
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Impact of Failure on Interconnection Networks for Large Storage Systems

Permalink
https://escholarship.org/uc/item/4df425t9

ISBN
9780769523187

Authors
Xin, Qin
Miller, Ethan L
Schwarz, SJ Thomas JE
et al.

Publication Date
2005

DOI
10.1109/msst.2005.18
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4df425t9
https://escholarship.org/uc/item/4df425t9#author
https://escholarship.org
http://www.cdlib.org/


Impact of Failure on Interconnection Networks for Large Storage Systems

Qin Xin†

qxin@cs.ucsc.edu
Ethan L. Miller†

elm@cs.ucsc.edu
Thomas J. E. Schwarz, S. J.‡

tjschwarz@scu.edu
Darrell D. E. Long†

darrell@cs.ucsc.edu
†Storage Systems Research Center, University of California, Santa Cruz

‡Computer Engineering Department, Santa Clara University

Abstract

Recent advances in large-capacity, low-cost storage de-
vices have led to active research in design of large-scale
storage systems built from commodity devices for super-
computing applications. Such storage systems, composed
of thousands of storage devices, are required to provide
high system bandwidth and petabyte-scale data storage. A
robust network interconnection is essential to achieve high
bandwidth, low latency, and reliable delivery during data
transfers. However, failures, such as temporary link out-
ages and node crashes, are inevitable. We discuss the im-
pact of potential failures on network interconnections in
very large-scale storage systems and analyze the trade-offs
among several storage network topologies by simulations.
Our results suggest that a good interconnect topology be
essential to fault-tolerance of a petabyte-scale storage sys-
tem.

1. Introduction

System architects are building ever-larger data storage
systems to keep up with the ever-increasing demands of
bandwidth and capacity for supercomputing applications.
While high parallelism is attractive in boosting system per-
formance, component failures are no longer exceptions. In
a petabyte-scale storage system with thousands of nodes
and a complicated interconnect structure, strong robustness
in network interconnections is highly desired but difficultto
achieve.

Failures, which appear in various modes, may have sev-
eral effects on a large-scale storage system. The first is con-
nectivity loss: requests or data packets from a server may
not be delivered to a specific storage device in the presence
of link or switch failures. The result is disastrous: many
I/O requests will be blocked. Fortunately, today’s storage
systems include various levels of redundancy to tolerate
failures and ensure robust connectivity. The second effect
is bandwidth congestion caused by I/O request detouring.

Workload analysis of a large Linux cluster with more than
800 dual processor nodes at Lawrence Livermore National
Laboratory [19] shows that I/O requests are very intensive
in supercomputing environments. They arrive on average
about every millisecond. The average size of a single I/O
request can be as large as several megabytes. Suppose that
such a large system suffers a failure on a link or delivery
path on an I/O stream. In this case, the stream has to find a
detour or come to a temporary standstill. The rerouting will
bring I/O delays and bandwidth congestion and might even
interrupt data transfer. The I/O patterns particular to su-
percomputing demand a network architecture that provides
ultra-fast bandwidth and strong robustness simultaneously.
The third effect is data loss caused by the failure of a stor-
age device. As disk capacity increases faster than device
bandwidth, the time to write and hence to restore a com-
plete disk grows longer and longer. At the same time, the
probability of single and multiple failure increases with the
number of devices in the storage system.

Current petabyte-scale storage system designs, such as
Lustre [3], rely on a high-speed storage area network to
provide required bandwidth, but do not address fault toler-
ance. Inspired by parallel computing architecture, recent
research [10] proposes using switch-attached storage de-
vices to create scalable and robust network interconnec-
tion and explores several potential topologies from butter-
fly networks to hypercubes. We focus on the failure impact
on network interconnection for systems built from various
topologies. We investigate the failure-resilient capacity and
compare the trade-offs among several network interconnec-
tion architectures for a petabyte-scale storage system. We
consider various degraded modes in which a certain num-
ber of links and (or) nodes fail and examine the impact of
these failures on such a system. By simulation, we observe
that a well-chosen network topology such as mesh and hy-
percube can still guarantee good network interconnection
under various failure modes. At the same time, neighbors
of the failed nodes and links suffer much more from band-
width congestion than average. Our results indicate that an
adaptive network routing protocol is needed for such a large

This paper was published in theProceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST 2005), Monterey, CA, April 2005.



system in order to solve the hot-spot problems brought by
various failures in the system.

