
ar
X

iv
:2

10
3.

12
30

4v
1 

 [
cs

.S
E

] 
 2

3 
M

ar
 2

02
1

Tracing Vulnerable Code Lineage

David Reid

Department of EECS

University of Tennessee

Knoxville, USA

dreid6@vols.utk.edu

Kalvin Eng

Department of Computing Science

University of Alberta

Edmonton, Canada

kalvin.eng@ualberta.ca

Chris Bogart

Institute for Software Research

Carnegie Mellon University

Pittsburgh, USA

cbogart@cmu.edu

Adam Tutko

Department of EECS

University of Tennessee

Knoxville, USA

atutko@vols.utk.edu

Abstract—This paper presents results from the MSR 2021
Hackathon. Our team investigates files/projects that contain
known security vulnerabilities and how widespread they are

throughout repositories in open source software. These security
vulnerabilities can potentially be propagated through code reuse
even when the vulnerability is fixed in different versions of the
code. We utilize the World of Code [1] infrastructure to discover
file-level duplication of code from a nearly complete collection of
open source software. This paper describes a method and set of
tools to find all open source projects that use known vulnerable
files and any previous revisions of those files.

Index Terms—Github, CVE, Security

I. INTRODUCTION

Global coalitions of security-focused individuals and orga-

nizations often collaborate to identify and publicize security

vulnerabilities and fixes in software. One such example is

CVE [2], a canonical list of known software vulnerabilities,

curated by an international community of volunteers. As a

result, databases are published to alert actors in the affected

supply chain, from the software’s own maintainers, to the

maintainers of other packages that depend on the vulnerable

code and end users.

A notable weakness in this vulnerability tracing pipeline is

code cloning, the practice of copying functionality from one

open source project to another, without creating a traceable

dependency which has been been shown to propagate bugs [3].

Without tool-readable formal dependencies between projects

employing cloned files and the clone’s source, it is unlikely

that authors of code containing these copied files will become

aware of a critical vulnerability present in a copied file.

Comprehensive searchable open source software archives

such as the World of Code (WoC) [1] create a new opportunity

to capture these invisible copies of vulnerable code. The goal

of our hackathon project is to determine how widespread

cloned files that contain known vulnerabilities are present

throughout repositories. As such, we develop a tool to extract

possibly cloned files and provide a proof of concept demon-

stration of how hidden vulnerabilities can be revealed.

II. APPROACH

We use a four-step approach to determine how widespread

cloned files that contain known vulnerabilities are: (1) identify

vulnerable software releases, either by searching CVE [2]

or searching for the string “CVE” in software repository

commit messages; (2) identify specific revisions of specific

files in those releases, using WoC to identify which files were

repaired by the CVE fix; (3) use WoC to generate a list of all

previous versions of these files, assuming they are potentially

vulnerable, and all subsequent versions, assuming they include

the fix to the vulnerability; (4) use WoC to trace these two sets

of files across the entirety of open source software, identifying

projects that still contain the vulnerability.

Using this approach with additional analysis, we produce

three lists of open source projects containing projects which:

• Contain a known vulnerability in the current version of

the project.

• Contained a known vulnerability in a previous version,

but that vulnerability has been fixed in the current version.

• Contained a known vulnerability in a previous version,

the vulnerable files have been modified in the current

version, but it is unknown if the modifications fix the

vulnerability.

III. ALGORITHM

First, we start with the SHA-1 hash of the commit that fixes

a known vulnerability to lookup all blobs related to the commit

in WoC. Next, we use WoC to recursively find all (potentially

vulnerable) ancestors and (potentially fixed) descendants of

these blobs, using WoC’s blob-to-old-blob and old-blob-to-

blob mappings, respectively.

For each vulnerable old blob, we use WoC’s blob-to-commit

mapping to find the commits of projects that contain the blob.

