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Abstract
The application of machine learning (ML) libraries has
been tremendously increased in many domains, including
autonomous driving systems, medical, and critical industries.
Vulnerabilities of such libraries could result in irreparable
consequences. However, the characteristics of software secu-
rity vulnerabilities have not been well studied. In this paper,
to bridge this gap, we take the first step towards character-
izing and understanding the security vulnerabilities of five
well-known ML libraries, including TensorFlow, PyTorch,
Scikit-learn, Pandas, and Numpy. To do so, we collected 596
security vulnerabilities to explore five major factors: 1) vulner-
ability types, 2) root causes, 3) symptoms, 4) fixing patterns,
and 5) fixing efforts of security vulnerabilities in ML libraries.
The findings of this study can help developers understand
the characteristics of security vulnerabilities across different
ML libraries. To make our finding actionable, we further de-
veloped DeepMut, an automated mutation testing tool, as a
proof-of-concept application of our findings. DeepMut is de-
signed to assess the adequacy of existing test suites of ML
libraries against security-aware mutation operators extracted
from the vulnerabilities studied in this work. We applied Deep-
Mut on the TensorFlow kernel module and found more than
1k alive mutants not covered by the existing test suits, which
have been confirmed by the development team of TensorFlow.
The results demonstrate the usefulness of our findings.

1 Introduction

Nowadays, machine learning (ML) libraries have been fre-
quently used in a wide variety of domains including but not
limited to image classification [4, 22], big data analysis [27],
pattern recognition [20], self-driving [17, 30, 33] and Natu-
ral Language Processing [6, 25, 31]. These ML libraries can
be vulnerable to many attacks [21], and failures to detect
the vulnerabilities in these libraries could cause catastrophic
outcomes, such as car accidents [11].

In the past years, there have been multiple research stud-
ies to characterize ML bugs from end-users’ context in

which bugs are mainly related to API usage of ML li-
braries [12, 13, 32, 39], or developers’ context where the bugs
are located inside components or core algorithms of ML li-
braries (implementation bugs) [8, 9, 14, 32, 35]. For example,
Zhang et al. [39] focused on one typical deep learning (DL) li-
brary, i.e., TensorFlow, and studied DL application bugs built
on top of TensorFlow. Islam et al. [8] conducted the first
study on characterizing API usage bugs of five DL libraries,
including Caffe, Keras, TensorFlow, Theano, and Torch. They
provided a classification for bug types, root causes, impact,
and the DL development stage where bugs occur. Despite
these efforts, the characteristics of software security vulner-
abilities in ML libraries have not been well studied, which
leaves unanswered the more directly relevant questions:

What kinds of security vulnerabilities are found in ML li-
braries? What are the root causes of security vulnerabilities
in ML libraries? What symptoms do these security vulnerabil-
ities have? Are there any fixing patterns for resolving these
security vulnerabilities? And What are the efforts required to
fix these security vulnerabilities?

Understanding such characteristics of security vulnerabili-
ties in ML libraries has the potential to foster the development
of secure and reliable ML platforms.

To fill the above research gap, we take the first step to-
wards characterizing and understanding security vulnerabili-
ties in ML libraries. More specifically, we conduct the first
comprehensive study to explore five significant factors: 1)
vulnerability types, 2) root causes, 3) symptoms, 4) fixing
patterns, and 5) fixing effort of security vulnerabilities in five
well-known ML libraries including TensorFlow [2], Keras [1],
PyTorch [26], Scikit-learn [28], Pandas [24], and Numpy [10].
For our study, we consider all available commits when we
conduct this study on Sept. 1st, 2021, to collect security vul-
nerabilities in each ML library. We first searched commit
messages with keywords that are related to vulnerabilities
(details are in Section 2.1) to identify commits that fixed se-
curity vulnerabilities. As a result, 4K commits are collected.
We then manually check each commit collected in the first
step and identify and characterize vulnerabilities from it by
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following systematic processes (details are in Section 2.2). In
total, we obtained 596 unique security vulnerabilities from
the studied five ML libraries. In this paper, we are to address
the following research questions:

RQ1: What types of vulnerabilities exist in ML li-
braries? During the development and maintenance of ML
libraries, developers often have to deal with various vulnera-
bilities of different types. To better understand vulnerabilities,
this research question categorizes vulnerabilities and demon-
strates their frequencies and distributions for each library. In
this paper, we categorize vulnerability types based on Com-
mon Weakness Enumeration (CWE)1.

RQ2: What are the root causes for vulnerabilities in
ML libraries? To understand the nature of ML vulnerabili-
ties, it is critical to identify the root cause, which helps de-
velopers explore potential approaches to avoiding and fixing
vulnerabilities. This research question examines the detailed
root causes of vulnerabilities among the studied ML libraries.

RQ3: What are the symptoms of vulnerabilities in ML
libraries? This research question categorizes the symptoms
or effects of different vulnerabilities in ML libraries as under-
standing the symptoms can help developers assess the impact
of vulnerabilities and triage them appropriately. In addition,
the symptoms can help developers identify vulnerabilities
quickly during software testing.

RQ4: What are the fixing patterns for vulnerabilities
in ML libraries? Fixing patterns provide general solutions
for resolving specific types of vulnerabilities. In this research
question, we study the patches of each vulnerability to identify
and analyze its fixing resolution. Common fixing resolutions
across multiple vulnerabilities are grouped into different fix-
ing patterns.

RQ5: What are the efforts required for fixing vulner-
abilities in ML libraries? Fixing effort can help measure
how much effort the development team has allocated to fix
vulnerabilities. In this paper we are following existing stud-
ies [8,18,34] and use the line of code changed to measure the
fixing effort of vulnerabilities.

This paper makes the following contributions:

• To the best of our knowledge, we conduct the first em-
pirical study to characterize and understand software
security vulnerabilities in ML libraries.

• We provide a set of practical guidelines to help machine
learning development teams to develop reliable and se-
cure ML libraries.

• We develop DeepMut, an automated mutation testing
tool for ML libraries as a proof-of-concept application
of our findings. DeepMut is developed to evaluate the
adequacy of the existing test suite of ML libraries against
security-aware mutation operators extracted from the
studied vulnerabilities in ML libraries.

1https://cwe.mitre.org/

• We have applied DeepMut on the TensorFlow kernel
module and found more than 1k alive mutants that are
not covered by the existing test suite of TensorFlow.

• We release the dataset and source code of our experi-
ments to help other researchers replicate and extend our
study2.

