2103.11894v1 [cs.SE] 22 Mar 2021

arxXiv

Mea culpa: How developers fix their own simple
bugs differently from other developers

Wenhan Zhu and Michael W. Godfrey
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
{w65zhu,migod} @uwaterloo.ca

Abstract—In this work, we study how the authorship of
code affects bug-fixing commits using the SStuBs dataset, a
collection of single-statement bug fix changes in popular Java
Maven projects. More specifically, we study the differences in
characteristics between simple bug fixes by the original author
— that is, the developer who submitted the bug-inducing commit
— and by different developers (i.e., non-authors). Our study
shows that nearly half (i.e., 44.3%) of simple bugs are fixed by
a different developer. We found that bug fixes by the original
author and by different developers differed qualitatively and
quantitatively. We observed that bug-fixing time by authors is
much shorter than that of other developers. We also found that
bug-fixing commits by authors tended to be larger in size and
scope, and address multiple issues, whereas bug-fixing commits
by other developers tended to be smaller and more focused on
the bug itself. Future research can further study the different
patterns in bug-fixing and create more tailored tools based on
the developer’s needs.

Index Terms—SStuBs, bug fix, empirical software engineering,
Open source, Open source development

I. INTRODUCTION

Research has shown that both bugs [1]] and bug fixes [2]]
have different patterns. For example, fixing GUI related bugs
is different from fixing database related bugs. Fixing GUI
bugs often involves manual inspection of the GUI and is hard
to automate. On the other hand, database related bugs often
require extra attention to avoid damaging the integrity of the
underlying database. A deeper understanding of how and why
bugs occur can help developers focus on the weaker aspects
of the system and its development practices to produce better
software in the long run [3]. Large software systems require
many developers to contribute in different subsystems. As the
software system evolves, the set of developers working on
the project also changes; over time, developers will often edit
code that was originally written by another developer. The
authorship of code can make a huge difference in software
quality and bug prediction [[4]-[6].

In this work, we use the SStuBs [7] dataset to better under-
stand how bug fixes differ when they are fixed by the developer
who wrote the original code (the “author”) compared to when
they are fixed by another developer. While differences in bug-
fixes have been studied from the code perspective [2], we
examine it from the developer perspective. Moreover, previous
studies on the characteristics of bug fixes have mostly based
on a small sample size from a few projects [[1]] with a few

hundred samples [8]]. Our work here uses the SStuBs dataset,
which comprises of 10,231 instances of singe-statement bug
fixes across the top 100 Java Maven projects. This allows us
to investigate bug fixes at a larger scale both in the number of
projects and in the number of samples compared to previous
studies.

In this paper, we perform an empirical study on the dif-
ferences in bug-fixing commits for simple bugs across two
dimensions: bug fixes submitted by the original author of
the code, and bug fixes submitted by other developers. We
compare the bug fixes in terms of size and scope of the
commit, and the time taken to fix. We address three research
questions:

RQ1 How often are simple bugs fixed by a different
author?
We find developers fix simple bugs from another devel-
oper’s code in 44.3% of the cases.

RQ2 Does bug fix authorship affect the bug fix time?
Developers fix simple bugs in their code faster — with
a median of time of less than one day — compared
to fixing simple bugs from another developer, with a
median time of 148 days.

RQ3 Does bug fix authorship affect the commit size of
simple bug fixes?
Simple bug fixes by the same developer have larger
commit size with a wide variation in range: we found
an interquartile range (IQR) of 734 LOC from 4 LOC
at the first quantile to 738 LOC at the third quantile.
Meanwhile, simple bug fixes by a different developer
are small and vary less: we found an IQR of 13 LOC
from 2 LOC at the first quantile to 15 LOC at the third
quantile.

Our study suggests that bug fixes by different developers
exhibit different patterns: Bug fixes by the same developer tend
to occur within a short amount of time of the original bug-
inducing commit, and are usually embedded within a larger
commit. By contrast, bug fixes by a different developer tend
to happen later in time, and the commit that fixes the bug
tends to be confined in scope to the bug fix itself.

II. DATA COLLECTION

In this work, we use the SStuBs [7] dataset which contains
simple-statement bug fixes. We use the variation that contains

10,231 bug fixes from the top 100 Java Maven projects in the
dataset as the basis for our analysis. We also provide a full
replication package for our WOI‘kEI.

We cloned every project from the list of top 100 Maven
projects from the SSmuBs dataset in Jan 2021. One of
the projects b3log/solo has moved to another location to
88250/s0lo, so we opted to use the later repository. The change
of location does not affect the history of the commit, so it does
not affect our analysis.