It should be noted that these commits may not be the latest

change in that project and thus we are unable to determine if

the project still contains the vulnerable blob. Hence, we use

WoC’s commit-to-head mapping to obtain the head (newest)

commit and all blobs of that commit state in a project to

identify three cases: (1) if the bad blob is present in the head,

we can conclude that the project is at risk and vulnerable; (2)

if any of the “fixed” blobs are in the head commit, we presume

that the project has been fixed and is safe; (3) if neither

vulnerable or fixed blobs are present in the head commit, the

project’s status is unknown.

IV. RESULTS

We choose three cases of vulnerabilities from CVE to

demonstrate the feasibility of our methodology. In these cases

we identify CVEs in which the commit fixing the vulnerability

can be readily identified in projects and may only exist in the

http://arxiv.org/abs/2103.12304v1


TABLE I
MANY PROJECTS HAVE CLONED BLOBS FROM A VULNERABLE PROJECT BEFORE (“VULNERNABLE PROJECTS”) OR AFTER (“SAFE PROJECTS”) A FIX HAS

BEEN APPLIED. SOME (“UNKNOWN PROJECTS”) HAVE EDITED VULNERABLE FILES, WHICH MAY OR MAY NOT HAVE FIXED THE KNOWN VULNERABILITY.

Project with CVE CVE Vulnerable Blobs Vulnerable Projects Safe Projects Unknown Projects

RIOT CVE-2017-8289 2 1113 1 950
QEMU CVE-2018-17962 1 3767 21 2361
LZ4 CVE-2019-17543 1 36284 12042 7443

original project. In Table I, we present the vulnerability counts

in terms of blobs and projects. Many of the “vulnerable” or

“unknown” projects containing the vulnerable code appear to

descend from old forks of the main project, but in many

cases have not been maintained or used. However, not all are

abandoned — some have been recently forked and have recent

comments, suggesting that the known vulnerable code is still

being actively used.

A. Case 1: RIOT

RIOT [4] is a real-time multi-threading operating sys-

tem. In CVE-2017-8289, a stack-based buffer overflow

vulnerability in the ipv6_addr_from_str function in

ipv6_addr_from_str.c was described as being present

in versions prior to 2017-04-25 and was subsequently fixed

in a pull request [5]. In the fix, two files are changed:

ipv6_addr_from_str.c to fix the vulnerability and

tests-ipv6_addr.c to test the fix. Using our algorithm to

determine if the two fixed files are present, we only find 1 non-

fork project that is fixed. In contrast, there are 1,113 projects

that still contain a pre-fix revision of one of those two files

and 950 projects which contain an unknown version of one of

the files leaving its fixed status to be unknown. Notably, the

unfixed projects appear to be abandoned forks that implement

additional functionality suggesting that caution should be

used when using outdated forks that contain additional useful

functionality.

B. Case 2: QEMU

QEMU [6] is a generic and open source machine and

userspace emulator and virtualizer. It is subject to a buffer

overflow vulnerability as described in CVE-2018-17962. The

fix is a simple one line change of a size from int to

size_t in the file hw/net/pcnet.c fixed on May 30,

2018. Looking at versions of pcnet.c prior to the fixing

commit, we find 3,767 projects that contain a vulnerable

version of the file, 21 projects that contain the fixed version

of the file, and 2,361 projects that potentially contain a fixed

or vulnerable file. Even though the vulnerability in pcnet.c

was fixed more than 2 years ago, there are still many projects

that contain a vulnerable version of the file. Many of the

projects containing the vulnerable code are old forks which

do not appear to the maintained or used. However, some have

been recently forked and have recent comments, indicating

that the known vulnerable code is still being actively used

and should be fixed.

C. Case 3: LZ4

LZ4 [7] is a widely-used lossless compression algorithm.

The reference implementation of LZ4 is subject to a heap-

based buffer overflow in releases prior to 1.9.2 as described

in CVE-2019-17543. The fix is contained in 1 blob in the file

lib/lz4.c, which we are unable to find in 36,284 projects.

We find 12,042 projects that contained one of the vulnerable

blobs in the past, but now contains one of the known good

blobs and is therefore no longer vulnerable. We also find that

7,443 repositories contained the vulnerable blob at one point

in time, but the status of the file is unknown as it has since

been replaced with a file that is unrelated to the fix. The high

count of vulnerable and unknown projects among safe projects

suggest that many projects utilizing LZ4 should update their

libraries.