2 Methodology

2.1 Data Collection

This paper studies five widely used ML libraries, including
TensorFlow, PyTorch, Scikit-learn, Pandas, and Numpy. The
reason is that the studied ML libraries cover the current in-
dustrial machine learning practice and represent the critical
aspects of machine learning developments. For example, Ten-
sorFlow is low-level, while PyTorch provides high-level APIs
to hide the low-level details. Scikit-learn is a machine learn-
ing library with hundreds of APIs to build various machine
learning models. Pandas and Numpy are two famous data
analysis and visualization tools focusing on working with
arrays and data frames. Thus, studying these libraries can
help provide a comprehensive understanding of software vul-
nerabilities in ML libraries and further assist practitioners to
build more reliable and secure ML libraries. We excluded
some popular deep learning libraries, such as Caffe, Keras,
and Theano, from our experiment subjects. The reason is
that we cannot get sufficient historical security vulnerabilities
from their repositories, i.e., we could only get 15 security-
related commits from Keras’s GitHub repository. For each
library, we consider all available commits when we conduct
this study on Sept. 1st, 2021, to collect security vulnerabilities.
Table 1 shows the statistics of our experiment projects. Our
vulnerability collection process consists of the following two
steps.

Step 1: Vulnerability fixing commit collection. We first
extracted all the public CVEs of each experimental project
available in the National Vulnerability Database (NVD) on
Sept. 1st, 2021. We consider commits whose commit mes-
sages contain these CVEs as the fixing commits to these
vulnerabilities by following existing studies [36, 37]. Note
that, as reported in existing studies [29, 38], not all security
vulnerabilities have CVE identifiers. For example, in our data
collection process, we found that four of the five experimental
subjects (i.e., PyTorch, Scikit-Learn, Pandas, Numpy) do not
have CVEs so far. To cover all possible vulnerabilities, we
used the heuristical approaches proposed by Zhou et al. [42],
to identify the security fixing commits. Specifically, we follow
their study and use their designed regular expression rules, in-
cluding possible expressions and keywords related to security
issues, to collect security vulnerability fixing commits. As a

2https://cse19922021.github.io/Deep-Learning-Security-Vulnerabilities/
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Table 1: Statistics of experiment subjects in this study

ML libraries #CVEs #commits # Vulnerability Language
Tensorflow 36 1,197 250 C++/Python
PyTorch N.A 563 75 C++/Python
Sickit-Learn N.A 325 37 Python
Pandas N.A 869 84 Python
Numpy N.A 1,198 150 C/Python
Overall 36 4,152 596 -

result, we collected 4,152 fixing commits on the five studied
projects (details are given in Table 1).

Step 2: Vulnerability Identification. Our heuristic ap-
proaches to vulnerability fixing commit collection might con-
tain noise as the approach can introduce false positives [42].
In addition, an existing study showed that one security vul-
nerability could have multiple fixing commits, which need
to be grouped for having a complete picture of the involved
vulnerability [37]. Thus, to reduce noise and make our dataset
more accurate, we further conduct a manual analysis to group
possible fixing commits and identify unique security vulner-
abilities on the data collected in step 1. In particular, the
authors separately inspected each candidate vulnerability fix-
ing commits to identify vulnerabilities, and they investigated
inconsistent cases together to reach a consensus. Finally, we
identified 596 unique vulnerabilities from the 4,152 fixing
commits collected in Step 1.

2.2 Data Labeling

In our study, we analyzed each vulnerability from multiple
aspects: 1) vulnerability type, 2) root cause, 3) symptom, 4)
fixing pattern, and 5) fixing effort. Please note that some ex-
isting studies on analyzing general software bugs in machine
learning libraries have also provided taxonomies for these
aspects [13,32]. In this work, we did not adopt corresponding
taxonomies from these studies. The reason is that existing
studies merely focus on general software bug characteristics
of ML libraries either from end-user or developers’ perspec-
tives. In other words, they do not provide categorizations for
vulnerabilities of ML libraries. As a result, it is not valid to
adopt their classifications since general software bugs’ char-
acteristics and security vulnerabilities can be significantly
different.

In our labeling process, two authors work together to re-
view each identified vulnerability. In particular, they check the
related artifact of this vulnerability, including fixing commits,
developer discussion, and pull requests to carefully under-
stand the vulnerability and provide the following information
for each vulnerability: 1) vulnerability type, 2) root cause, 3)
symptom, 4) fixing pattern, and 5) fixing effort. The two au-
thors discussed the disagreements together during the labeling
process until all information was extracted consistently.

3 Result Analysis

In this section, we present and discuss our analysis results to
address the five research questions we asked in Section 1.

3.1 RQ1: Vulnerability Types

The taxonomy of vulnerability types is shown in Figure 1. It
is organized into five high-level categories (i.e., Memory, Re-
source, Numeric, Buffer, Concurrency) and involves more
than 19 different CWEs covered by 567 (94.6%) of the 596
vulnerabilities. The remaining 32 (5.34%) vulnerabilities ap-
pear infrequently and do not belong to any particular vulnera-
bilities, and are included in Others category.
Numeric. Vulnerabilities in this category mostly deal with
improper calculation or conversion of numbers, accounting for
184 (30.8%) of the vulnerabilities. It mainly has four types
of CWEs: 1) Integer Overflow (CWE-190), 2) Insufficient
Precision or Accuracy of a Real Number (CWE-1339), 3)
Division by Zero (CWE-369), and 4) Integer Underflow (CWE-
191).
Memory. This category contains vulnerabilities consuming
GPU memory abnormality, accounting for 179 (30%) of the
vulnerabilities. Specifically, it contains the following five
types of CWEs: 1) Missing Release of Memory after Effective
Lifetime (Memory Leak (CWE-401), 2) Null Pointer Deref-
erence (CWE-476), 3) Infinite Loop (CWE-835), 4) Double
Free (CWE-415) , and 5) Use After Free (CWE-416).
Buffer. This type of vulnerability corresponds to the handling
of memory buffers within a software system, accounting for
89 (14.9%) of the vulnerabilities. It mainly covers five types of
CWEs: 1) Out of Bound Read (CWE-125), 2) Stack Overflow
(CWE-121), 3) Heap Buffer Overflow (CWE-122), 4) Buffer
Overflow (CWE-120), and 5)Out of Bound Write (CWE-787).
Resource. Vulnerabilities in this category correspond to re-
source initialization or validation issues, accounting for 66
(11%) of the vulnerabilities. It consists of three types of
CWEs: 1) Use of Uninitialized Resource(CWE-908), 2) Im-
proper Input Validation (CWE-20), and 3) File Descriptor
Leak (CWE-403).
Concurrency. Vulnerabilities in this category relate to con-
current access of resources and their locking applied by mul-
tiple threads, accounting for 46 (11.5%) vulnerabilities. It
consists of two types of CWEs: 1) Race Condition (CWE-
362) and 2) Deadlock (CWE-833).

