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Abstract—Research in automatic program repair has shown
that real bugs can be automatically fixed. However, there are
several challenges involved in such a task that are not yet fully
addressed. As an example, consider that a test-suite-based repair
tool performs a change in a program to fix a bug spotted by a
failing test case, but then the same or another test case fails. This
could mean that the change is a partial fix for the bug or that
another bug was manifested. However, the repair tool discards
the change and possibly performs other repair attempts. One
might wonder if the applied change should be also applied in
other locations in the program so that the bug is fully fixed. In
this paper, we are interested in investigating the extent of bug fix
changes being cloned by developers within patches. Our goal is
to investigate the need of multi-location repair by using identical
or similar changes in identical or similar contexts. To do so,
we analyzed 3,049 multi-hunk patches from the ManySStuBs4J
dataset, which is a large dataset of single statement bug fix
changes. We found out that 68% of the multi-hunk patches
contain at least one change clone group. Moreover, most of these
patches (70%) are strictly-cloned ones, which are patches fully
composed of changes belonging to one single change clone group.
Finally, most of the strictly-cloned patches (89%) contain change
clones with identical changes, independently of their contexts. We
conclude that automated solutions for creating patches composed
of identical or similar changes can be useful for fixing bugs.

Index Terms—automatic program repair, patch, change clone

I. INTRODUCTION

Fixing the source code of software systems is an inher-

ent activity of software developers’ jobs. Research has been

conducted for decades on automated solutions, e.g., software

testing, in order to support developers in the process of finding,

understanding, and fixing bugs. A more ambitious desired

solution is the automatic repair of the source code [1], which

has been extensively explored by the research community in

the last decade, and research has shown that automatic repair

tools do fix real bugs automatically.

There are, however, several challenges not yet fully-

addressed. As an example, consider a test-suite-based repair

tool. Such a tool receives a program and at least one failing test

case as the specification of the existing undesired behavior of

the program. Then, the tool performs a change in the program

to fix the bug, but the patched program still causes test failures.

The repair tool discards the change and possibly performs

other repair attempts. However, the change could be a partial

fix for the bug, or the correct fix for the originally-exposed

bug but then another one was manifested.

The described scenario stresses the need for multi-location

bug repair, which currently has been explored by only a few

works (e.g., [2], [3]). Bugs that require changes in multiple

locations are hard to fix. A way to make research progress is

to first focus on simple cases, such as applying identical or

similar changes in different locations, i.e., cloning the changes.

Problem statement. There has been research relating code

clones and bugs (e.g., [4], [5]), but, to the best of our

knowledge, there is no study on cloned bug fix changes at

scale and a classification of them based on the similarity of

changes and their contexts.

In this paper, we attempt to shed light on the extent to

what developers apply change clones for fixing bugs. To do

so, we used the ManySStuBs4J dataset [6], which contains

single statement bug fix changes from 10,290 patches from

96 projects. We manually analyzed 3,049 multi-hunk patches,

i.e., patches composed of changes in multiple non-contiguous

locations, and annotated them with information on change

clones that were committed together. Moreover, we classified

the change clone groups in five types of change clones that

we define in this paper.

We found out that change clones are frequently present

in developer patches, appearing in 68% (2,064/3,049) of the

analyzed multi-hunk patches. Moreover, 70% (1,452/2,064)

of them are strictly-cloned patches, which are fully composed

of changes belonging to one single change clone group.

Finally, 89% (1,286/1,452) of the strictly-cloned patches con-

tain change clones with identical changes regardless of their

contexts.

Contribution. Our contribution is a large-scale study on

human-cloned changes. We conclude that automated solutions

for creating patches composed of identical or similar changes

in different locations of programs can be useful for fixing

software bugs.

Data availability. The data produced in this study is publicly

available at https://github.com/software-bugs/change-clone.

II. METHOD

A. Definitions

The first step of our study was to define change clones and

change clone types. By consulting the literature, we found

out that code clones and the well-known code clone types are

http://arxiv.org/abs/2104.02386v1
https://github.com/software-bugs/change-clone


closely related to our idea of change clones and change clone

types. However, the existing definitions on code clones cannot

be directly reused due to the difference of nature between code

clone and change clone. In this section, we motivate the need

for new definitions for change clones and their types, and then

we present the actual definitions supported by examples.

First, consider the definition of the code clone types pro-

vided by Roy and Cordy [7]:

Type I: Identical code fragments except for varia-

tions in whitespace (may be also variations in layout)

and comments.

