
ar
X

iv
:2

10
3.

11
62

6v
2 

 [
cs

.S
E

] 
 3

0 
M

ar
 2

02
1

Applying CodeBERT for Automated Program

Repair of Java Simple Bugs

Ehsan Mashhadi

Schulich School of Engineering

University of Calgary

Calgary, Canada

ehsan.mashhadi@ucalgary.ca

Hadi Hemmati

Schulich School of Engineering

University of Calgary

Calgary, Canada

hadi.hemmati@ucalgary.ca

Abstract—Software debugging, and program repair are among
the most time-consuming and labor-intensive tasks in software
engineering that would benefit a lot from automation. In this
paper, we propose a novel automated program repair approach
based on CodeBERT, which is a transformer-based neural
architecture pre-trained on large corpus of source code. We fine-
tune our model on the ManySStuBs4J small and large datasets
to automatically generate the fix codes. The results show that
our technique accurately predicts the fixed codes implemented
by the developers in 19-72% of the cases, depending on the type
of datasets, in less than a second per bug. We also observe that
our method can generate varied-length fixes (short and long) and
can fix different types of bugs, even if only a few instances of
those types of bugs exists in the training dataset.

Index Terms—Program repair, CodeBERT, Sequence to se-
quence learning, Transformers, Deep learning.

I. INTRODUCTION

The goal of automated program repair (APR) techniques

is to change an existing buggy program, automatically, to fix

its bug(s), which has been investigated by many researchers in

recent years [1]. Given the similarity between a program repair

task and generic natural language processing (NLP) tasks such

as sequence to sequence learning and machine translation, in

recent years, there has been a lot of work on applying machine

learning for program repair [2], [3], [4], and [5].

Within the field of NLP, one of the recent success stories

is the use of large-scale pre-trained language models such

as BERT [6]. The advantages of using a pre-trained model

are to leverage the very large-scale training set and fine-tune

the model for the particular task in hand. However, BERT

was only trained on natural language corpus. More recently,

Microsoft Research has released the CodeBERT model, which

is a bimodal pre-trained language model for both natural

and programming languages [7]. This model is trained with

a dataset provided by Husain et al. [8] that includes 6.4M

unimodal codes in different programming languages such as

Java, Python, Go, JavaScript, PHP, and Ruby. They trained

CodeBERT with two objectives, masked language modeling

(MLM) and replaced token detection (RTD). Reported results

on the application of CodeBERT for a documentation gen-

eration task on the CodeSearchNet Corpus [8] show that it

outperforms all baselines.

Given the promising results on similar tasks, in this pa-

per, we leveraged CodeBERT to automatically generate fixes

for bugs reported on the ManySStuBs4J dataset [9]. The

ManySStuBs4J dataset focuses on Java simple bugs that ap-

pear on a single statement and the corresponding fix is within

that statement. To guide our investigation, we target answering

the following research questions:

RQ1. Can CodeBERT be used to fix Java simple bugs,

and what are the pros and cons? We found that our approach

has an accuracy of 72% and 68.8% for the large and small

versions of the dataset, respectively. Also, we observed that

the accuracy is reduced to 23.7% and 19.65%, respectively,

for unique datasets (after removing duplicate fixes from the

datasets). Our approach does not require any special tokens for

locating bugs such as SequenceR [3], nor needs context lines,

such as what some previous work (DLFix [4] and CoCoNuT

[5]) require.

Another pros of our technique is that it works well with

small datasets as well as large ones. Given that CodeBERT is

pre-trained, we just need to fine-tune it on the local training

set, but previous works usually need a large dataset to train

their models from scratch, which is an expensive and time-

consuming task. Finally, our technique can be easily applied

to other datasets and programming languages because it does

not need any language-specific lexer or parser.

RQ2. What are the characteristics of the fixed bugs by

CodeBERT? We investigated the characteristics of bugs fixed

by our approach to find their effects on our technique. We

found that our model is able to generate patches for different

bug types even if only a few instances of those types exist in

the local training dataset. Also, we realized that our technique

is efficient in generating fix codes whose elements/tokens are

not available in the local training dataset. Our analysis showed

that common bugs in Java projects such as using a wrong

Boolean parameter or passing parameters to a function with

the wrong order are perfectly fixed with our technique. Finally,

the varied-length automated fixes indicate that our approach

can generate long patches as well as small patches.

