2103.08595v1 [cs.SE] 15 Mar 2021

arxXiv

Does Code Review Promote Conformance?
A Study of OpenStack Patches

Panyawut Sri-iesaranusorn, Raula Gaikovina Kula, Takashi Ishio
Nara Institute of Science and Technology, Nara, Japan
Email: {sri-iesaranusorn.panyawut.sg0, raula-k, ishio}@is.naist.jp

Abstract—Code Review plays a crucial role in software quality,
by allowing reviewers to discuss and critique any new patches
before they can be successfully integrated into the project code.
Yet, it is unsure the extent to which coding pattern changes
(i.e., repetitive code) from when a patch is first submitted and
when the decision is made (i.e., during the review process). In
this study, we revisit coding patterns in code reviews, aiming
to analyze whether or not the coding pattern changes during
the review process. Comparing prior submitted patches, we
measure differences in coding pattern between pre-review (i.e.,
patch before the review) and post-review (i.e., patch after a
review) from 27,736 reviewed OpenStack patches. Results show
that patches after review, tend to conform to similar coding
patterns of accepted patches, compared to when they were first
submitted. We also find that accepted patches do have similar
coding patterns to prior accepted patches. Our study reveals
insights into the review process, supporting the potential for
automated tool support for newcomers and lays the groundwork
for work into understanding conformance and how it makes for
an efficient code review process.

I. INTRODUCTION

Code Review plays a crucial role in software quality by
allowing reviewers to discuss and critique new patches before
they can be successfully integrated into the project code. As a
code quality assurance activity, code review also functions as
knowledge transfer, team building, and coordination mecha-
nism within software teams [2]. It has approval from industry
giants like Microsoft and Google, on how ‘Code Reviews at
Microsoft are an integral part of the development process that
thousands of engineers perceive it as a great best practice
and most high-performing teams spend a lot of time doing’.
Although light-weight variations of code review streamline the
process, reviews still suffer from being ineffective and less
efficient. This can detract future contributions, especially for
Open Source Software projects that need to attract and retain
newcomer contributions.

Prior work has shown that similar coding patterns (i.e.,
such as the way developers edit day-to-day code that tends
to be repetitive, often using existing code elements) is related
to the acceptance of a patch. Hellendoorn et al. [5] shows
that reviewers may consider conformance to the project’s code
style as an indicator of acceptance. Comparing the submitted
code with code in the project by using language models [12],
they found that rejected changesets contain code significantly
less similar to the project. Thus, it is not known the extent to
which coding pattern changes during the review process, from
when a patch is first submitted to when it is accepted.

revise discuss

accepted
pre-review |- assign

abandoned

Fig. 1. The Code Review process shows key activities between the pre-
review and post-review of a submitted patch.

To fill this gap, in this study, we revisit coding patterns in
code reviews, aiming to analyze whether or not the coding
pattern changes during the review process. We define the
conformance as “similarly repetitive written code patterns that
appear in prior accepted patches for a project”. We reuse
language models to compare coding patterns or prior submitted
patches before the review (i.e., pre-review) with a revised
patch after the review (i.e., post-review), as shown in Figure
1. Also different to [5], we study patches, which are atomic,
modular, and updated by design as opposed to pull requests,
that are more a collection of commits, changed files, and the
differences (or "diff”’) between files in branches [10].

Our large-scale empirical study consisted of two parts.
First, we conduct a preliminary study of 27,736 reviewed
patches taken from the OpenStack projects. The preliminary
results show that the programming files tend to contain more
churn and are likely to contain coding pattern changes when
compared to configuration or documentation types of files.
Focusing on the programming files (i.e., JavaScript, Bash
Shell, and Python), we then form two research questions to
guide our study.

e RQ1 Review Process: Does a patch coding pattern con-
form to the project after it has been reviewed?

e RQ)y Patch Decision: Are there coding pattern differences
between an accepted and an abandoned patch?