2. Related Work

Designs for parallel file systems, such as Vesta [5] and
RAMA [13], were aimed at high performance computing,
but did not consider the large scale of today’s systems and
the impact of failures which comes along with such a scale.

Industry solutions, such as IBM TotalStorage Infras-
tructure [11], EMC SAN arrays using fibre channel
switches [12], and Network Appliance Fibre Channel SAN
storage solutions [16], can support up to tens of terabytes
data capacity. Our work is aimed for the design of petabyte-
scale storage systems that can provide non-stop data deliv-
ery in the presence of failures.

Hospodor and Miller [10] explored potential intercon-
nection architectures for petabyte-scale storage systems.
The main concern of their work is efficient network inter-
connection between storage nodes, routers, switches and
servers; however, they do not consider the consequences of
failures on the network.

One of the main approaches to achieve fault-tolerant
interconnection networks is adding redundant nodes and
links in arrays and meshes. Blake and Trivedi [2] analyzed
the reliability of multi-stage interconnection networks and
showed that adding intra-stage links is more beneficial than
adding an extra stage. Zhang [21] designed fault-tolerant
graphs with small degree for good scalability and small
number of spare nodes for low cost.

Resilient routing is crucial for interconnection network
reliability in the face of link outages. Vaidyaet al. [18]
studied fault-tolerant routing algorithms in a multiproces-
sor system. Their focus was Duato’s routing algorithm—
Double East-Last West Last (DELWL) [8] in a 2D mesh
topology. The system they examined was on the order
of thirty to forty nodes; while our study is for much
larger scale storage networks—on the order of thousands
of nodes. In addition, we have switches and routers which
differ in functionality from storage nodes.

The MIT Resilient Overlay Networks (RON) architec-
ture [14] provides reactive routing to path failure detection
and recovery on large-scale, Internet-based distributed sys-
tems. It monitors the quality of paths by frequent probing
between nodes, and stores probe results in a performance
database. In principle, there is much less control on the
overall architecture of an Internet network such as RON
than our storage network. Also, we consider both node
failure and link failure while RON only focuses on path
failure.

3. Network Interconnection and Failure Im-
pacts

Modern supercomputing systems require a high band-
width storage network storing petabytes of data. Tradi-
tional storage architectures, such as RAID [4], Storage
Area Network (SAN) [17], and Network Attached Stor-
age (NAS) [9] cannot meet the needs for bandwidth and
scale of such a large storage system. Network topologies
for massively parallel computers are better suited to build
large storage networks [10], as they are capable of deliver-
ing high performance and dealing with very large scale.

3.1. System Overview

Our research targets for a storage system with multi-
petabytes of data. Such a system typically consists of
over 4,000 storage devices, thousands of connection nodes
(routers/switches/concentrators), and tens of thousandsof
network links. There is a high reliability demand on our
system because data is difficult, perhaps even impossible
to regenerate, and may not be reproducible. To achieve
necessary failure tolerance, we store data redundantly. The
choice of redundancy mechanisms is decided by the desired
system cost, workload characteristics, and performance cri-
teria. For instance, if the storage cost is one of the main
concern and the system is primarily read-only, erasure cor-
recting coding would be a good redundancy scheme for the
system. When small writes appear frequently in the system
and high storage redundancy is affordable, pure replication
(mirroring) will fit the design. The data recovery process
differs with redundancy mechanisms. If we simply mir-
ror the data, then we just ask for the node(s) where the the
replica is stored. If erasure coding is configured for the
system, then the request is routed to a number of other stor-
age servers that collectively can rebuild missing data when
a storage device becomes inaccessible. We discuss trade-
offs among several data redundancy schemes and the use
of data declustering for expediting the data repair process
in our previous work [20].

3.2. Network Interconnect Architectures

There are several potential strategies for interconnect ar-
chitectures, such as a simple hierarchical structure, butter-
fly networks, meshes, and hypercubes [1]. The analysis of
the total system cost and comparison of system bandwidth
under failure-free status of each strategy were discussed in
prior research [10]. Here we focus on the failure impact
under these topologies.