Type II: Structurally/syntactically identical frag-

ments except for variations in identifiers, literals,

types, layout, and comments.

Type III: Copied fragments with further modifica-

tions. Statements can be changed, added, or removed

in addition to variations in identifiers, literals, types,

layout, and comments.

Type IV: Two or more code fragments that perform

the same computation but implemented through dif-

ferent syntactic variants.

Then, consider the patch presented in Listing 1, which

contains two single statement changes. The calls to the method

Long.valueOfwere removed from both statements while their

arguments were kept in the code. The changes themselves are

the same in both statements, but their contexts albeit similar

are different. Those changed lines are change clones. However,

we cannot classify them as the traditional code clones of Type

I, because the contexts of the changes are different. We also

cannot simply classify the changed lines as code clones of

Type II, because the changes are identical.

- assigneeNode.put("id", Long.valueOf(userTask.getAssignee()));

+ assigneeNode.put("id", userTask.getAssignee());

...

- candidateUserNode.put("id", Long.valueOf(candidateUser));

+ candidateUserNode.put("id", candidateUser);

Listing 1. Identical changes, similar contexts (Type B).

Code clones are identical or similar code fragments that

already exist in the source code. However, change clones can

be identical or similar in two aspects: the actual changes and

the contexts where the changes were applied. For this reason,

we define change clones and their types in this paper, taking

into account the types of code clones and the two aspects of

similarity in change clones, that is, the actual changes and

their contexts.

Definition 1: Change clone. A change clone is a source code

change that is identical or similar to another change. There

are two aspects of similarity between two changes: the actual

changes and their contexts.

Definition 2: Change clone type. A change clone type

specifies how change clones are similar.

- s += s.length() + endString + s;

+ s = s.length() + endString + s;

...

- s += s.length() + endString + s;

+ s = s.length() + endString + s;

Listing 2. Identical changes, identical contexts (Type A).

- databaseFormatter = new DatabaseFormatterOracle();

+ databaseFormatter = new DatabaseFormatterDb2();

...

- databaseFormatter = new DatabaseFormatterOracle();

+ databaseFormatter = new DatabaseFormatterPostgres();

Listing 3. Similar changes, identical contexts (Type C).

- callsPerKey *= numKey1 / (double) numRecords1;

+ callsPerKey *= (double)numRecords1 / numKey1;

...

- callsPerKey *= numKey2 / (double) numRecords2;

+ callsPerKey *= (double) numRecords2 / numKey2;

Listing 4. Similar changes, similar contexts (Type D).

- response.write(data + "<||>");

+ response.write(data + END);

...

- return message + "<||>";

+ return message + END;

Listing 5. Identical changes, not similar contexts (Type E).

We defined five change clone types, as explained as follows.

Type A: The changes are identical and their contexts are also

identical, as shown in Listing 2.

Type B: The changes are identical, and their contexts are

structurally similar, possibly containing variations in identi-

fiers, literals, types, layout, comments, and added or removed

code elements, as shown in Listing 1.

Type C: The changes are structurally similar, possibly con-

taining variations in identifiers, literals, types, layout and com-

ments, and their contexts are identical, as shown in Listing 3.

Type D: The changes and their contexts are structurally

similar, possibly containing variations in identifiers, literals,

types, layout, and comments, as shown in Listing 4.

Type E: The changes are identical, and their contexts are not

structurally similar, as shown in Listing 5.

Note that our definitions of change clone types are inspired

by the code clone types. Table I presents the relation between

them. The Types A, B, C, and D are directly supported by the

definitions of Types I, II, and III. Type E resembles the copy

and paste operations of fine-grained code elements. We do not

take into account Type IV of code clones because it involves

code semantic analysis, which is out of the scope of this work

due to its scale.

Definition 3: Change clone group. A change clone group is

a set of two or more identical or similar change clones.

TABLE I
RELATION BETWEEN CHANGE CLONE TYPES AND CODE CLONE TYPES.

Type A Type B Type C Type D Type E

Change Type I Type I Type II Type II Type I
Context Type I Type II & Type III Type I Type II –



B. Data collection

Our work is an initial effort towards understanding change

clone types in patches. We aim to do so at large scale, and

for that we need a large data source. There are datasets that

could be used in our study, such as Defects4J [8] and Bears

[9], which contain bugs and their respective patches. Those

datasets are curated and focused on providing researchers with

reproducible bugs. Naturally, they are not large (by large, we

mean a dataset with hundreds of data entries), so they are not

the ideal fit for our study. Recently, researchers created the

ManySStuBs4J dataset [6], which does not necessarily contain

reproducible bugs, but it is large in terms of bug fix changes.