Figure 2 shows the distribution of each type of vulnerabil-
ity in the studied five libraries. As we can see, Numeric and
Memory are the two dominating types across all libraries.
Specifically, Numeric is the most common type of vulnera-
bility among libraries except Numpy library, where Memory
Leak is the most common vulnerability. We demonstrate dis-
tribution of subcategories for Numeric and Memory in Table
2 and Table 3. As shown in Table 2, Integer Overflow (CWE-
190) is the most common vulnerability type among other
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Figure 1: The taxonomy of vulnerability types studied in this work.
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Figure 2: The distribution of software vulnerabilities in dif-
ferent ML libraries.

subcategories for all libraries. This states that Integer Over-
flow in the studied ML libraries is critical, and developers
need to pay more attention to this type.

Finding 1: Vulnerabilities in the categories of Nu-
meric and Memory are most frequent vulnerabilities
across all libraries, and Integer Overflow is the most
common vulnerability in the five ML libraries.

3.2 RQ2: Root Causes
The taxonomy of root causes of studied vulnerabilities in ML
libraries is shown in Figure 3, which is organized into five
high-level categories including Data Type Errors, Memory

Table 2: Subcategories of Numeric.

Library Integer Overflow Insufficient Precision Division by Zero Integer Underflow
Tensorflow 63 4 2 1

PyTorch 18 6 3 0
Sickit-learn 8 4 7 3

Pandas 34 3 3 1
Numpy 12 10 2 0

Sum 135 27 17 5

Table 3: Subcategories of Memory.

Library Memory Leak Null Pointer Dereference Infinite Loop Double Free Use After Free
Tensorflow 6 25 19 1 1

PyTorch 2 7 5 2 0
Sickit-learn 8 0 2 0 0

Pandas 5 6 3 1 0
Numpy 65 10 5 2 4

Sum 86 48 34 6 5

Errors, API Errors, Business Logic Errors, and Concur-
rency Errors covered by 558 (91.9%) of the 596 vulnera-
bilities. The remaining 48 (5.1%) root causes have no clear
indication about their types, and hence we group them in
Others category.
Data Type Errors. Root causes in this category mostly deal
with range or precision issues of conventional data types de-
fined by developers accounting for 213 (35.7%) of vulnera-
bilities. Subcategories include 1) Numerical Precision Error:
When developers define variables or tensors with a limited or
large range, 2) Tensor Property Issue: When a thread or a pro-
gram maintains tensors inappropriately, 3) Using Improper
Data Type: When developers have confusion about using data
types, e.g., using int32 instead of uint32, 4) Incorrect Type
Conversion: When a developer incorrectly convert data types
together, e.g., implicit type conversion of float to double.
Memory Errors. Root causes in this category mainly deal
with memory-related vulnerabilities accounting for 29.5% of
vulnerabilities. The subcategories of this root cause are includ-

4



Figure 3: Taxonomy of root causes in ML libraries.

ing 1) Invalid Memory Access: When processes try to access
memory locations filled with null values and already been
deleted or freed, 2) Improper Memory Management: When
a developer has confusion in memory management, either
misuse memory release statement or forget to release mem-
ory after its lifetime, 3) Out of Bound Read: When processes
read information from other memory locations, and 4) Stack
or Buffer Size Issue: When developers define the stacks or
buffers with inappropriate sizes.
API Errors. This root cause category is due to inconsisten-
cies in updating or using APIs accounting for 58 (11.4%) of
total records. Subcategories include 1) API Misuse: When
developers mistakenly use a specific API, e.g., passing pa-
rameters in wrong orders, lack of using optional parameters,
mistakenly using optional parameters, etc., 2) Using Wrong
API: When developers mistakenly use improper APIs, 3) Mali-
cious Parameters: When developers pass malicious or invalid
parameters to API calls which are exploitable by attackers.
Attackers can exploit these parameters by crafting particu-
lar inputs to take control of the software system, and 4) API
Version Issue: When developers mistakenly use either wrong
versions of APIs or outdated ones.
Business Logic Errors. This root cause accounts for 58
(9.7%) of vulnerabilities. It includes 1) Improper Exception
Handling: When developers incorrectly handle exceptional
conditions leading to termination of the software during nor-
mal executions of the software, 2) Wrong Order of Execution:
When a set of steps or components were inappropriately ex-
ecuted, 3) Improper String Manipulation: When developers
parse string variables or absolute and relative addresses incor-
rectly.
Concurrency Errors. This root cause category involves con-
current access of resources in a shared environment by mul-
tiple threads due to improper resource locking, releasing, or
simultaneous resource access accounting for 33 (5.5%) vul-
nerabilities. Subcategories are 1) Missing Locking Statement:
When developers forget to lock resources which mostly result
in race condition or deadlock errors, 2) Improper Resource
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Figure 4: Distribution of root causes across libraries

Locking: When developers use locking statements improp-
erly on program resources, 3) Improper Resource Releas-
ing: When developers release locked resource inappropriately,
which can result in deadlock or race condition errors.

Figure 4 shows the distribution of root causes of vulnerabil-
ities in different libraries. As can be seen, Data Type Errors
is the most common root cause of vulnerabilities across the
studied ML libraries. Table 4 further shows the distribution
of subcategories of Data Type Errors across the studied ML
libraries. As we can see, Numerical Precision Error is the
major subcategory because the studied ML libraries mostly
rely on tensor level and array level computations. The com-
putations involve quantization during training which means
millions of parameters are multiplying or adding together
in integer or float types to make models as smaller as possi-
ble. Tensor Property Issue is the second most common root
cause of vulnerabilities. The reason is that optimization and
quantization operations are mostly done with tensors.

Memory Errors is the second most common root cause
of vulnerabilities across the studied ML libraries. Table 5
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Table 4: Subcategories of Data Type Errors

Library NPE1 TPI2 UDP3 ITC4

Tensorflow 34 47 13 6
PyTorch 17 11 5 2
Sickit-learn 12 0 1 1
Pandas 21 2 4 9
Numpy 10 13 1 4
Sum 94 73 24 22

1 Numerical Precision Error | 2 Tensor Property Issues | 3 Using
Improper Data Type | 4 Incorrect Type Conversion

Table 5: Subcategories of Memory Errors

Library IMA1 IMM2 SBSI3 OOBR4

Tensorflow 41 4 7 5
PyTorch 17 1 1 0
Sickit-learn 0 6 0 1
Pandas 8 3 1 3
Numpy 13 58 4 3
Sum 79 72 13 12

1Invalid Memory Access | 2Improper Memory Management |
3Stack or Buffer Size Issue. 4Out of Bound Read|

further shows the distribution of Memory Errors. As you
can see, Invalid Memory Access is the major root cause
of memory-related vulnerabilities. An invalid memory is a
memory that is undefined, uninitialized, deleted, containing
null values, corrupted values, erased, etc, Improper Memory
Management is the second most common subcategory of
Memory Errors. Improper Memory Management is the
major root cause of the Numpy library, which is written in
C language and memory management is the responsibility
of developers. Developers of Numpy often forget to release
the allocated memory address when its effective lifetime is
finished.