For RQ, results show that patches after being reviewed,
tend to conform to similar coding patterns of accepted patches,
compared to when they were first submitted. The results of
RQ; also show that the conformance of accepted patches is
higher than patches that were abandoned, which confirms prior
findings. Our full replication package can be found at https:
/lzenodo.org/record/4537542#.Y CaArhMza3l

https://zenodo.org/record/4537542#.YCaArhMza3I
https://zenodo.org/record/4537542#.YCaArhMza3I

def list(self):
key = "list_%s" % self._plural_key
if hasattr(self._neutron, key):
list_method = getattr(self._neutron, key)
result = list method(project_id=self.tenant_uuid)
else:
list_method = getattr(self._manager(), key)
result = list_method(tenant_id=self.tenant_uuid)[self._plural_key]
if self.tenant_uuid:
result = [r for r in result if r["tenant_id"] == self.tenant_uuid]

return result

def list(self):
list_method = getattr(self._ manager(), "list %s" % self. plural_ key)
result = list_method(tenant_id=self.tenant_uuid)[self._plural_key]

if self.tenant_uuid:
result = [r for r in result if r["tenant_id"] == self.tenant_uuid]

return result

Fig. 2. An example of coding pattern changes between pre-review and post-review. We can see that post-review code has changed its coding pattern to change
the key variable into the 1ist_method variable. The code excluding i f-else statement is consistent with other patches that have been accepted.

II. MOTIVATING EXAMPLE: IDENTIFYING SIMILAR
CODING PATTERNS USING A LANGUAGE MODEL.

Figure 2 shows a review example [9] on how we compare
the coding patterns that appear in the post-review compared
to the pre-review. In this example, we see that the patch
purpose is to add a helper function that “is a way to unify
the way of the usage of the Neutron API and remove code
duplication”. This patch has been through 50 patch revisions
and consists of 14 python files. In over fifty patch revisions
of the patch, we see that evidence of coding pattern changes
with the variable key being changed into 1ist_method
variable. If the 1ist_method variable is consistent in other
prior accepted patches, we regard this as conformance to such
repetitive coding patterns in the patch.

The statistical counts infer the probability of conformance to
the coding pattern as the entropy. Low cross-entropy indicates
the high similar style or conformance.

III. DATA PREPARATION

For our dataset collection, we acquired OpenStack patches
from Ueda et al. [13], which is patch source code originally
mined from the Gerrit API. The detail of each step is explained
in the following steps: Stepl: Label pre and post reviews -
Our data was initially in JSON format, which is annotated
as added, removed, or unchanged lines. From this data we
create pre-review and post-review, containing the appropriate
lines — added lines to only post-review, removed to only pre-
review, and unchanged to both. Step2: Remove comments -
To remove the comments, we use the NCDSearch tool [6].
The tool applies grammar from the lexer files generated by

TABLE I
CORPUS SIZE OF TOKENS FOR EACH FILE EXTENSION.
File ext. #Revisions #Files #Unique Token #Token
.py 18,859 112,566 513,280 816,364,358
.php 20 21,723 11,535 5,330,917
.yaml 4,575 12,295 26,301 79,673,298
st 4,560 6,761 38,372 12,251,290
.pp 940 4,974 15,301 4,858,510
.yml 960 3,976 10,811 1,636,665
.sh 2,307 3,946 17,482 8,255,596
json 1,137 2,977 20,563 6,275,269
txt 2,105 2,961 2,283 474,107
Js 567 2,542 29,575 11,478,552
.html 512 1,772 6,588 703,987
xml 253 1,333 4,386 597,631

ANTLR4 parser generator [1]. Step3: Tokenize source code -
In addition to removing comments, we also used NCDSearch
as our tokenization tool as it supports several languages such
as Python, JavaScript, and plain text like .txt and .html.

For training a language model, we use the MITLM toolkit
implemented in [8]. To understand how style changes due to
the parameter n of the n-gram models, we measure the model
created from 3-grams to 9-grams.