V. FUTURE WORK

In terms of enhancing our method, we can reduce our

search space by not assuming that all previous revisions of

a vulnerable file are vulnerable. By employing an algorithm

like SZZ unleashed [8], we can determine when a bug is

first introduced and rule out prior versions of files in our

search space. Furthermore, finer-grained detection of code

cloning, at the method rather than file level, is likely to

detect more copied vulnerabilities [3]. However, this could

be a significant computational challenge as it is difficult to

identify the programming language, legitimacy, and encoding

of a blob. We also find that searching WoC for clones of

not only the vulnerable blobs but also all ancestors of the

vulnerable blobs causes performance issues due to the large

volume of data. We note that more resources to perform more

parallelization and caching of intermediate results could also

improve performance.

In terms of suggestions to expand WoC, we note that query-

ing commit messages is still quite time consuming and not

very user-intuitive when searching for patterns of strings. We

suggest that a more powerful and flexible search mechanism

for searching commit log messages should be developed which

could help us find commit logs that contain the string “CVE”.

VI. CONCLUSION

In this paper, we present a method to trace vulnerable code

lineage in any language throughout open source software,

leveraging the World of Code infrastructure. We introduce a

tool to implement this method and find evidence of significant

reuse of outdated code that contains known vulnerabilities.

Several cases are presented to show that many projects reuse

code with known vulnerabilities, even though the vulner-

abilities have been fixed in other projects suggesting that

developers should be more aware when reusing code to avoid

using exploitable code. The code produced and our results are

available at github.com/woc-hack/hemlock.

https://github.com/woc-hack/hemlock


REFERENCES

[1] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World of
code: an infrastructure for mining the universe of open source vcs data,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 143–154.

[2] N. C. FFRDC, “CVE: Common Vulnerabilities and Exposures,” accessed
2020-12-15. [Online]. Available: https://cve.mitre.org

[3] M. Mondal, C. K. Roy, and K. A. Schneider, “Bug propagation through
code cloning: An empirical study,” Proceedings - 2017 IEEE Interna-

tional Conference on Software Maintenance and Evolution, ICSME 2017,
no. i, pp. 227–237, 2017.

[4] RIOT community, “RIOT - The friendly OS for IoT,” accessed
2020-12-15. [Online]. Available: https://github.com/RIOT-OS/RIOT

[5] M. Lenders, “ipv6 addr: provide fix for off-by-x er-
ror #6961,” accessed 2020-12-15. [Online]. Available:
https://github.com/RIOT-OS/RIOT/pull/6961

[6] QEMU team, “QEMU,” accessed 2020-12-15. [Online]. Available:
https://www.qemu.org/

[7] lz4 Contributors, “LZ4 - Extremely fast compression,” accessed
2020-12-15. [Online]. Available: https://github.com/lz4/lz4

[8] M. Borg, O. Svensson, K. Berg, and D. Hansson, “Szz unleashed: An open
implementation of the szz algorithm - featuring example usage in a study
of just-in-time bug prediction for the jenkins project,” in Proceedings of

the 3rd ACM SIGSOFT International Workshop on Machine Learning

Techniques for Software Quality Evaluation, ser. MaLTeSQuE 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
7–12. [Online]. Available: https://doi.org/10.1145/3340482.3342742

https://cve.mitre.org
https://github.com/RIOT-OS/RIOT
https://github.com/RIOT-OS/RIOT/pull/6961
https://www.qemu.org/
https://github.com/lz4/lz4
https://doi.org/10.1145/3340482.3342742


This figure "fig1.png" is available in "png"
 format from:

http://arxiv.org/ps/2103.12304v1

http://arxiv.org/ps/2103.12304v1

	I Introduction
	II Approach
	III Algorithm
	IV Results
	IV-A Case 1: RIOT
	IV-B Case 2: QEMU
	IV-C Case 3: LZ4

	V Future Work
	VI Conclusion
	References