Finding 2: Data Type Errors and Memory Errors
are the most common types of root cause of vulnera-
bilities accounting for 64.2% of vulnerabilities in the
studied ML libraries respectively. Numerical Preci-
sion Error is the dominating subcategory.

API Errors are the third most common root causes of
vulnerabilities in the studied ML libraries. A more detailed
distribution of subcategories are shown in Table 6. As you
can see, Using Wrong API is the most common subcategory.
The second common subcategory is API Misuse where de-
velopers have a hard time using APIs, e.g., passing wrong
parameters, lack of using optional parameters, and improp-
erly using optional parameters. Malicious Parameters are
also common where developers give unsafe inputs to API
calls which attackers can exploit. Sometimes developers use
outdated or invalid APIs, which are the root cause of vulner-

Table 6: Subcategories of API Errors

Library UWA1 AM2 MP3 AVI3
Tensorflow 3 3 3 5
PyTorch 2 1 1 1
Sickit-learn 2 3 3 0
Pandas 3 4 7 1
Numpy 11 9 4 2
Sum 21 20 18 9
Sum 21 20 18 9

1 Using Wrong API | 2 API Misuse | 3 Malicious Parameters | 4

API Version Issue

Figure 5: Taxonomy of symptoms in the studied ML libraries

abilities in the studied ML libraries. We categorize them as
API Version Issue.

API Errors differ noticeably compared to traditional soft-
ware systems. According to a current study on API Errors
conducted by Amann et al. [5], missing and redundant API
calls are the most frequent errors. At the same time, these
are the least errors in the studied ML libraries. We conclude
that developers of the studied ML libraries have difficulty
understanding which APIs they should use, how to use them,
and make them secure.

Finding 3: API Errors in the studied ML libraries
cover more corner cases that are exploitable by attack-
ers compared to traditional software systems.

3.3 RQ3: Symptoms
The taxonomy of symptoms of studied vulnerabilities in ML
libraries is shown in Figure 5, which is organized into six
categories including Segmentation Fault, Crash, and Unex-
pected Behaviour, Resource Consumption, and Hang, cov-
ered by 582 (97.6%) vulnerabilities. The remaining 14 (2.3%)
symptoms have no clear indication about their outcome, and
hence we group them in Others category.
Unexpected Behavior: If the library is producing results or
behaving that is not expected. For example, in this Integer
Overflow vulnerability from sklearn library3 where pk ∗qk
returns inf instead of float because of exceeding int32 bits
limits during multiplication.

3https://github.com/scikit-learn/
scikit-learn/commit/622f912095308733ddfe572a619b1574b9da335e
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Figure 7: Mapping of root causes to symptoms.

Other symptoms includes Segmentation Fault: When a
program outputs core dumped in the output which is the
symptom for segmentation fault4, Resource Consumption:
Exhaustion of available resource, e.g., increasing memory
usage because of uncontrolled or improper allocation of main
memory. Hang: This means that a program keeps running for
a long period without termination or responding, and Crash:
When a program or process terminates unexpectedly at run-
time.

Figure 6 demonstrates the distribution of symptoms across
different libraries. As you can see, the most frequent symptom
is Segmentation Fault accounting for 27.3% of vulnerabili-
ties. We also draw a mapping from root causes to symptoms
to interpret what is the outcome of vulnerabilities as shown
in Figure 7. It is observable from Figure 7 that vulnerabilities
caused by Memory Errors, Data Type Errors, and API Er-
rors often have Segmentation Fault as their symptom. Also,
we can see the same pattern for Crash symptoms. Often

4https://stackoverflow.com/questions/49092527/
illegal-instructioncore-dumped-tensorflow

developers can extract descriptive information from Segmen-
tation Fault and Crash. One possible usage scenario of the
extracted information is that they can parse stack traces of
failed test suits to analyze the exact root causes of the vulner-
ability and how to locate them. Also, Developers do not need
to develop test oracles in order to understand Segmentation
Fault and Crash symptoms.

Finding 4: Segmentation Fault and Crash are the
most common symptoms of vulnerabilities accounting
for 27.3% and 22.1% of vulnerabilities respectively.
These symptoms can help developers of the studied
ML libraries to understand and locate the root cause
of vulnerabilities with their descriptive information.

Unexpected Behaviour is the third most common symp-
tom of vulnerabilities accounting for 21.3% of vulnerabilities.
As shown in Figure 7, often Unexpected Behaviour is the
symptom of vulnerabilities caused by Data Type Errors.
Hence, developers of the studied ML libraries need to equip
the existing test suite with test oracles to understand that ML
libraries’ components are working as they are expected to do
so.

Finding 5: Unexpected Behaviour is the third most
common symptom of vulnerabilities accounting for
21.3% of vulnerabilities. Its prevalence might sug-
gest that developers need to develop test oracles to
understand that the studied ML libraries meet their re-
quirements defined by either end-users or developers.

3.4 RQ4: Fixing Patterns
The taxonomy of fixing patterns of ML vulnerabilities is
shown in Figure 8, which is organized into six high-level
categories including Add Checkers, Resolve Data Type Er-
rors, Resolve Memory Errors, Resolve API Errors, Re-
solve Concurrency Errors, and Modify Business Logic Er-
rors covered by 535 (89.7%) of the 596 vulnerabilities. The
remaining 61 (10.2%) fixing patterns have no clear indica-
tion about their types, and hence are included in the Others
category.
Add Checkers. Fixing patterns in this category are mainly
about the addition of either library-specific checkers or con-
ventional checkers to fix vulnerabilities, which cover 176
(29.5 %) vulnerabilities. Subcategories are 1) Add Checker
for Tensors Property: This is the most common fixing pattern
where developers use if conditions or library-specific check-
ers to check tensor or arrays properties, e.g., shapes, ranks,
values, or elements.