III. METHODOLOGY

Bug introduced

Fix integrated

master

C1 Cé

Cc4 C5
bug fixing branch
Bug fixed

Fig. 1. Illustration of separate fix and integration commit

A. Bug-inducing and bug-fixing commits

SStuBs already stores the bug-fixing commit and the last
commit where the bug still exists in the codebase using the
SZZ algorithm [9]. We go one step further and use a slightly
modified version of the SZZ algorithm to locate the authorship
of the bug-inducing and bug-fixing commits by ignoring
merging commits. As shown in Fig. when applying the
SZZ algorithm, C6 will be identified as the bug-fixing commit.
However, C6 is the branch merging commit, therefore does not
represent the actual commit that implements the bug fix. In this
case, the bug fix is implemented in another commit, C4. In
practice, this typically happens when a developer implements
the bug fix in another branch and they submit a pull request
to the codebase. When the pull request is accepted, a merge
commit will be created which adds the bug-fixing change into
the codebase. Since we are interested in the authorship of
both the bug-inducing and bug-fixing commit, we make the
distinction between the implementation and integration of the
bug-fixing and bug-inducing change. In the rest of the paper,
we use the following abbreviations to refer to the bug-fixing
related commits. Note that C'y;;, and Iy, can refer to the same
commit. This is also true for C;,quce and I;,duce.

Criz: Bug fix integration commit
Ii: Bug fix implementation commit

L]
o Cinduce: Bug induce integration commit
o Iinduce: Bug induce implementation commit

We removed 11 bug fixes where their related commits do
not exist anymore in the corresponding git repositories. The
missing commits can be caused by deleted branches in the
repository or lost from pull requests from another no longer

available source?]

Uhttps://anonymous.4open.science/r/344cf208-ea32-49f4-90fe- 59bdb6eS5d7fe/

%It is a common practice to delete no longer required forks if the changes
integrate back.

B. Author determination

With both the integration and implementation commits
available for bug-inducing and bug-fixing changes, the author-
ship of both changes can be easily determined by investigating
the commit information. In this work, we are mostly interested
in the developers writing the bug-inducing and bug-fixing
changes, so we use the authorship information from both the
implementation commits, I¢;,; and Iinquce-

C. Bug fix time

The bug fix time refers to the time between the bug-inducing
commit and the bug-fixing commit. Unlike the authorship of
the code change where we need to trace to the implementation
commit, bug fixes relative to the project development timeline.
Therefore, we use the time difference between Cj;, and
Cinduce s a measurement for the bug fix time. Specifically,
we use commit_time(Cyiy) — commit_time(Cinduce) 10
calculate the bug fix time for each bug.

D. Code Churn

In this paper, code churn is considered as the number of
lines of code (LOC) changed in a commit. Since simple
bugs in SStuBs refer to bugs that occur within a single
statement, a bug-fixing change often modifies only a single
line and thus not change the total number of lines in the
codebase. Consequently, when calculating the code churn as
lines_added — lines_removed, a large proportion of bug
fixes will have a net code churn of zero. In fact, 68.5% (i.e.,
7,013) of all simple bugs in the dataset exhibit this property.
Hence, to capture more information in the change, we use an
alternative calculation of code churn as abs(lines_added) +
abs(lines_removed) to reserve information on the total lines
modified.

IV. RESULTS

A. RQI: How often are simple bugs fixed by a different
author?

In industry, developers often need to fix bugs written by
others. This is particularly evident in open source systems,
where developers are often volunteers whose commitment and
participation levels may vary over time. In this RQ, we explore
how often simple bugs are fixed by a developer other than the
original author.

For each bug-fixing commit, by comparing 1 ¢;, and I;yquce>
we can determine whether the bug is fixed by the same devel-
oper who contributed the original code. Using our modified
version of the SZZ algorithm in tracing the implementation
commit, we find that 44.3% (i.e., 4,508) of simple bug fixes
are from developers fixing bugs in another developer’s code.
This observation shows a non-trivial amount of bug fixes
by a different developer contributing to the understanding of
developer bug-fixing activities. Researchers should be aware of
the difference in developer fixing the bug as they can represent
different workflow and therefore require different attention.

https://anonymous.4open.science/r/344cf208-ea32-49f4-90fe-59bdb6e5d7fe/

TABLE I
BUG FIXES BY AUTHOR

Total bug fixes
10,182

Fixed by same author
5,674

Fixed by different author
4,508

B. RQ2: Does bug fix authorship affect the bug fix time?

Despite the hope of producing perfect software with no
bugs, during development in practice, bugs can not be pre-
vented. Alternatively, there has been a substantial effort to
improve the bug-fixing quality and time. High-quality bug
reports [[10] for example are a useful asset for developers when
fixing bugs. In this RQ, we study how the difference in the
authorship of the bug fix affects the bug fix time.