II. RELATED WORK

Most of the earlier APR works leverage search-based soft-

ware engineering to generate patches. They mutate the buggy

http://arxiv.org/abs/2103.11626v2


code by using some operators and they apply a search strategy

to find the fixed code. For example, GenProg [10] tries to

repair programs by leveraging genetic search at the statement

level by using codes of the same program. MutRepair [11]

generates patches by using mutation operators to fix the bugs

within if-condition statements. Our approach is different from

these works since we do not use search-based techniques.

There are also some works specific to compilation errors.

DeepFix [12] is an end-to-end solution that tries to fix common

C language multi-line compiler errors by using a neural

network. TRACER [13] is another tool for fixing compiler

errors by focusing on single-line errors. These works focus on

fixing the compilation errors which are easy to be verified by

compiling the code or using the language-specific parser, but

our technique can generate patches for logical errors.

Some other works mine bugs to learn fixing patterns from

past bug fixes. For example, HDRepair [14] repairs bugs

by mining recurrent patterns from real bug fixes. Prophet

[15] learns from previously successful human patches, and

Genesis [16] generates patches automatically from previously

submitted patches. DeepRepair [17] leverages machine learn-

ing techniques to select similar code by leveraging recursive

autoencoders to find repair ingredients from codes that are

similar to the buggy code. DLFix [4] shows that these pattern-

based approaches have lower accuracy than the DL-based

techniques on the popular Defects4j [18] dataset.

Recent works try to use machine translation technique to fix

the bugs which are more similar to our approach. Sequencer

[3] uses seq2seq learning by combining an encoder/decoder

architecture. The encoder and decoder are recurrent neural

networks using LSTM gates. It overcomes the problem of large

vocabulary in source code by leveraging the copy mechanism.

Also, it performs a Buggy Context Abstraction process to or-

ganize the fault localization data and overcome the dependency

problem. It needs special tokens such as <START BUG>and

<END BUG>for indicating the start and end of bugs.

Ratchet [19] leverages the seq2seq translation to generate

patches by using NMT with attention-based Encoder-Decoder.

Tufano et al. [2] investigate the potential of NMT to generate

candidate patches by using a recurrent neural network (RNN)

encoder-decoder. They use simple code abstractions to make

the source code smaller, which relies on a Lexer and Parser.

CoCoNuT [5] is an end-to-end approach using NMT and

ensemble learning to automatically repair bugs in multiple

languages. They used CNNs instead of RNNs used by previous

works such as SeuqenceR [3] and Tufano et al. [2]. CoCoNuT

[5] represents the buggy source code and its surrounding con-

text separately to improve the results. The authors evaluate this

method on six benchmarks for four programming languages

including Java, C, Python, and JavaScript. DLFix [4], is a two-

tier DL model that leverages prior fixes and the surrounding

code contexts to fix the new buggy code. The main difference

between our work and these approaches are not requiring

special tokens like SequenceR [3], and there is no need for

separating inputs of buggy line and context like [5]. Also, we

did not leverage any abstraction process like Tufano et al. [2].

III. EXPERIMENT

In this section, we explain our datasets, experiment design,

and results.

A. Dataset

The ManySStuBs4J dataset has small and large versions

consist of 10,231 and 63,923 instances, respectively. These

instances are single statement bugs mined from 12,598

and 86,771 bug-fix commits, respectively, with only single-

statement changes. For the purpose of our work, we consider

a subset of this data named “Duplicate” because some

instances with the type of Missing Throws Exception,

Delete Throws Exception, and Change Modifier

do not contain sourceBeforeFix and

sourceAfterFix, properly.

We also created a new “Unique” dataset by removing

duplicate <buggy code, fixed code>pairs from both large and

small datasets. The original datasets and our datasets statistics

are presented in Table I. The table shows that we considered

more than 91% and 80% of original large and small datasets,

respectively. We split our datasets randomly into training,

validation, and test datasets by using the 80%, 10%, 10% ratio.