2) Add Checker for Overflow: This fixing pattern is mainly
used to fix overflow vulnerabilities where developers either

7



Figure 8: Taxonomy of fixing patterns in ML libraries.

add if modules and library-specific checkers or add functions
for mathematical operations instead of using explicit mathe-
matical operators, 3) Adding Checker for Null Pointer Derefer-
ence: Developers often add checkers either using if conditions
or library-specific checkers to fix null pointer dereferences,
and 4) Adding Checker for Recursion: Sometimes an infinite
loop occurs due to endless recursion calls. So, developers need
to detect recursions that consume stack space, and checkers
are added to fix these types of vulnerabilities.
Modify Business Logic: This type of fixing pattern is related
chiefly to modifying the existing control flows, functions, or
classes to fix vulnerabilities that have incorrect logic. Sub-
categories are 1) Improved Exception Handling: When the
program crashes, it is necessary to record the error or warn-
ing message to help developers with debugging. This pattern
adds missing error reporting or modifying existing ones that
are defective, 2) Modifying Function Return Value: This pat-
tern mainly changes function return values to avoid potential
mismatches in the data flow of a program for fixing vulnera-
bilities, 3) Modify Order of Execution: Developers change the
location of semantically related statements to fix vulnerabili-
ties, 4) Avoid Stack Overflow on Deep Graphs: This pattern is
used when developers try to prevent stack overflow caused by
small stack size or deep computation graphs created in run-
time, 5) Modify Index Calculation: This pattern is used to fix
vulnerabilities related to incorrect indices of data collection
such as arrays or tensors, and 6) Close File Handler to Prevent
File Leak: It is used to fix file descriptor leak vulnerability.
Resolve Data Type Errors: Fixing patterns in this category
focus on resolving vulnerabilities related to data types, which
cover 16.1 % of the studied ML vulnerabilities. Subcategories
include: 1) Modify Data Type: is used to fix vulnerabilities
involving incorrect data type defined and used, 2) Increase

Integer Type Range: is used to fix vulnerabilities that are
caused by the limited range of integer types for preventing
integer overflow or integer truncation, e.g., using int64 instead
of int32, 3) Handle Numerical Precision: is used to resolve
data type precision issues, e.g., normalization of matrix values
during float 16 bits model training, 4) Convert Integer Sign:
is used to convert data type signs to prevent integer overflow
or underflow, e.g., using size_t instead of int32.
Resolve Memory Errors. Fixing patterns in this category
relate to memory management efforts, which can help fix 74
(12.4%) of total vulnerabilities. Subcategories are 1) Manage
Memory Release: is used to fix vulnerabilities related to in-
correct or inappropriate memory allocations and 2) Resource
Initialization: when developers initialize tensors, variables, or
data types to fix vulnerabilities.
Resolve API Errors: Fixing patterns in this category are
mainly used to fix vulnerabilities introduced by inappropri-
ate API usages, which help fix 56 (9.3 %) of vulnerabilities
studied in this paper. The detailed subcategories are 1) Us-
ing Proper API, 2) Update API Usage, and 3) Update API
Version.
Resolve Concurrency Errors. Fixing patterns in this cate-
gory are used to fix vulnerabilities related to concurrency
issues resulting in deadlock or race condition errors. Subcate-
gories include 1) Add Locking Mechanism, 2) Modify Locking
Mechanism, and 3) Remove Locking Mechanism.

Figure 10 shows the distribution of fixing patterns across
different libraries. As can be seen, Adding Checkers is the
most common fixing pattern in ML libraries, accounting
for 96, 24, 6, 32, 18 vulnerabilities of TensorFlow, PyTorch,
Scikit-Learn, Pandas, and Numpy, respectively. In total, 29.5%
of vulnerabilities can be fixed by this pattern. We further show
the breakdown of Adding Checkers regarding the distribu-
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Figure 9: Mapping of root causes to fixing patterns.
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Figure 10: Distribution of fixing patterns across different
libraries.

tions of subcategories in Table 7. As we can see, Adding
Checker for Tensor Property is the principal subcategory that
covers 102 vulnerabilities.

Finding 6: Adding Checkers is the most common
fixing pattern across the studied ML libraries account-
ing for 17.9% of vulnerabilities.

Figure 9 illustrates the mapping of root causes to their
corresponding fixing patterns. As shown in the figure, Mem-
ory Errors have three common fixing patterns including Im-
proper Memory Management, and Add Checker for Ten-

Table 7: Subcategories of Add Checkers

ACTP1 ACFO2 ACNP3 ACR4

Tensorflow 67 13 16 0
PyTorch 13 7 3 1

Sickit-learn 1 4 1 0
Pandas 7 10 1 0
Numpy 14 1 13 4

Sum 102 35 34 5
1 Add Checker for Tensors Property | 2 Add Checker for Overflow
| 3 Add Checker for Null Pointer Dereference| 4 Add Checker for
Recursion

sor Property, Add Checker for Null Pointer. The major
fixing pattern for Memory Errors is Memory Release Man-
agement where developers use memory management APIs to
free allocated memories after their effective lifetime. This pat-
tern is mostly used by the Numpy library community which
is developed in C language and developers should take care
of memory management manually. This Memory Leak vul-
nerability5 perfectly explains how developers use Memory
Release Management pattern to resolve the problem. In this
vulnerability, the slice object is not decref’d, hence the devel-
oper calls Py_DECREF() api with slice as the parameter to
fix the Memory Leak problem.

The second fixing pattern which resolves Memory Errors
is Add Checker for Tensor Property. Often, tensor proper-
ties can be problematic if developers do not employ appro-
priate checkers, either project-specific or general checkers.
This vulnerability is a good example of how developers use
checkers to prevent Infinite Loop. In this case, Infinite Loop
occurs because num_cols exceeds 231−1 which is the max-

5https://github.com/numpy/numpy/commit/
4e19f408de900f958441af4ec8a458f5ce6473eb
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imum value an int32 bits variable can take. The developer
uses two checkers of OP_REQUIRES kind to guard against
Infinite Loop via checking the dimensions of the input data
must be less than or equal to 231−1.

Figure 9 further shows that Add Checker for Tensor
Property is the major fixing pattern to fix Data Type Errors.
Often lack of checking tensor properties is the root cause of
Data Type Errors, e.g. Integer Overflow. In this example6

which is Integer Overflow, there is no checker on data[axis]
to make sure it does not exceed in32 bits range limits. The
developer overcomes the problem by adding a checker of
TF_LITE_ENSURE on line 76 of tensorflow/lite/kernels/-
concatenation.cc.

Finding 7: Lack of Checking Tensor Property is a
common cause of Data Type Errors and Memory
Errors in the studied ML libraries. Developers can
overcome the vulnerabilities by using Add Checker
for Tensor Property as the fixing pattern.