As discussed above, we consider the bug fix time from the
project perspective. More specifically, we consider the bug fix
time as the time from when the buggy code is committed to
the code base to the time the bug fix change is committed to
the code base.

As shown in Fig. [2] simple bug fixes by different authors
(with a median of 148 days) occur much longer compared to
simple bug fixes by the same author (with a median of less
than 1 day). The large difference in bug fix time suggests these
may be inherently different patterns of development activity.
For example, the short fix time of simple bugs for the same
author might be an artifact from the normal development
process. How often and how much to commit is an on-
going argument in the development process. For example, even
with continuous integration tools (CI), it is hard to ensure
every commit of a project resembles a running state. The
enforcement of a complete project is often only ensured at
releases or pull requests. In this case, the simple bug fixes by
the same author may be a result of the artifact of the normal
development process. On the other hand, simple bug fixes by
a different author have a wider time range with a median bug
fix time of 148 days. In future work, a qualitative study can be
performed to better understand the intent and cause of simple
bugs to explain the large difference in the bug fix time between
the same and a different author.

C. RQ3: Does bug fix authorship affect the commit size of
simple bug fixes?

Following RQ2 where we discovered a difference in bug
fix time between simple bug fixes by the same and a different
author, we continue to investigate whether there are also
differences in bug fix size. In theory, each commit should
do one thing. However, this is often not the case in practice.
Developers often combine multiple things in one commit
and do not follow best practices [11]. When these situations
happen, it is often hard to untangle the commit. In this RQ,
we explore the bug fix size of simple bug fixes to explore
whether there are differences between bug fixes by the same
developer and a different developer.

Fig. |3| shows the churn of simple bug fixes by the same
author and a different author. Simple bug fixes by different

1200 —
1000 -
2 800 -
©
R
(0]
£ 600 -
%
2 400
m
200
0l ==

No Yes
Fixed by same author?

Fig. 2. Bug fix time by same author and different author

authors are typically small (e.g., a median of 6 LOC) compared
to a larger range of commit size of simple bug fixes by the
same author (with a median of 14 LOC). Bug-fixing commits
by same developers also vary by a large amount with the
interquartile range (IQR) of 734 LOC ranging from 4 LOC at
the first quantile to 738 LOC at the third quantile. Meanwhile,
simple bug fixes are smaller and have a small range by a
different developer. The IQR is only 13 LOC ranging from 2
LOC to 15 LOC from the first to third quantile. The observed
difference in commit size echoes our finding in RQ2 that
simple bug fixes by the same developer may represent a
different pattern than the bug fixes by a different developer.
The large size in the bug-fixing commit suggests that simple
bug fixes are embedded in a larger commit and therefore the
simple bug fix may not be the main purpose of the commit. On
the other hand, the bug-fixing commits by a different developer
is relatively small in size, suggesting the purpose of these bug-
fixing commits are more pin-pointed at fixing the simple bugs.

V. DISCUSSION

Our observations show that simple bug fixes have different
patterns depending on whether the bug is fixed by the same de-
veloper writing the original code. When developers are fixing
simple bugs from their code, they tend to fix the bug quickly in
a short amount of time and often include the bug fix in a larger
patch. On the other hand, bug fixes by a different developer
tends to be small and often occur a long time after the original
code is introduced. The difference in characteristics suggests
that simple bug fixes by the same author may be inherently
different from bug fixes by a different developer. We raise
the following theory on why this occurs. Our observation

1750 A
)
o 1500 1
=
'c 1250 A
§
O 1000 +
X
2 750 4
Q0
£
c 500 A
3
N
O 250 -

01 —

No Yes
Fixed by same author?

Fig. 3. Code churn in bug-fixing commits by authorship

suggests that simple bugs are fixed by the same developer
quickly with a median time of less than one day. During
development, the developer may not be able to perform large
scale testing at every stage to ensure the contributed code
functions correctly. After the rapid development phase with
many changes in source code with commits recording the
changes, simple bugs will appear and be fixed promptly. And
when the period of development is finished, some simple bugs
will be caught and fixed quickly. Therefore, resulting in our
observation of quick simple bug fixes by the same developer.
On the other hand, bug fixes by a different developer do not
go through the development cycle and therefore do not suffer
from the artifacts resulting in a more natural distribution of bug
fix times. Our observation on the larger commits containing
simple bug fixes by the same author also supports this theory.