The simple tree-based hierarchical structure requires
large routers, which make the configuration very expen-
sive [10]. Also, it cannot provide sufficient fault tolerance

102



 2

 3

 4

server 1

server 2

server 3

server 4

router 0 switch 0

router 1

router 2

router 3

switch 1

switch 2

switch 3

switch 4

switch 5

switch 6

switch 7

(a) A failure on switch 0 disconnects several devices.

 2

 3

 4

server 1

server 2

server 3

server 4

router 0 switch 0

router 1

router 2

router 3

switch 1

switch 2

switch 3

switch 4

switch 5

switch 6

switch 7

(b) Add spare links between switches and devices.

Figure 1. Butterfly Networks Under Failures.

server

router

Figure 2. A Hypercube Structure.

as it suffers from the failures of higher-level nodes. But-
terfly networks cannot offer high reliability either, because
there is only a single path from a server to a storage device.
For example, when a failure occurs at switch 0, as shown in
Figure 1(a), a number of storage devices will lose their con-
nections to the system. One way to solve this problem is to
add spare links as shown in Figure 1(b). However, switch 1
then becomes over-loaded as all the requests to the storage
devices attached with switch 0 will now go through it. It
also requires more expensive switches with more ports for
spare links. Furthermore, there may be additional link out-
ages on the path from a server to a storage device, which
will break the connection.

Cube-like architectures, such as meshes (Figure 3(a)),
hypercubes (Figure 2), and torus are structured with multi-
ple routes between servers and storage devices, and thus

more resilient to failures. However, the system cost for
these cube-like structures is higher than that for simple tree
structure and butterfly networks.

3.3. Failure Scenarios

We consider three types of failure scenarios: link failure,
connection node failure, and storage device failure.

I. link failure: The connection between any two com-
ponents in a system can be lost. If there exists only
one path between two components, a system is at risk
when any link along this single path is broken. A ro-
bust network interconnection must be tolerant of link
failures. Multiple paths between two components will
decrease the vulnerability of a single-point of failure
and effectively balance I/O workload.

II. connection node failure: Connection nodes include
switches, routers, and concentrators that link servers
to storage nodes. They are used for communications
and do not store any data. Compared with link outage,
failures on an entire switch or router are more harmful
for network connection since a number of links that
were attached on the switch or the router are simulta-
neously broken, but losing connection nodes will not
directly lead to data loss.

III. storage device failure: When a storage device fails, it
cannot carry any load. Further, additional traffic for
data reconstruction will be generated. The increase
in bandwidth utilization brought by data construction
is of great concern when data is widely declustered
in such a system. We modeled and analyzed several
redundancy mechanisms for such very large storage
systems in our previous work [20].

As a case study, we examine four kinds of possible fail-
ures in a 3× 3 2D mesh storage system shown in Fig-
ure 3. In our example, there are nine storage devices (la-
beled from 0 to 8), two routers and one server. Assume
a specified I/O stream will be sent from the server to a
storage device, say node 4. We trace the path of this I/O
stream in various scenarios. At the initial state without
any failures, the I/O request can be simply transferred via
router 1 and node 3 as indicated in Figure 3(a). How-
ever, a rerouting strategy has to be introduced if failure
occurs. If the link between node 3 and node 4 is broken,
as shown in Figure 3(b), the I/O request has to take an al-
ternate route to get to its target. It can pick up a path (i)
{router 1→node 3→ node 6→node 7→node 4} as shown
in Figure 3(b), or (ii){router 1→node 1→node 4}, or (iii)
{router 2→node 7→node 4}, etc. The choice of the new

103



server

0 1

3 4

2

5

6 7 8

router 1

router 2

(a) initial state

server

0 1

3 4

2

5

6 7 8

router 1

router 2

(b) link between node 3 and 4
fails

server

0 1

3 4

2

5

6 7 8

router 1

router 2

(c) router 1 fails

server

0 1

3 4

2

5

6 7 8

router 1

router 2

(d) switch on node 3 fails

server

0 1

3 4

2

5

6 7 8

router 1

router 2

(e) node 4 fails

Figure 3. A Storage System Structured as a
3×3 2D mesh Under Degraded Modes

path is determined by the routing protocol and system sta-
tus at that moment. Figure 3(c) and 3(d) show further ex-
amples of detouring due to a router and a switch failure re-
spectively. The worst case in failure modes is that the target
node fails, as shown in Figure 3(e). If either the switch fails
or the disk drive crashes on the target node, the I/O request
cannot be delivered.