3.5 RQ5: Fixing Effort
The taxonomy of fixing effort of the studied ML vulnera-
bilities is shown in Figure 11, which is organized into four
categories. We adopted the categories from [8,18,34] to show
the scales of fixing effort: 1) Micro repair: 0-50 added or
deleted lines, 2) Small repair: more than 50 added or deleted
lines, 3) Medium repair: 50-200 added or deleted lines, and
4) Large repair: more than 200 added or deleted lines. As
shown in Figure 11, 73.9% of vulnerabilities can be fixed
by micro and small fixing efforts. Also, Figure 12 further
shows the distribution of fixing scales across different root
causes. As we can see from the figure, the distributions of
fixing effort of vulnerabilities of different root causes do not
have dramatic difference, which may suggest the root cause
of a vulnerability does not affect its fixing effort.

Finding 8: Most (73.9%) vulnerabilities in the studied
ML libraries can be fixed in small scales. Fixing effort
of a vulnerability is not related to its root cause.

4 Implications

Our study reveals several interesting findings that can serve
as practical guidelines for both industry and academic com-
munities to improve software security development for ML
libraries.
Avoid Data Type Errors. According to our root cause analy-
sis and finding 2 in Section 3.2, we conclude that Data Type

6https://github.com/tensorflow/tensorflow/commit/
4253f96a58486ffe84b61c0415bb234a4632ee73

Figure 11: Taxonomy of fixing effort in the studied ML li-
braries.
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Errors are the most common root cause of vulnerabilities. As
a result, we suggest developers pay attention to 1) the range
of integer variables they define, e.g., developers should define
int64 bits instead of int32 bits to prevent overflow or integer
truncation, 2) developers should pay attention to type con-
versions as it is one of the main reasons for integer overflow,
and 3) developers should use checkers (either library-specific,
e.g., OP_REQUIRES, or if modules) to make sure that there
are no vulnerabilities related to tensor properties, i.e., shapes,
ranks, values, or elements.
Always Initialize Variables. Our analysis shows that 7.8 %
of vulnerabilities are due to initialization issues, e.g., lack of
initializing tensors or variables. It is always better to initialize
variables or any resource during the development of ML tasks.
Apply Dynamic Analysis Tools to Avoid Memory Related
Vulnerabilities. We find that Resource Consumption is the
fourth most common symptom of vulnerabilities account-
ing for 19.4 of vulnerabilities. Often, understanding whether
libraries are suffering from Resource Consumption is chal-
lenging since test suits can not profile resource usage. More-
over, we find that Memory Errors is the second most root
cause of vulnerabilities in ML libraries. The main reason
for Memory Errors is memory release management, where
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Figure 13: Architecture of DeepMut.

developers forget to release the allocated memories. Hence,
we strongly suggest developers of studied ML libraries use
dynamic checkers to detect and avoid memory-related vulner-
abilities by applying memory checkers, e.g., Valgrind7. We
have manually checked that Valgrind can detect most half
of the Memory Errors related vulnerabilities, which sug-
gests the importance of using dynamic analysis tools to avoid
memory-related vulnerabilities.
Use API Usage Checker. As shown in Figure 3, API Er-
rors is also a common root cause for vulnerabilities in ML li-
braries; API-related issues mainly cause vulnerabilities whose
root causes fall in this category during the development of
ML libraries. This root cause is decomposed into different
subcategories as shown in Table 6. As we can see, API Mis-
use, Using Wrong API, and API Version Issue cover 50 out of
the 68 API Errors involved vulnerabilities. We have checked
that most of these types of API usage issues can be avoided
by using API usage checkers [40, 41], thus developers are
suggested to apply these API misuse detectors when working
on ML development tasks for avoiding API Errors related
vulnerabilities. The third most common API inconsistency is
the API Version Issue, where developers mostly use improper
versions of APIs, causing different vulnerabilities. Hence,
there is a need to develop version control (checking) tools to
assist developers in using up-to-date APIs.

5 Actionable Applications of Our Findings

We believe the findings of our study can be used to improve
software vulnerability development tasks, such as detecting
similar unknown vulnerabilities based on the studied vulnera-
bilities in this work, categorizing newly reported vulnerabili-
ties, and improving security vulnerability testing via security
mutation analysis.

To make our finding actionable, we take security mutation
analysis as an example and develop DeepMut, an automated
mutation testing tool for ML libraries, as a proof-of-concept
application of our findings. DeepMut is designed to evaluate

7https://valgrind.org/
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Raw Blame

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

==============================================================================*/

#define EIGEN_USE_THREADS

#if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \

    (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM)

#define EIGEN_USE_GPU

#endif // GOOGLE_CUDA || TENSORFLOW_USE_ROCM

#include "tensorflow/core/kernels/broadcast_to_op.h"

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"

#include "tensorflow/core/framework/op_kernel.h"

#include "tensorflow/core/framework/register_types.h"

#include "tensorflow/core/framework/tensor.h"

#include "tensorflow/core/framework/tensor_util.h"

#include "tensorflow/core/framework/types.h"

#include "tensorflow/core/util/bcast.h"

namespace tensorflow {

typedef Eigen::ThreadPoolDevice CPUDevice;

typedef Eigen::GpuDevice GPUDevice;

template <typename Device, typename T>

class BroadcastToOp : public OpKernel {

public:

explicit BroadcastToOp(OpKernelConstruction* ctx) : OpKernel(ctx) {}

void Compute(OpKernelContext* ctx) override {

const Tensor& input_tensor = ctx->input(0);

const TensorShape& input_shape = input_tensor.shape();

const Tensor& shape_tensor = ctx->input(1);

    TensorShape output_shape;

OP_REQUIRES_OK(ctx, tensor::MakeShape(shape_tensor, &output_shape));

// Handle copy.

if (output_shape == input_shape) {

      ctx->set_output(0, input_tensor);

return;

    }

OP_REQUIRES(ctx, input_shape.dims() <= output_shape.dims(),

errors::InvalidArgument(

"Rank of input (", input_shape.dims(),

") must be no greater than rank of output shape (",

                    output_shape.dims(), ")."));

    Tensor* output_tensor = nullptr;

OP_REQUIRES_OK(ctx, ctx->allocate_output(0, output_shape, &output_tensor));

// Handle empty case.

if (output_shape.num_elements() == 0) {

return;

    }

// Handle broadcast from Scalar.

const Device& device = ctx->eigen_device<Device>();

if (input_shape.dims() == 0) {

      functor::FillFunctor<Device, T>()(device, output_tensor->flat<T>(),

                                        input_tensor.scalar<T>());

return;

    }

    BCast bcast(BCast::FromShape(input_shape), BCast::FromShape(output_shape),

/*fewer_dims_optimization=*/true);