As the bug-fixing activities are different for authors and
non-authors, future research can further investigate the intent
and cause of simple bugs. With a better understanding of why
they happen, researchers can build more intelligent tools to
help developers. For example, when predicting bugs, tools
may consider the factor on whether the piece of code have
been modified by another developer as suggested by our work
that such activity is different than modifying code by the
same developer. Another example, as one of the goals for
the SSruBs dataset is to evaluate program repair techniques,
our observations indicate that not every simple bug fix in the
dataset is a good target for program repair tools as the bug fixes
by the same author may come from artifacts during software
development and therefore do not necessarily represent a good
bug-fixing example.

V1. THREATS TO VALIDITY
A. Internal Validity

1) Determine Implementation Commit: We rely on the giz-
blame build-in command and the bug fix location information
from SStuBs to retrieve the history of source code modifica-
tion. However, the history of gif can be overwritten and the
bug fix location may not be precise from SStuBs. Therefore
yielding inaccurate implementation commit being determined
affecting our accuracy in bug fix time and code churn mea-
sured. Moreover, the bug may have been induced unrelated
to the bug fix location, hence not correctly representing the
actual bug-fixing process.

2) Determining Commit Authorship: We used the author’s
e-mail as the unique identifier for the author’s identity. How-
ever, in practice, the same developer may use different config-
uration files on different machines, resulting in two different
identifier mapping to the same developer. Consequently, during
our analysis, we may have bug fixes by the same author
categorized as different authors.

B. External Validity

Our study only looked at simple bug fixes in top Maven
projects in Java managed through gif, therefore may not
be generalised to other projects using different languages or
different version control systems. Our study also may not be
generalized to other types of bugs as study has shown not all
bugs are the same [|1]].

VII. CONCLUSION

We conducted an empirical study on how the authorship
affects simple bug fixes from the SStruBs dataset. We traced
the bug fixes to determine the developers writing and fixing the
buggy code. We observe that developers fix simple bugs from
another developer’s code in 44.3% of the cases. Our result
shows that when developers are fixing simple bugs in their
own code, they tend to fix quickly and often embed the bug
fix in a larger commit. On the other hand, simple bug fixes by
a different developer tend to occur later in time, and the bug
fix commit tends to be confined in scope to the bug fix itself.
Our observations indicate different patterns in fixing simple
bugs from the authorship. Future work on bug-fixing should
consider incorporating this information when designing tools
that better suit the developer’s needs.

REFERENCES

[1] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all bugs
are the same: Understanding, characterizing, and classifying bug types,”
Journal of Systems and Software, vol. 152, pp. 165-181, 2019.

[2] K. Pan, S. Kim, and E. J. Whitehead, “Toward an understanding of
bug fix patterns,” Empirical Software Engineering, vol. 14, no. 3, pp.
286-315, 2009.

[3] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-
grained study of authorship,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 491-500.

[4] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage based
on historical bug-fix information,” in 2014 IEEE 25th International
Symposium on Software Reliability Engineering. 1EEE, 2014, pp. 122—
132.

[5]

[6]

[7]

[8]

[9

—

[10]

(11]

M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). 1EEE, 2010, pp. 31-41.
D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia, “A developer centered bug prediction model,” [EEE
Transactions on Software Engineering, vol. 44, no. 1, pp. 5-24, 2017.
R.-M. Karampatsis and C. Sutton, “How often do single-statement bugs
occur? the manysstubs4j dataset,” in Proceedings of the International
Conference on Mining Software Repositories (MSR 2020), 2020.

M. Wen, R. Wu, Y. Liu, Y. Tian, X. Xie, S.-C. Cheung, and Z. Su,
“Exploring and exploiting the correlations between bug-inducing and
bug-fixing commits,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 326-337.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1-5,
2005.

N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, 2008, pp. 308-318.

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in 2009 6th IEEE
International Working Conference on Mining Software Repositories.
IEEE, 2009, pp. 1-10.

	I Introduction
	II Data Collection
	III Methodology
	III-A Bug-inducing and bug-fixing commits
	III-B Author determination
	III-C Bug fix time
	III-D Code Churn

	IV Results
	IV-A RQ1: How often are simple bugs fixed by a different author?
	IV-B RQ2: Does bug fix authorship affect the bug fix time?
	IV-C RQ3: Does bug fix authorship affect the commit size of simple bug fixes?

	V Discussion
	VI Threats to Validity
	VI-A Internal Validity
	VI-A1 Determine Implementation Commit
	VI-A2 Determining Commit Authorship

	VI-B External Validity

	VII Conclusion
	References