4. Evaluation

It is expensive to build a real petabyte-scale storage sys-
tem in order to evaluate the impact of failures on intercon-
nection networks. Instead, we use simulations of large-
scale systems to develop a better understanding of the im-

pact of failures. We simulate several network interconnec-
tion topologies and inject varied failure scenarios to eval-
uate system behavior under degraded mode and estimate
system reliability of a petabyte-scale storage system.

4.1. Assumptions

Generally, nodes are classified into two types:storage
nodes that contain data, such as disk drives; andconnection
nodes that are used only for communication, such as routers
and switches. We investigate node failure and link failure
in our system. In reality, there are many other types of fail-
ure, such as power failure and software failure. Our failure
model simply focuses on network interconnection, but does
not consider the Byzantine failure model under which arbi-
trary or malicious failures would appear. We also assume
all failures be detected in a timely manner.

We assume I/O requests to be very intensive and in large
size. User data is spread out over the whole system evenly.q
We use Dijkstra’s algorithm [6] as our routing algorithm.
This algorithm helps us understand the network status and
trace the path of each I/O request, although it cannot scale
to large networks due to its dependence on global infor-
mation. We are considering failure-resilient routing tech-
niques, such as wormhole routing [15], in our ongoing
work. We do not consider the buffer/cache issues of routers
and switches for simplification.

4.2. Simulation Methodology

We evaluate impact of failures on a petabyte-scale stor-
age system under various interconnection configurations
by event-driven simulation. The simulator, implemented
in C++, can evaluate the failure impact on a system un-
der various configurations. There are three main pieces
in our simulator: topology, failures, and requests. The
network interconnection architecture was implemented as
a class objectGraph with the functions for building the
network topology,i.e. build nodes andbuild links. The
function inject failures sets up the degraded system mode
under which one or more failures happen in an overlapped
time period. Servers send out I/O requests under a syn-
thetic workload based on our analysis of a Linux cluster
for supercomputing applications [19].

We have simulated three kinds of topologies for our sys-
tem: a multi-stage butterfly network, a 64× 64 2D mesh
shown in Figure 3(a) and a 6D hypercube shown in Fig-
ure 2. We expect to include several other topologies such
as butterfly network, torus, and tower graph [21] in the full
paper. Previous work [10] estimated the required number
of nodes and ports for a petabyte-scale storage system us-
ing butterfly, mesh and hypercube topology. We list the
parameters set up in our simulator in Table 1. The but-

104



Table 1. Parameters for butterfly, mesh and
hypercube topology.

parameter butterfly mesh hypercube

number of servers 128 128 128
number of disks 4096 4096 3968
number of routers 128 8 128
total number of links 7552 16,392 23,612
total number of nodes 4736 4232 4224

terfly network is a hierarchical structure with one level of
routers, three levels of switches with 128 switches per level.
In the 64× 64 2D mesh, each router is connected to the
edge nodes and the interior nodes are connected with four
other nodes. In a hypercube topology, each storage device
is attached to a 12-port switch and each router has two ad-
ditional ports connected to servers.

4.3. Simulation Results

In our simulated system, servers send I/O requests in
parallel to storage devices at an interarrival rate of 1 mil-
lisecond. We set up several degraded scenarios for three
network topologies—butterfly network, 64×64 2D mesh,
and hypercube topologies, including varied number of link
failures and node failures. We trace the I/O requests and
count the number of hops for each request and record the
load on each link in the system. We calculate the ratio of
the requests which cannot be delivered to the target device
due to failures under various degraded modes, to measure
how well the system is connected. We also show the aver-
age number of hops of I/O requests under varied degraded
modes and compare the link load in the neighborhood of
failures with average links.

4.3.1. I/O path connectivity

The first and the most important aspect of robustness of
network interconnection is that an I/O request can be deliv-
ered to its target storage device. We refer to such an abil-
ity as I/O path connectivity. We borrow the metric of sys-
tem availability [7] and measure the connectivity in units
of “nines,” which is defined as−log10(1−P), whereP is
the fraction between the number of I/O requests that can be
successfully sent to the targets and the total number of I/O
requests during a period of time. Three “nines” connectiv-
ity means that 99.9% of the I/O requests can be delivered
to their targeted storage devices.