IV. CODING PATTERNS OF FILE TYPES

To address this gap, we perform a file-level analysis focused
on the following two Preliminary Questions (PQs):

o PQ1 What kinds of files churn during a review? We want
to study the number of patch revisions of a typical review
to better understand the magnitude of patches submitted.

o PQy Which kinds of reviewed files are likely to conform
after the review process? There is no prior work that
quantifies which type of files tend to confirm after review.

Table I shows statistics of the collected corpus that belongs
to the OpenStack project. This dataset will be used for all
the preliminary questions and contains 27,736 revision patches
over 177,826 files. Both the pre-review and post-review com-
bined contain 900M tokens with 0.70M unique tokens.

To evaluate the kinds of files, we use the same groupings
employed by Mclntosh et al. [7]. Hence, we classify each
unique file that ever existed in the analyzed time span as either
configuration, programming, or documentation files. The list
below shows the file extensions that we manually investigated
and classified:

o Configuration files (conf.): The file extensions include

.yml, .json, .xml, .pp, and .yaml.

e Programming files (prog.): The file extensions include
.sh, .py, and .js.

o Documentation (doc.): The file extensions include . rst,
.php, .html, and .txt.

Figure 3 shows the results that answer to P();, confirming
that the programming files tend to churn more than other kinds
of files. As shown in the figure, the average proportions of
programming, configuration, and documentation are 69.97%,
14.15%, and 15.88%. The most common files are the source
code files for Bash shell scripts, Python, and JavaScript files.
We test the null hypothesis that “the file churn for all different
kinds of files is the same”. Our result shows that there are

1.0 §
508 !
@ $
F
=06
Q
o
S
2 0.4
o
Q
o
502

0.0

conf. prog. doc.

Fig. 3. File churn for each kind of files during a review. Programming file
type have more churn compared to configuration and documentation types.

9
8 —e— programming
configuration
7 = document
26
o
25
@
u4a
I
o3 '\‘
2 T
1
0
3 4 5 6 7 8 9
n-gram

Fig. 4. Analysis of coding pattern changes (as n-grams) between the different
types of files during a review.

statistically significant differences between two or more groups
in our data (p < .001). This preliminary result suggests that
during a code review, the intuitive focus is on code inspection,
thus programming files will receive more changes.

Figure 4 shows the results relating to Py, where the
programming related files are more likely to be repetitive.
The entropy of programming file type is 3.086, and 1.762
for 3-grams and 9-grams, respectively. For configuration and
documentation/other groups, the entropy changed from 5.946,
and 5.425 to 5.799, and 5.031 for 3-grams and 9-grams.
Considering the results of each group, the entropy of the
programming decreased when n increases, while the entropy
of other groups seems increased or stable. One reason for a
higher entropy is that natural language may use different terms
that vary across patches that may have different functions and
descriptions. As a result, these two groups are less conformant
than the programming group, which are constrained by the
syntax of programming languages. Therefore, we focused on
the programming group for our experiment.

Summary: Programming files (code) tend to contain
more churn, and are more likely to conform to the
coding pattern compared to configuration or documen-
tation files.

TABLE II
PERCENTAGE OF LANGUAGE SYNTAX TOKEN.

Separators Operators Keywords

.py files

Pre-review 33.88% 5.64% 4.81%
Post-review 33.97% 5.65% 4.79%
s files

Pre-review 44.37% 8.40% 6.50%
Post-review 43.83% 8.09% 6.47%
.sh files

Pre-review - 5.67% 3.01%
Post-review - 5.69% 2.99%

Reported Statistics from Rahman et al. [11]

py 41.98% 6.42% 4.99%
js 47.21% 6.53% 6.87%
4.0 " — Py
o sh
3.5{ ¢ s
53.01 = —— pre
a . °. Y --#-- post
& 2.0 ‘k \\\,\‘
515 L ——
1.0 e
os{ e
3 4 5 6 7 8 9
n-gram

Fig. 5. pre-review vs. post-review versions based on programming type.