B. Design

The CodeBERT follows BERT[6] and RoBERTa [20]

to use a multi-layer bidirectional Transformer as the ar-

chitecture. Its architecture is the same as RoBERTa-base,

and the input format for pre-training step is concate-

nation of two segments with a separator token that is

[CLS], w1, w2, . . . , wn, [SEP ], c1, c2, ..., cm, [EOS]. The first

part contains natural language (NL) text, and the second part

contains code (PL). The output includes contextual vector

representation of NL and PL, and [CLS] representation is

used as the aggregated sequence representation for ranking

or classification purposes. The authors trained CodeBERT by

setting the maximum sequence length to 512 tokens, but since

CodeBERT needs two extra tokens internally, so it is not

possible to feed codes with token lengths large than 510,

directly. We found that this is not a serious problem in our

case since the duplicate and unique dataset contains only 173

instances out of 66,461 instances and 122 instances out of

29,168 instances, respectively, where the code token length

is greater than 510. It is however possible that CodeBERT

has seen parts of the test set during pre-training, but since

its objective is not a program repair task, so it did not

try to find the relationship between fixed code from buggy

code. The authors proposed a downstream task for generating

code documentation named code2nl to evaluate their model’s

effectiveness in generation tasks.

TABLE I
THE NUMBERS OF BUGGY AND FIXED CODE PAIRS PER DATASET

Name Original Duplicate Unique

Size Large Small Large Small Large Small

Number 63,923 10,231 58,198 8,263 24,488 4,680



Since the CodeBERT is just an encoder, so they used a

transformer decoder attached to the encoder part to make this

model usable for generation tasks like document generation.

They compared their approach with baselines by calculating

the BLEU score of generated documentation which confirms

its superiority. The BLEU score is more like a similarity met-

ric, which is quick, inexpensive, and language-independent,

and correlates highly with human evaluation [21]. They used

a Transformer with six layers, 768-dimensional hidden states,

and 12 attention heads as a decoder. Also, the Adam optimizer

is used for updating the model parameter in conjunction with

performing early stopping on the validation set.

We leveraged this downstream task for fixing program bugs,

and since our approach does not need any natural language

texts, we just provide code to the model by using the second

part of the input format which is after [SEP ] token. For our

task in hand, we used buggy codes as a source side and the

fixed codes as the target side. We set the learning rate to 5e-5,

beam size to 5, batch size to 8, training steps to 50K, and

validation steps to 1K.

To have a very simple baseline, we developed an LSTM-

based seq2seq model with OpenNMT-py [22] that follows the

Sequencer’s [3] bidirectional LSTM encoder, LSTM decoder,

global attention, and copy selector, but does not use their

abstraction phase and copy mechanism. The beam size was set

to 5, batch size to 32, dropout to 0.3, training steps to 20K,

and validation steps to 1K. The source code of this study is

available at [23].

We used the Accuracy metric to measure the performance

of our model. Accuracy measures whether the generated fix

codes are exactly the same as the actual fix codes implemented

by the developers or not. There are other evaluation metrics

like running test cases to find if the generated patches can pass

the tests, but they are not always applicable since the projects

should have a reliable test suite, and also there should be at

least one test case to reflect the bug. Due to the lack of a

complete test suite in the projects of datasets, we did not use

testing-based evaluation metrics.

In addition, we compared the required input formats of our

approach and some related work (e.g., SequenceR [3], DLFix

[4], and CoCoNut [5]). Then, we discussed about the training

and inference time of our approach, and the required additional

efforts to support other programming languages.

C. Results

1) Answer to RQ1: Table II shows the result of our experi-

ments on four different datasets considering top-1 predictions

when accuracy is calculated. The results show that our ap-

proach works well on duplicate datasets (72% and 68.8%),

but it has also an acceptable prediction accuracy on unique

datasets (23.27% and 19.65%).

The accuracy for the simple baseline (2.2%-17.65%) is

also shown in Table II, which indicates the superiority of the

CodeBERT approach. Especially, in cases where the dataset

is relatively small, using a pre-trained model like CodeBERT

benefits us more.