Therefore, we use this dataset in our study. Note that there

are two versions of the ManySStuBs4J dataset: a small and

a large one. Our analysis (further explained in Section II-D)

is manual, therefore we use the small ManySStuBs4J dataset,

which contains 25,539 single statement changes.

C. Data preprocessing

The ManySStuBs4J dataset is organized at the level of

single statement changes. Our work is conducted at the level

of patches, since we want to investigate change clones within

patches. Therefore, we first grouped the changes by commit

(patch). We found out that the 25,539 single statement changes

are from 11,624 patches. Then, we removed patches with

duplicate diffs. This process resulted in 10,290 patches.

D. Data analysis

We manually analyzed the patches and annotated the single

statement changes that are change clones with their types.

The actual analyzed patches were selected as follows. First,

we discarded single-hunk patches, i.e., patches composed of

changes in a single contiguous location, resulting in 3,475

multi-hunk patches. We then analyzed 3,049 patches that have

at maximum six changes to keep the manual effort reasonable.

III. RESULTS

We first found out that 68% (2,064/3,049) of the analyzed

multi-hunk patches contain at least one change clone group.

Surprisingly, 70% (1,452/2,064) of these patches are strictly-

cloned patches, which are fully-composed of changes belong-

ing to one single change clone group. This means that a repair

tool could generate these patches by only applying the same

or similar changes in the same or similar contexts.

Figure 1 shows the frequency of the 2,064 patches that

contain at least one change clone group, per change clone

type. Change clones of Types A and B are the most frequent

ones by far. Change clones with identical changes regardless

of their contexts (change clones of Types A, B, and E) are

present in 89% (1,286/1,452) of strictly-cloned patches.

Figure 2 shows the distribution of number of changes per

change clone type, only considering the 1,452 strictly-cloned

patches. The distributions are similar to each other, showing

that usually the change clone groups are of size two. Change

clones of Type B are the only ones that also frequently happen

in triples and quadruples. In some exceptional cases, the
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Fig. 1. Frequency of patches per change clone type.
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Fig. 3. Distribution of number of
changed files in strictly-cloned patches.

size of change clone groups are up to six. Figure 3 shows

the distribution of number of changed files in strictly-cloned

patches per change clone type. Change clone groups are

usually in one file, which is the median of the distributions,

but they also frequently happen in two and three files for some

types of change clones, i.e., Types A, B, and E.

Finally, Table II presents the occurrence of the SStuB

(simple stupid bugs) patterns [6] in change clones. For in-

stance, there are 200 change clones that are “Change Identifier

Used” instances in the ManySStuBs4J dataset. Those changes

represent 3.7% of all change clones spotted by us, and 11%

of all changes annotated with “Change Identifier Used” in the

3,049 analyzed multi-hunk patches. The most frequent SStuB

patterns in change clones are “Wrong Function Name” and

“Change Modifier”. We observed that most changes consid-

ered as change clones are not classified with any of the SStuB

patterns, since the percentages shown in the second column

of the table are far to sum up to 100%. In fact, only 1,604

(29%) change clones are annotated with one of the 16 SStuBs.

Finally, with the numbers of the last column, we observed

that “Missing Throws Exception”, “Change Unary Operator”,

and “More Specific If” changes are more likely to be cloned,

considering their total occurrences in multi-hunk patches.

IV. DISCUSSION

A. Implications

In this study, we found out that 68% (2,064/3,049) of the

multi-hunk patches contain change clones. This percentage is

high, which indicates the need of repair tools that can produce

change clones, i.e., that can apply identical or similar changes

in different locations of the program.

Moreover, 70% (1,452/2,064) of these patches are strictly-

cloned patches. This means that a repair tool could generate

these patches by only applying the same or similar changes in

the same or similar contexts, and no other change.



TABLE II
SSTUB PATTERNS IN CHANGE CLONES.