We trace all the I/O requests sent in 60 seconds under
seven failure modes: with one, two routers failed, with one,
two switches failed, and with four, eight, and sixteen links

1 
ro

ut
er

2 
ro

ut
er

s

1 
sw

itc
h

2 
sw

itc
he

s

4 
lin

ks

8 
lin

ks

16
 li

nk
sco

nn
ec

tiv
ity

 (
ni

ne
s)

0

2

4

6

8
butterfly mesh hypercube

Figure 4. I/O path connectivity

failed. Failures cannot be repaired during 60 seconds even
if they can be detected. Our results are reported in Fig-
ure 4. We found that failures on switches have greater
influence than those on routers and links. The butterfly
network suffers greatly from broken switches, as we dis-
cussed in Section 3.2. As expected, the 6D hypercube and
2D mesh structure achieve a better connectivity than the
butterfly network, although up to 0.05% of the requests did
not arrive at their target devices when two switches failed.
As for link failures, every I/O request found a healthy path
in the presence of up to sixteen broken network links under
2D mesh and 6D hypercube topologies, but about 0.048%
of the requests were not delivered successfully when 16
links were broken under the butterfly network structure.
Within 60 seconds, on the order of 108 I/O requests were
sent from the servers in our simulation. As a result, the ac-
curacy of our reliability measurement is up to eight nines
(−log10(1−

108−1
108 ) = 8).

4.3.2. Number of hops for I/O requests

The number of hops is calculated as the number of links
that an I/O request has to travel through the system to arrive
at its targeted device. It is an important metric for both I/O
latency and system bandwidth. We measure the minimum
number of hops in the simulator; while in reality, an I/O
request may go through more steps than the minimum for
the considerations of load balance.

We compare an ideal fault-free case (labeled as “ideal”)
with seven degraded modes: with one, two routers failed,
one, two switches failed, and with four, eight, and sixteen
links failed (Figure 5). We do not count the case when there
is no path for an I/O request in the calculation of the aver-
age number of hops. Compared with the ideal connection,
the average number of hops is only slightly higher under
all degraded modes in all three topologies. There are two
underlying reasons for this: first, the proposed butterfly,
mesh, and hypercube structures provide redundant paths
and thus lead to good fault tolerance; second, the possi-
bility that a failed component is on the path of many I/O
requests is small due to the limited number of I/O requests
during a short period time. As a result, the number of aver-

105



id
ea

l

1 
ro

ut
er

2 
ro

ut
er

s

1 
sw

itc
h

2 
sw

itc
he

s

4 
lin

ks

8 
lin

ks

16
 li

nk
s

av
g.

 n
um

be
r 

of
 h

op
s

0

4

8
6.8954 6.8954 6.8954 6.899 6.8939 6.8954 6.8952 6.8975

(a) Butterfly networks.

id
ea

l

1 
ro

ut
er

2 
ro

ut
er

s

1 
sw

itc
h

2 
sw

itc
he

s

4 
lin

ks

8 
lin

ks

16
 li

nk
s

av
g.

 n
um

be
r 

of
 h

op
s

0

4

8

12

16 15.0752 15.3063 15.3063 15.077 15.084 15.2071 15.2341 15.4126

(b) 64×64 2D mesh.

id
ea

l

1 
ro

ut
er

2 
ro

ut
er

s

1 
sw

itc
h

2 
sw

itc
he

s

4 
lin

ks

8 
lin

ks

16
 li

nk
s

av
g.

 n
um

be
r 

of
 h

op
s

0

2

4
4.398 4.4005 4.4035 4.3983 4.3984 4.3985 4.3991 4.401

(c) 6D hypercube with 4,096 nodes.

Figure 5. Average number of hop per I/O re-
quest

age hops remains nearly at the same level under the exam-
ined degraded modes. For a well-chosen topology which
does not suffer from a single point of failure, the system
would be robust unless many components fail at once. This
occurrence only happens under certain circumstances such
as large-scale power outages, which can easily pull down
any local-area networks.

4.3.3. Failure impact on network neighborhood

One of the important system behaviors after failures is
request rerouting. The failure impact on its neighborhood
links/nodes is not negligible. An abrupt increase in network
load around the neighborhood of failures can overload a
certain number of nodes and links, such that I/O requests
may not be delivered successfully. In order to analyze the
failure impact on the network neighborhood, we monitored
the the network links around failures and compared their
I/O load with the average load on all the links in the system.
We observed a pronounced increase in the average I/O load
on neighboring links around failures under four degraded

1 
ro

ut
er

2 
ro

ut
er

s

4 
lin

ks

8 
lin

ksav
g.