TABLE II
EVALUATION RESULTS, IN TERMS OF ACCURACY

Approach Dataset Accuracy

CodeBERT
Unique

Large 570 / 2449 (23.27%)
Small 92 / 468 (19.65%)

Duplicate
Large 4195 / 5820 (72%)
Small 569 / 827 (68.8%)

Simple Seq2Seq
Unique

Large 55 / 2449 (2.2%)
Small 16 / 468 (3.41%)

Duplicate
Large 376 / 5820 (6.5%)
Small 146 / 827 (17.65%)

As explained in the related work section, the proposed

dataset is not readily usable with the previous works, so there

is no easy way to compare our results with other baselines.

Therefore, to put our results in the context we only look at

the accuracy values reported in the related work (on their own

datasets) to understand what is a typical range of accuracy

achieved by a program repair tool. Table III shows the reported

accuracy values of two tools on four datasets (two per method).

The accuracy values are roughly in the same range (3.33% to

27.33%) as ours (19.65% and 23.27%) on the unique dataset

(the duplicate dataset results are much higher). Though a direct

comparison is not possible, still this gives us a context for

further analysis. To compare our approach with alternatives,

let’s look at two recent machine learning-based approaches:

It takes 29 minutes for Sequencer [3] (see related work for

more details) to generate the abstract buggy context of 75

bugs, which means that each bug needs 23 seconds, so if we

want to use this method for our unique large dataset consisting

of 2,449 bugs, it will roughly take more than 938 hours. Our

technique does not require any abstraction process and it will

take only 10 minutes to generate patches for the mentioned

dataset, so our approach takes considerably less time.

Our technique can generate patches containing up to 510

tokens (CodeBERT has been trained with sequence lengths

up to 512 tokens). Tufano et al. [2] address the unlimited

vocabulary problem by renaming rare identifiers with a custom

abstraction process, but since our technique uses a byte-level

byte-pair-encoding (BBPE) as a tokenizer, it will progressively

falls-back on character level embeddings for unseen words

[20]. This helps us to avoid any custom abstraction process or

post-processing for removing unknown words.

We measured the execution time of our technique, running

on a server with four GPUs (NVIDIA Tesla V100 SXM2

16GB). The execution time of training (5.5-9 hours) and

inference (1.6-20 minutes) steps are shown in Table IV. We

believe this is a reasonable time since fine-tuning the model

is a one-time cost, but generating the patches, which is a

repetitive task can be done very fast in less than a second,

per bug.
TABLE III

THE ACCURACY RANGE OF PREVIOUS WORKS

Name Beam Size Dataset Accuracy

Sequencer [3] 50
Defects4J 18%
CodRep4 20%

Tufano et al. [2] 5
BFP 27.33% (small) - 13.12% (large)

CodRep 10.27% (small) - 3.33% (large)



TABLE IV
TRAINING AND INFERENCE EXECUTION TIME

Dataset Training Time Inference Time

Duplicate - Large 9 Hours 20 Minutes

Unique - Large 8 Hours 10 Minutes

Duplicate - Small 6.5 Hours 2.5 Minutes

Unique - Small 5.5 Hours 1.6 Minutes

Since our technique does not require additional post-

processing steps like removing unknown words or extra

spaces, no more time is needed. Note that validating the

generated patches with dynamic analysis like running test

cases needs extra time, which is not part of our method’s

execution time.
2) Answer to RQ2: We found that our model can fix

different types of bugs even if there are few instances of that

bug type in the local training dataset. E.g., our technique fixes

60% of the SWAP_BOOLEAN_LITERAL bugs of the unique

large dataset, but there are only 103 instances of this bug

type in the local training dataset. This is due to the fact that

CodeBERT has been trained with a large dataset, so having

local training datasets with different types of bugs is not a

necessity. Furthermore, while reviewing the names of the fixed

bug projects, we came to the conclusion that the number of bug

instances from one specific project in the local training dataset

does not impact the effectiveness of our approach because

it does not depend on the knowledge of the fixing patterns

within a specific project. E.g., our model generated patches

for 100% of the bugs of Trinea.android-common and

alibaba.cobar projects, but there is no instance from

these projects in our local training dataset.

Also, our approach can generate codes that are

not available in the local training dataset. This

indicates its efficiency in generating completely

new code. For example, our approach generates

mReadOwners!=null && includingOwners as

the fixed code of mReadOwners!=null. The model

fixes the if condition bug by adding a logical AND

operator and an operand, but this line is not in our

local training nor evaluation datasets. This patch is for

android.platform_frameworks_base project with

29B2516012CF (first 12 character) fixCommitSHA1 value.