OP_REQUIRES(ctx, bcast.IsValid(),

errors::InvalidArgument(

"Incompatible shapes: ", input_shape.DebugString(), " vs. ",

                    output_shape.DebugString()));

OP_REQUIRES(ctx, BCast::ToShape(bcast.output_shape()) == output_shape,

errors::InvalidArgument("Unable to broadcast tensor of shape ",

                                        input_shape, " to tensor of shape ",

                                        output_shape));

    functor::BroadcastTo<Device, T>()(device, ctx, *output_tensor, output_shape,

                                      input_tensor, input_shape, bcast);

  }

};

// As tensor::MakeShape is able to handle both DT_INT32 and DT_INT64,

// no need to have TypeConstraint for `Tidx`

#define REGISTER_KERNEL(type)                                           \

REGISTER_KERNEL_BUILDER(                                              \

Name("BroadcastTo").Device(DEVICE_CPU).TypeConstraint<type>("T"), \

      BroadcastToOp<CPUDevice, type>);

TF_CALL_ALL_TYPES(REGISTER_KERNEL);

#undef REGISTER_KERNEL

#if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \

    (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM)

namespace functor {

#define DECLARE_GPU_TEMPLATE(Type)                               \

template <>                                                    \

void BroadcastTo<GPUDevice, Type>::operator()(                 \

const GPUDevice& d, OpKernelContext* ctx, Tensor& output,  \

const TensorShape& output_shape, const Tensor& input,      \

const TensorShape& input_shape, const BCast& bcast) const; \

extern template struct BroadcastTo<GPUDevice, Type>;

tensorflow/broadcast_to_op.cc at r2.7 · tensorflow/tensorflow https://github.com/tensorflow/tensorflow/blob/r2.7/tensorflow/core/kernels/bro...
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Figure 14: An example of alive mutant found in Tensorflow
kernel module.

the adequacy of the existing test suite of ML libraries against
security-aware mutation operators extracted from the vulnera-
bilities studied in this work. Specifically, we use all the Ten-
sor property Issues related vulnerabilities from TensorFlow
as an example to extract mutation operators for DeepMut.

Figure 13 shows the overall architecture of DeepMut,
which has the following steps to find alive mutants. First,
it gets all source files from the target ML library then per-
forms an initial analysis to extract potential statements that
match with the extracted mutation operators. The potential
statements are stored in the mutation database. The mutation
loop starts iterating over the database and inserts each mutant
into the target source code. Once the insertion is finished, the
compilation process begins where the library under test is
compiled. Subsequently, all test suites run against inserted
mutants. To determine whether the mutant is killed or not, we
perform a simple analysis on the stack trace of running test
suites and update the database. This process continues until
all mutants in the database are executed.

We performed DeepMut on TensorFlow/core/kernel mod-
ule module. We ran DeepMut on branch v2.7.08, one of the
active branches of TensorFlow. It took around one week to
get the initial results. In total, DeepMut generates more than
3k mutants, and among them 1.2K are alive.

Here, we further show an example of an alive mutant found
by DeepMut from broadcast_to_ops.cc file (from TensorFlow
kernel module) illustrated in Figure 14 that is not covered by
the TensorFlow kernel’s test suite. As you can see, a checker at
lines 81-84 is responsible for checking whether input and out-
put shapes are compatible with each other. If the shapes vio-
late the constraints defined in the checker, a run time error will
be generated. First, DeepMut analyzes broadcast_to_ops.cc
to search for potential mutation locations in this file and ap-
plicable mutation operators, as a result, DeepMut finds an
applicable operator (i.e., eliminating OP_REQUIRES and
OP_REQUIRES_OK from source code) for the fixing patch
of existing vulnerabilities in TensorFlow. To apply the opera-
tor, DeepMut removes lines 81-84 and compiles TensorFlow.
Once the compilation is done, DeepMut runs all test suites of
kernel modules and finds that none of the existing tests can
detect the deleted lines.

8https://github.com/TensorFlow/TensorFlow/tree/r2.7
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We have reported these live mutants to the security team
of TensorFlow. They confirmed that these scenarios are not
covered by the existing test suite and agree that DeepMut is
useful to help design security test cases. In this paper, we
apply DeepMut on the TensorFlow core kernel module. How-
ever, DeepMut is extensible to more components or more ML
libraries.

6 Threats to validity

Internal Validity. The main internal threat to our work is
our manual analysis labeling and classification of software
security vulnerabilities which may suffer from subjective bias
and errors. To guard against this, two Ph.D. students have
reviewed the collected commits in multiple rounds. The stu-
dents discuss any possible disagreement after each round until
a consensus is reached.

External Validity. The dominant threat to the external va-
lidity of this study is the collected dataset. To overcome this
threat, we collected commits from five different ML libraries;
two are very famous and widely used DL libraries, including
TensorFlow and PyTorch; one of them is Scikit-learn which
is a renowned classical ML library which often is used beside
DL libraries. We also collected data from two well-known
data analytics and visualization tools, including Pandas and
Numpy. The reason behind this diverse data collection is to
generalize our findings to wide domains and increase the reli-
ability of findings. To augment our classification process and
make them more accurate, besides reviewed commits, we also
reviewed issues and merged pull requests linked to the parent
commits. Please see Section 2.1 for further details.

7 Related Work

7.1 Studies on General Vulnerabilities
This section surveys the existing studies on analyzing the
characteristics of vulnerabilities in general software projects.

7.1.1 Vulnerabilities in General Software Systems

There are many efforts to characterize software security vul-
nerabilities in traditional software systems [7, 16, 34].

Jimenez et al. [16] analyzed characteristics of vulnerabil-
ities of Linux kernel and OpenSSL. They collected 2k vul-
nerable git commits that are 1) reported in CVE, 2) have
vulnerable keywords, and 3) have a CVE number in their
message and title. They find 20 frequent types of vulnerabil-
ities; among them, CWE-200 and CWE-119 are the domi-
nant ones for Linux and CWE-119, CWE-399, and CWE-362,
for OpenSSL. There are two significant differences with our
analysis; 1) Based on their findings, Numeric and Memory
are not major common vulnerabilities in general software

systems, 2) Unlike studied ML libraries, general software
systems require complex efforts to fix vulnerabilities.

