3) and more fine-
grained (RQ4) than the state-of-the-art JIT defect prediction
approaches (i.e., EARL, DeepJIT, and CC2Vec).

Therefore, our JITLine approach may help practitioners to
better prioritize defect-introducing commits and better identify
defective lines. In addition, our results highlight the negative
impact of excluding testing datasets in model training and the
importance of exploring simple solutions (e.g., explainable AI
approaches) first over complex and compute-intensive deep
learning approaches.
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