 I/
O

 lo
ad

 in
 1

 m
s

0

5

10

15

20

all links neighbor links around failure

(a) Butterfly networks with 4,096 disk drives.

1 
ro

ut
er

2 
ro

ut
er

s

4 
lin

ks

8 
lin

ksav
g.

 I/
O

 lo
ad

 in
 1

 m
s

0

10

20

30

40
all links neighbor links around failure

(b) 64×64 2D mesh.

1 
ro

ut
er

2 
ro

ut
er

s

4 
lin

ks

8 
lin

ksav
g.

 I/
O

 lo
ad

 in
 1

 m
s

0
0.2
0.4
0.6
0.8

1
all links neighbor links around failure

(c) 6D hypercube with 4,096 nodes.

Figure 6. I/O load comparison of the neigh-
borhood links around failures and all the
links in a system.

modes: with one router, two routers, four links, and eight
links failed (as Figure 6 shows.)

Comparatively, neighbors around a failed router carry
more I/O load than those around a failed link in most cases.
This phenomenon comes from the different functionalities
of routers and links. We also note that neither the butterfly
network nor 2D mesh structure balances the load around
failures, but the hypercube topology handles it well. The
link load around failures is four to thirteen times higher
than average link load in the butterfly network and 2D mesh
system, whereas it is not obviously higher than the average
link load in the 6D hypercube structure. This is because
there are fewer network links and much weaker path redun-
dancy in the butterfly network and 2D mesh structure than
those in the 6D hypercube topology. Our results indicate
that for a petabyte-scale storage system, although butter-
fly network and mesh structure can provide decent I/O path
connectivity without increasing the number of hops, they

106



cannot deal with neighborhood load increase as gracefully
as the 6D hypercube structure.

4.4. Result Summary and Discussion

In our simulated petabyte-scale storage system con-
nected by a butterfly network, a mesh or a hypercube ar-
chitecture, four to sixteen link failures do not result in an
obvious increase in the number of hops for I/O requests.
This shows good fault tolerance to link failures under these
three network interconnection topologies. Switch failures
are much more likely to cause I/O path disconnect. We
found that the butterfly network can survive under router
failures but is very sensitive to switch failures and sixteen
link outages; while the average number of I/O hops in the
2D mesh structure is one to two times higher than that in
the butterfly network and the hypercube structure. This
indicates that different network topologies have their pros
and cons under different system degraded modes. The im-
pact of failures on neighborhood links is significant, espe-
cially for the multi-stage butterfly network and 2D mesh
structure, which may lead to network congestion and the
slowing down of data transfers. Based on our results, the
hypercube structure pays off its higher system cost and out-
performs the butterfly network and 64×64 2D mesh in the
robustness of network interconnection.

5. Conclusions and Future Work

Robust network interconnects are essential to large-
scale storage systems. We study various failure scenarios
and their impacts on a petabyte-scale storage system. The
fault-tolerance capacity of three potential network topolo-
gies, namely, multi-stage butterfly network, 2D mesh, and
6D hypercube structures, has been evaluated by simulation.
We examined I/O path connectivity, the number of hops
for I/O requests, and the I/O load on neighborhood links
around failures. Our preliminary results have shown that
a well-chosen network topology is capable of ensuring a
high tolerance of failures. Router and switch failures have
a larger impact on network robustness than link failures,
and the neighborhood around failures suffers more greatly
than average link load, especially for butterfly network and
2D mesh. Our simulator can flexibly investigate various
network topologies with injection of any degraded modes,
which enables us to estimate robustness of network inter-
connections and helps the system architects with their de-
sign decisions on building reliable petabyte-scale storage
systems.

There are many other network topologies that we have
not explored yet. For example, torus and tower graph are
promising architectures for petabyte-scale storage systems.
We plan to study the fault tolerance capacity of torus and

tower graph structure in our future work. We are still inves-
tigating more complicated failure modes and system behav-
ior under these degraded modes over longer intervals.