SStuB
Change clones % Change clones
(total: 5,460) in SStuB changes

Change Identifier Used 200 (3.7%) 11%

Change Numeric Literal 13 (0.2%) 3.3%

Change Modifier 318 (5.8%) 76%

Change Boolean Literal 0 (0%) 0%

Wrong Function Name 479 (8.8%) 47%

Same Function More Args 186 (3.4%) 65%

Same Function Less Args 65 (1.2%) 65%

Same Function Wrong Caller 40 (0.7%) 24%

Same Function Swap Args 56 (1.0%) 69%

Change Binary Operator 69 (1.3%) 74%

Change Unary Operator 45 (0.8%) 85%

Change Operand 18 (0.3%) 23%

Less Specific If 32 (0.6%) 21%

More Specific If 49 (0.9%) 83%

Missing Throws Exception 22 (0.4%) 92%

Delete Throws Exception 12 (0.2%) 63%

Finally, change clones are mostly of Type A, B, and E.

Those change clone types are about identical changes being

applied in different locations of the program, regardless of

their contexts. This encourages automation for multi-hunk

repair by only applying the same change in different locations.

By only targeting Type A patches, the likely simplest case to

automatize because the same change is applied in identical

contexts, a system would fix 23% (480/2,064) of the patches

containing clones, which is 16% (480/3,049) of all multi-hunk

analyzed patches.

B. Threats to validity

There are three main threats to the validity of our study,

which are described as follows.

Manual analysis. Our work relies on extensive manual analysis

of patches. As in any manual work, we might have made

mistakes when detecting change clones and classifying them.

The manual analysis was performed by the two of us. At the

beginning of the process, we analyzed 50 patches together,

discussed, and annotated them. This was a way to minimize

the subjectivity in the task.

Bug fixing changes. ManySStuBs4J is supposed to contain

changes related to bug fixes. The authors of that dataset

spotted and removed some recurring changes that are related

to refactoring. However, it is not guaranteed that the dataset

is 100% composed by bug fix changes. This is a threat to the

validity of our study because we assume that the changes are

bug fixing.

Single statement changes. Our analysis was performed on

single statement changes. Our findings cannot be generalized

to patches containing blocks of changes.

V. RELATED WORK

Concepts. The term change clone used in this paper is related

to code clone, similarity preserving co-change (SPCO) [10],

and systematic edit. We already discussed the differences

between change clone and code clone in Section II-A. SPCO

refers to clone fragments that co-changed and their similarity

was preserved. This is similar but slightly different from

change clone, because a pair of change clones is not nec-

essarily a pair of code clones before the change was applied,

e.g., Type E change clones. Systematic edits are similar, but

not identical, changes to many locations in the source code

[11]. On the contrary, change clones can be identical.

Clones and bugs. There are studies where clones and bugs

were studied together, which are related works to ours. Steidl

and Göde [4], for instance, investigated which clone features

are relevant to predict incompletely fixed bugs. Mondal et

al. [5] investigated if the creation of code clones propagates

temporarily hidden bugs from one code fragment to another.

Studies on patch analysis for program repair. In the context

of automatic program repair, Sobreira et al. [12] performed a

manual analysis of the Defects4J patches [8] for discovering

repair actions and patterns. Among other features, they found

out a pattern in the patches whose name is “copy/paste”. Their

study is related to ours, but our study has a much larger scale

in number of patches and we only focus on change clones and

their five different types.

VI. FINAL REMARKS

In this paper, we reported on a study of change clones within

multi-hunk patches written by developers. Our findings can

guide researchers in improving the state-of-the-art of automatic

program repair.

Future work. There are several opportunities for future work.

First, an automated solution for analyzing patches, such as

PPD [13], could be created for detecting the change clone

types, which would allow us to scale up our study. The

patches annotated in this study could serve as ground-truth

for evaluating that automated detection. Second, we noted

that the existing SStuB patterns are not enough to categorize

the changes involved in clones. A future work would be

to create a broader set of SStuB patterns so that at least

most changes can be classified. Third, for change clone types

with identical changes (Types A, B, and E), it would be

interesting to investigate how universal the change was in the

source code of the analyzed project. For example, considering

Listing 1, one might wonder if all instances of the call to

Long.valueOf is deleted, or just some of them based on the

context. Fourth, since our study shows that the majority of

change clones are Type B clones, which are identical changes

with similar contexts, it would be beneficial to have a more

fine-grained analysis on how different the contexts are across

those identical changes. This would shed light on the possible

challenges and solutions in developing automatic program

repair that could generalize to different program contexts.

Finally, further studies could analyze change clones in multiple

statement changes instead of single statement changes.
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