V. RQi: REVIEW PROCESS

Figure 5 shows the changed entropy of post-review com-
pared to pre-review, that answer to R();, where the patch
coding pattern conforms to the project after it has been
reviewed. A general trend can be seen that the entropy of the
three file types decreases as the length of the n-gram model
increases, which follows the typical trend between n-gram
entropy and its structural language. Looking at each graph
individually in Figure 5, there is the typical natural trend in
entropy of the pre-review and post-review patches of each file
type. When we compare the two graphs, we see that post-
review patches tend to have a lower entropy than pre-review.
This is further highlighted by the python files, which tend to
have lower entropy after the post-review. The result suggests
that the python programmer concerns the conformance during
a code review more than others.

Table II serves as a sanity check to compare our work to
prior work in terms of the separators, operators, and keywords
proportions. Although the percentages of separators for python
files have a 10% difference to the Rahman et al. [11] study,
we find that the pre-review and post-review percentages them-
selves are fairly consistent. Moreover, as shown in Table III,
we conclude that there is no clear coding pattern between the
separator, operator, and the keyword during a code review.
One possible reason is that only a percentage of these tokens
maybe not enough to find the coding pattern.

TABLE III
TOP 3 CHANGED SYNTAX TOKENS (ADDED AND REMOVED) FOR EACH FILE TYPE WHERE THE GREEN AND RED COLOR REPRESENT UNCHANGED AND
CHANGED TOKEN, RESPECTIVELY, DURING A CODE REVIEW.

Added Syntax Removed Syntax
To Separator Operator Keyword Separator Operator Keyword
P token percent token percent token percent token percent token percent token percent
.py files
1 . 20.38% = 8.33% def 1.30% 20.18% = 8.47% def 1.40%
2 , 13.19% in 0.48% if 0.84% , 13.26% in 0.59% if 0.86%
3) 12.99% - 031% | return 0.48%) 12.23% % 0.26% in 0.59%
.js files
1 . 15.02% = 7.34% this 331% (14.73% = 6.49% var 2.66%
2 (13.89% < 1.80% var 2.58% . 14.50% + 1.00% this 2.55%
3) 13.47% > 1.69% rewm 1.76%) 14.48% < 091% rewn 1.88%
.sh files
1 = 39.31% { 2.59% 3257% | then = 3.47%
2 / 30.49% 2.28% 23.62% { 3.17%
3 = 567% then 2.28% = 9.87% if 3.17%
A key takeaway message is patches tend to contain natural 51 = Py
coding pattern and more conformance after review, particu- sh
larly for python files. Potential future work is to manually 4 s
. —e— accept
investigate whether the natural coding pattern correlates with 2|
. . .. 93] ™ S --+- abandoned
complexity post-review. Similar to Campbell et al. [3], a syn- £°1 .Y
tax suggestion or highlighter tool during a review is feasible. ; \
o2 SRR -
i i 3 ©
Summary: We provide evidence that the review pro- S
) S ——— .
cess changes the coding pattern of the patch. Results 1 T
. ’\.
show that the conformance of a patch after being
i i 0 :
rev1exyed, tend to be higher than a patch that was first 3 2 z & 3 3 5
submitted. n-gram

VI. RQs: PATCH DECISION

Figure 6 shows the cross-entropy of each programming file
type based on whether it was accepted or not. Similar to
RQ;, the entropy trend and structural language are similar.
It suggest that there is a difference in the coding pattern
between accepted and abandoned patch groups. Confirming
the related work of [5], we see that accepted patches are more
conformant than the abandoned patches. At the file-level, the
entropy of JavaScript file type is lower than Python file type in
accepted patches, which is not the case for abandoned patches.
This leads us to suspect that JavaScript developers concern
the unknown factor which possibly is more important than
conformance in the first stage of implementation.

One important takeaway from the results of R(Q), is that
patches themselves are sufficient to measure the coding pattern
of the patch. This is instead of compared to analyzing the
code in the project itself, which is performed by prior work.
Analysis of the patches themselves should pave the way
for potential code support tools and recommendation tools.
Similar to RQ)1, a syntax suggestion or highlighter tool during
a review is feasible, but for this case, we would like to predict
the likelihood that a patch can be accepted or not.