Acknowledgments

We thank the members and sponsors of Storage Systems
Research Center, including Department of Energy, Enge-
nio, Hewlett-Packard Laboratories, Hitachi Global Storage
Technologies, IBM Research, Intel, Microsoft Research,
Network Appliance, and Veritas, for their help and sup-
port. We also thank the anonymous reviewers and our
shepherd Curtis Anderson for their comments that help
us improve the paper. This work is funded in part by
Lawrence Livermore National Laboratory, Los Alamos Na-
tional Laboratory, and Sandia National Laboratory under
contract B520714, and by IBM Research Grant 41102-
COEN-RSCH-IG-IG09.

References

[1] W. C. Athas and C. L. Seitz. Multicomputers: message-
passing concurrent computers.IEEE Computer, 21:9–24,
Aug. 1988.

[2] J. T. Blake and K. S. Trivedi. Reliabilities of two fault-
tolerant interconnection networks. InProceedings of the
18th International Symposium on Fault-Tolerant Comput-
ing (FTCS ’88), pages 300–305, 1988.

[3] P. J. Braam. The Lustre storage architecture.
http://www.lustre.org/documentation.html, Cluster File
Systems, Inc., Aug. 2004.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-performance, reliable secondary
storage.ACM Computing Surveys, 26(2), June 1994.

[5] P. F. Corbett and D. G. Feitelson. The Vesta parallel file sys-
tem. ACM Transactions on Computer Systems, 14(3):225–
264, 1996.

[6] E. Dijkstra. A note on two problems in connexion with
graphs.Numerische Mathematik, 1:269–271, 1959.

[7] J. R. Douceur and R. P. Wattenhofer. Large-scale simula-
tion of replica placement algorithms for a serverless dis-
tributed file system. InProceedings of the 9th Interna-
tional Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS
’01), pages 311–319, Cincinnati, OH, Aug. 2001. IEEE.

[8] J. Duato. A theory of fault-tolerant routing in wormhole
networks. IEEE Transactions on Parallel and Distributed
Systems, 8(8):790–802, 1997.

[9] G. A. Gibson and R. Van Meter. Network attached storage
architecture.Communications of the ACM, 43(11):37–45,
2000.

[10] A. Hospodor and E. L. Miller. Interconnection architec-
tures for petabyte-scale high-performance storage systems.
In Proceedings of the 21st IEEE / 12th NASA Goddard Con-
ference on Mass Storage Systems and Technologies, pages
273–281, College Park, MD, Apr. 2004.

107



[11] IBM Corporation. Storage consolidation for large work-
groups and departments: An IBM SAN business value so-
lution, 2002.

[12] T. Joyce. NAS gateways allow IP access to SANs. Network
World Fusion, “http://www.nwfusion.com”, Apr. 2004.

[13] E. L. Miller and R. H. Katz. RAMA: An easy-to-use,
high-performance parallel file system.Parallel Computing,
23(4):419–446, 1997.

[14] MIT RON (Resilient Overlay Networks) Project.
http://nms.lcs.mit.edu/ron/.

[15] P. Mohapatra. Wormhole routing techniques for directly
connected multicomputer systems.ACM Computing Sur-
veys, 30(3):374–410, 1998.

[16] Network Appliance fibre channel SAN storage solutions.
http://www.netapp.com/solutions/fcsan.html.

[17] W. C. Preston.Using SANs and NAS. O’REILLY, 2002.
[18] A. S. Vaidya, C. R. Das, and A. Sivasubramaniam. A

testbed for evaluation of fault-tolerant routing in multipro-
cessor interconnection networks.IEEE Transactions on
Parallel and Distributed Systems, 10(10):1052–1066, 1999.

[19] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller,
D. D. E. Long, and T. T. McLarty. File system workload
analysis for large scale scientific computing applications. In
Proceedings of the 21st IEEE / 12th NASA Goddard Con-
ference on Mass Storage Systems and Technologies, pages
139–152, College Park, MD, Apr. 2004.

[20] Q. Xin, E. L. Miller, T. J. Schwarz, D. D. E. Long, S. A.
Brandt, and W. Litwin. Reliability mechanisms for very
large storage systems. InProceedings of the 20th IEEE /
11th NASA Goddard Conference on Mass Storage Systems
and Technologies, pages 146–156, Apr. 2003.

[21] L. Zhang. Fault tolerant networks with small degree. In
Proceedings of the 12th ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 65–69. ACM, 2000.

108