Tan et al. [34] conducted an empirical study on three no-
table projects, including Linux kernel, Mozilla, and Apache,
via analyzing around 2k real-world bugs. They revealed that
semantic bugs are the major common bugs in general soft-
ware systems, and memory bugs decrease as they evolve. The
significant difference with our analysis is that they did not
introduce vulnerability types; instead, they focused on root
causes analysis. Also, their analysis is based on general and
vulnerable related bugs, while we do not cover the general
bugs. Bosu et al. [7] analyzed code review requests from 10
software projects to identify vulnerable code changes. They
developed a tool called Gerrit-Miner that mines code reviews
from the Gerrit code review portal that is publicly available.
They mined more than 260k reviews and analyzed 1k reviews
thoroughly for the analysis. They find that Race Condition
and Buffer Overflow are the most common vulnerability types
in traditional software systems. These findings are not aligned
with our work where Race Condition and Buffer Overflow
are the least common vulnerability types.

7.1.2 Vulnerabilities in Software Ecosystems

Software ecosystems are vital in modern software develop-
ment as they provide reusable packages to developers and
increase development speed. Two notable ecosystems are
npm9 that supports Node.js packages and PyPi10 that sup-
ports Python packages. Alfadel et al. [3] conducted a study
to characterise vulnerabilities in PyPi. They focused mostly
on how long it takes to find and fix vulnerabilities in projects
in PyPi. They found that Cross-Site-Scripting (XSS) and De-
nial of Service (DoS) are the foremost common vulnerability
types in PyPi, which are significantly different from the com-
mon vulnerability types in ML libraries studied in this paper.
Zimmerman et al. [43] conducted an empirical study on npm
ecosystem to analyze the dependencies among public users
of packages, their maintainers, and corresponding public se-
curity reports. They find that a single point of failure is the
primary vulnerability of npm because npm packages are of-
ten not maintained constantly, which makes large codebases
vulnerable. The significant difference with the studied ML
libraries is the mitigation strategies where for example, in
npm, trusted maintainers and code vetting process are two
promising fixing strategies.

7.1.3 Vulnerabilities in Android applications

There exist many studies on the vulnerabilities of Android
applications [15, 19, 23].

Mazura [23] conducted a large-scale empirical study on
Android vulnerabilities by analyzing more than 1k cases from

9https://www.npmjs.com/
10https://pypi.org/
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different aspects, including the type of vulnerabilities, the
evolution of vulnerabilities, CVSS vendors, the impact of
vulnerabilities, and whether they have survived in Android
history or not. They find that the significant vulnerability in
Android applications is Permissions, Privileges, and Access
Controls. Linares et al. [19] characterized different types of
vulnerability that may affect android apps, the affected sub-
systems, and the time it takes to fix vulnerabilities. Similar
to [23], they also mined vulnerabilities from the Android Se-
curity Bulletins and the CVE portal. They find that Memory
and Data are the significant types of vulnerability in Android
applications. Jimenez et al. [15] performed an empirical study
to analyze vulnerabilities of Android applications reported in
the National Vulnerability Database. They found that Miss-
ing/incorrect implementation of features is the dominating
vulnerability type. Different from the above studies, we ex-
plore vulnerabilities in ML libraries in this paper.

7.2 Studies on ML Bugs
7.2.1 Studies on ML API Usage Bugs

Islam et al. [13] conducted the first empirical study on API
usage bugs of five DL libraries, including Caffe, Keras, Ten-
sorFlow, Theano, and Torch. They collected data from Stack-
overflow posts, and Github commits to perform their manual
analysis. The authors analyzed bug types, root causes, and
impact of bugs in DL libraries and found that data and logic-
related bugs are the most common bugs in DL libraries. Zhang
et al. [39] studied DL application bugs built on top of Tensor-
Flow and collected bugs from both Stackoverflow and Github
projects. They find that fixing patterns and root causes corre-
late and suggest developers and researchers make automated
bug detection approaches on top of root causes. Humbatova
et al. [12] provided an extensive and comprehensive taxon-
omy of faults in DL libraries. They focused on TensorFlow,
Keras, and PyTorch for their study. The notable difference of
their work with existing studies is that they interviewed 20
researchers and practitioners to increase the reliability of their
findings. There are a couple of differences with our work.
First, our study merely focuses on Github commits while
their study also mined data from Stackoverflow posts. Second,
they analyzed general bugs of DL libraries while we studied
security vulnerabilities reported in CWE and CVE portals.

7.2.2 Studies on ML Implementation Bugs

Thung et al. [35] studied data from three popular java-based
ML libraries to characterize bugs related to the implementa-
tion of such tools. Such data are linked to bug reports and
bug repositories of the subject programs extracted from the
JIRA issue tracking system. Consequently, they came up with
500 bugs and addressed the research questions. They find that
algorithmic relayed bugs are the most prevalent in the studied
ML libraries. Jia et al. [14] conducted an empirical study on

implementation bugs of TensorFlow. More specifically, they
targeted more than 36k Github projects that use TensorFlow
and extract pull requests, bug reports, and code changes from
the corresponding repositories to address the research ques-
tions. The significant finding of their work is that root causes
and symptoms of bugs in TensorFlow are similar to traditional
software systems. The most related papers to our study are
the studies conducted by Franco et al. [8] and Shen et al. [32].
Franco et al. [8] conducted the first study on characteristics
of real-world numerical bugs of different numerical libraries,
including NumPy, SciPy, LAPACK, GNU Scientific Library,
and Elementa. They find that 32% of bugs in the studied li-
braries are related to Numeric. Our study complements their
analysis in the sense that ours is more general since we study
both numerical and ML libraries. Also, our analysis is more
comprehensive because, besides Numeric, we introduce mul-
tiple significant vulnerabilities that are common in numerical
and ML libraries. Shen et al. [32] proposed a comprehensive
study on DL compiler bugs by manually analyzing 596 bugs
from TVM from Apache, Glow from Facebook, and nGraph
from Intel. They find that type-related bugs are the foremost
common bugs in DL compilers. Despite these efforts, the
characteristics of software security vulnerabilities have not
been well studied, which is the main contribution of this work.

8 Conclusion

This paper conducts the first empirical study to understand
the characteristics of software security vulnerabilities of ML
libraries. The primary motivation behind this study is to help
developers of such libraries design and develop vulnerability
detection and debugging techniques to increase their quality
and reliability. To achieve this goal, we manually analyzed
596 commits from five widely used ML libraries, including
TensorFlow, PyTorch, Scikit-Learn, Pandas, and Numpy. The
outcome of this study is 19 vulnerability types, 18 root causes,
5 symptoms, 22 fixing patterns, 4 fixing scales, and ultimately
8 findings. Based on these findings, we further provide a set
of actionable guidelines to developers and the community
to design and develop software vulnerability detection and
debugging techniques to increase ML libraries’ security.

Availability

We make the dataset and source code of our exper-
iments available at https://cse19922021.github.io/
Deep-Learning-Security-Vulnerabilities/.
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