Overall, our approach can generate 100% accurate patches

for different bug types, with a success rate in a range of 3.36%

to 77.63% for unique datasets and 25% to 94.12% for the

duplicate datasets. Table V shows the results of our top-3 fix

categories. E.g., SWAP_BOOLEAN_LITERAL indicates a bug

where the True and False values should be exchanged. This

is very popular bug in Java projects since Boolean flags are a

code smell that reduces the code readability.

Also, the SWAP_ARGUMENTS indicates a bug where de-

velopers use a correct method but with the wrong order of

arguments. This is again very common in Java projects since

Java does not support named parameters, and it is the duty of

developers to maintain parameters order.

Finally, we analyzed the length of our generated fixes,

and some of the results are shown in Table VI. We found

TABLE V
PERFECT PREDICTION SUCCESS RATE FOR OUR TOP-3 BUG TYPES

Dataset Bug Type Ratio

Duplicate - Large
DIFFERENT METHOD SAME ARGS 92.35%
CHANGE CALLER IN FUNCTION CALL 90.54%
CHANGE OPERAND 88.42%

Unique - Large
SWAP BOOLEAN LITERAL 77.63%
CHANGE OPERATOR 46.15%
DIFFERENT METHOD SAME ARGS 35.77%

Duplicate - Small
DIFFERENT METHOD SAME ARGS 94.12%
CHANGE CALLER IN FUNCTION CALL 93.33%
CHANGE OPERAND 80%

Unique - Small
SWAP BOOLEAN LITERAL 60%
CHANGE OPERATOR 31.82%
SWAP ARGUMENTS 30%

TABLE VI
THE TOKEN LENGTH OF GENERATED PATCHES

Project FixCommitSHA1a Length

reactor.reactor-core 20e155eeff37 193

square.okhttp f78f74f5a2cf 192

android.platform frameworks base 946a17782a7a 147

clojure.clojure 55ed50c4975c 142

oracle.graal 2104049f33ef 137
aHash string contains the first 12 characters of the original value

that our model can generate large fixed code as well as

small code. As it is shown in Table VI, our model can

generate fixes with long lengths such as 193 for the bug in

refactor.refactor-core. For instance, we have got up

to 50% success rate (100% accurate patches) for long patches

(longer than 100 tokens) in the small-duplicate dataset.

IV. CONCLUSION AND FUTURE WORK

We propose an APR approach by using a pre-trained

neural network model called CodeBERT for fixing Java sim-

ple bugs. We fine-tune our model on both small and large

ManySStuBs4J datasets to find its capability to generate

patches. We found that our approach is a viable solution for

fixing bugs since it can generate fix codes for different types

of bugs and its effectiveness and efficacy is comparable with

state-of-the-art techniques. It generates fix codes in 19-72%

of the cases with different types of our datasets, which are

exactly the same as the fix codes implemented by developers.

In addition, our approach does not suffer from limitations

such as having a special token, short token length limitation,

and unknown vocabulary problem, which makes it more prac-

tical. Also, our approach does not need any post-processing

step, and it can be applied to other programming languages,

supported by CodeBERT, without any extra effort.

Furthermore, we examined the characteristics of the fixed

bugs and found that our approach can generate fixes with

variable lengths. Finally, we observe that the number of

instances of a specific bug type or the number of bugs from

a specific project in the local training dataset does not have a

negative impact on our approach effectiveness.

In future work, we intend to apply our approach to popular

datasets such as Defects4j. Also, we aim to use other evalua-

tion metrics, such as testing-based metrics, and more datasets

in other programming languages, supported by our model.



REFERENCES

[1] M. Monperrus, “Automatic software repair: A bibliogra-

phy,” ACM Computing Surveys (CSUR), vol. 51, no. 1,

pp. 1–24, 2018.

[2] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M.

White, and D. Poshyvanyk, “An empirical investi-

gation into learning bug-fixing patches in the wild

via neural machine translation,” in Proceedings of the

33rd ACM/IEEE International Conference on Auto-

mated Software Engineering, 2018, pp. 832–837.