Summary: The results suggest that there are differ-
ences in the coding pattern between accepted and
abandoned patches groups. This is especially the case
for the JavaScript code of the patch.

Fig. 6. Accepted vs. Abandoned Patches on programming language file type.
The green line represents the .js file type that its accepted patches are more
likely to conform when compared to the abandoned patches.

VII. SUMMARY AND FUTURE CHALLENGES

Our preliminary study confirms that reviewing code con-
forms code to repetitive coding patterns. Researchers and OSS
project teams could use our results as motivation for exploring
tool support or automatic detection of conformance coding
patterns, while newcomers could increase the likelihood for
acceptance by looking at prior submitted patches.

This work lays the groundwork to open new avenues such
as exploring (1) whether or not there is a universal definition
of conformance for source code and (2) whether conformance
is related to developer individual experience or skill, and (3)
whether or not conformance creates a more efficient review
process, to name a few. Furthermore, we plan to explore how
our approach contrasts and complements other techniques such
as coding style checkers [4].

ACKNOWLEDGEMENT

This work supported by JSPS KAKENHI Grants
JP20HO05706, JP18H03221, JP20K19774, and JP18H04094.

REFERENCES

[1] ANTLR, 2020. URL https://github.com/antlr/antlr4.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of the
2013 International Conference on Software Engineering,
pages 712-721, 2013.

[3] H. Campbell, A. Hindle, and J. Amaral. Syntax errors
just aren’t natural: Improving error reporting with lan-
guage models. 05 2014.

[4] D. Han, C. Ragkhitwetsagul, J. Krinke, M. Paixao, and
G. Rosa. Does code review really remove coding conven-
tion violations? In 2020 IEEE 20th International Working

Conference on Source Code Analysis and Manipulation

(SCAM), pages 43-53, 2020.

[5] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli.
Will they like this? evaluating code contributions with
language models. In Proceedings of the 12th Working

Conference on Mining Software Repositories, pages
157-167, 2015.

[6] T. Ishio, N. Maeda, K. Shibuya, and K. Inoue. Cloned
buggy code detection in practice using normalized com-
pression distance. In Proceedings of the 2018 IEEE

International Conference on Software Maintenance and

Evolution, pages 591-594, 2018.

(7]

S. Mclntosh, B. Adams, M. Nagappan, and A. E. Hassan.
Mining co-change information to understand when build
changes are necessary. In 2014 IEEE International
Conference on Software Maintenance and Evolution,

pages 241-250, 2014.

MITLM, 2018. URL https://github.com/mitlm/mitlm.
OpenDev, 2020. URL https://review.opendev.org/#/c/
723716/

Reviewing proposed changes in a pull request,
2020. URL https://help.github.com/en/github/
collaborating-with-issues-and-pull-requests/
reviewing-proposed-changes-in-a-pull-request.

M. Rahman, D. Palani, and Peter C. Rigby. Natural soft-
ware revisited. In Proceedings of the 41st International
Conference on Software Engineering, pages 37-48, 2019.
R. Robbes and M. Lanza. Improving code completion
with program history. Automated Software Engg., 17(2):
181-212, 2010.

Y. Ueda, A. Thara, T. Ishio, and K. Matsumoto. Impact of
coding style checker on code review - a case study on the
openstack projects. In 2018 9th International Workshop
on Empirical Software Engineering in Practice, pages
31-36, 12 2018.

https://github.com/antlr/antlr4
https://github.com/mitlm/mitlm
https://review.opendev.org/#/c/723716/
https://review.opendev.org/#/c/723716/
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/reviewing-proposed-changes-in-a-pull-request
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/reviewing-proposed-changes-in-a-pull-request
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/reviewing-proposed-changes-in-a-pull-request

	I Introduction
	II Motivating Example: Identifying Similar Coding Patterns using a language model.
	III Data Preparation
	IV Coding Patterns of File Types
	V RQ1: Review Process
	VI RQ2: Patch Decision
	VII Summary and Future Challenges