[3] Z. Chen, S. J. Kommrusch, M. Tufano, L.-N. Pouchet,

D. Poshyvanyk, and M. Monperrus, “Sequencer:

Sequence-to-sequence learning for end-to-end program

repair,” IEEE Transactions on Software Engineering,

2019.

[4] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-

based code transformation learning for automated pro-

gram repair,” in Proceedings of the ACM/IEEE 42nd In-

ternational Conference on Software Engineering, 2020,

pp. 602–614.

[5] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei,

and L. Tan, “Coconut: Combining context-aware neural

translation models using ensemble for program repair,”

in Proceedings of the 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2020,

pp. 101–114.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

“Bert: Pre-training of deep bidirectional transform-

ers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[7] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,

L. Shou, B. Qin, T. Liu, D. Jiang, et al., “Codebert:

A pre-trained model for programming and natural lan-

guages,” arXiv preprint arXiv:2002.08155, 2020.

[8] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and

M. Brockschmidt, “Codesearchnet challenge: Evaluat-

ing the state of semantic code search,” arXiv preprint

arXiv:1909.09436, 2019.

[9] R.-M. Karampatsis and C. Sutton, “How often do

single-statement bugs occur? the manysstubs4j dataset,”

in Proceedings of the 17th International Conference on

Mining Software Repositories, 2020, pp. 573–577.

[10] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer,

“Genprog: A generic method for automatic software

repair,” Ieee transactions on software engineering,

vol. 38, no. 1, pp. 54–72, 2011.

[11] M. Martinez and M. Monperrus, “Astor: A program

repair library for java,” in Proceedings of the 25th Inter-

national Symposium on Software Testing and Analysis,

2016, pp. 441–444.

[12] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix:

Fixing common c language errors by deep learning,”

in Proceedings of the aaai conference on artificial

intelligence, vol. 31, 2017.

[13] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S.

Gulwani, “Compilation error repair: For the student

programs, from the student programs,” in Proceedings

of the 40th International Conference on Software Engi-

neering: Software Engineering Education and Training,

2018, pp. 78–87.

[14] X. B. D. Le, D. Lo, and C. Le Goues, “History driven

program repair,” in 2016 IEEE 23rd International Con-

ference on Software Analysis, Evolution, and Reengi-

neering (SANER), IEEE, vol. 1, 2016, pp. 213–224.

[15] F. Long and M. Rinard, “Automatic patch generation by

learning correct code,” in Proceedings of the 43rd An-

nual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, 2016, pp. 298–312.

[16] F. Long, P. Amidon, and M. Rinard, “Automatic infer-

ence of code transforms for patch generation,” in Pro-

ceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering, 2017, pp. 727–739.

[17] M. White, M. Tufano, M. Martinez, M. Monperrus,

and D. Poshyvanyk, “Sorting and transforming program

repair ingredients via deep learning code similarities,” in

2019 IEEE 26th International Conference on Software

Analysis, Evolution and Reengineering (SANER), IEEE,

2019, pp. 479–490.

[18] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A

database of existing faults to enable controlled testing

studies for java programs,” in Proceedings of the 2014

International Symposium on Software Testing and Anal-

ysis, 2014, pp. 437–440.

[19] H. Hata, E. Shihab, and G. Neubig, “Learning to gener-

ate corrective patches using neural machine translation,”

arXiv preprint arXiv:1812.07170, 2018.

[20] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,

O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,

“Roberta: A robustly optimized bert pretraining ap-

proach,” arXiv preprint arXiv:1907.11692, 2019.

[21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,

“Bleu: A method for automatic evaluation of machine

translation,” in Proceedings of the 40th annual meeting

of the Association for Computational Linguistics, 2002,

pp. 311–318.

[22] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush,

“Opennmt: Open-source toolkit for neural machine

translation,” arXiv preprint arXiv:1701.02810, 2017.

[23] The github repository for this

study. 2021. [Online]. Available:

https://github.com/EhsanMashhadi/MSR2021-ProgramRepair.

https://github.com/EhsanMashhadi/MSR2021-ProgramRepair

	I Introduction
	II Related Work
	III Experiment
	III-A Dataset
	III-B Design
	III-C Results
	III-C1 Answer to RQ1
	III-C2 Answer to RQ2


	IV Conclusion and Future Work

