Exporting Kernel Page Caching for Efficient
User-Level 1/O

Appears in the proceedings of the 26th IEEE Conference on MasStorage Systems and Technologies (MSST 2010)

Richard P. Spillane, Sagar Dixit, Shrikar Archak, SaumBtenage, and Erez Zadok
Computer Science Department
Stony Brook University
Stony Brook, New York 11794-4400

Abstract—The modern file system is still implemented in the could benefit from the virtualizations and system abstoacti
kernel, and is statically linked with other kernel componerts. gfforded to user-level software.
This architecture has brought performance and efficient inegra- On the other hand, user-level I/O stacks have been growing

tion with memory management. However kernel development . lexity t it th | ds of | OLTP and
is slow and modern storage systems must support an array In compiexity to suit the compiex needs or large an

of features, including distribution across a network, taggng, VVeb services. Systems such as Dryad [46], Map Reduce [8],
searching, deduplication, checksumming, snap-shottindile pre- Hadoop [3], and Memcached [9] all rely on interaction with

allocation, real time 1/O guarantees for media, and more. To the underlying file system on each node. However the ef-

move complex components into user-level however will reqee ficiency of Hadoop on a single node to perform a sort is

an efficient mechanism for handling page faulting and zero-apy . . . e .
caching, write ordering, synchronous flushes, interactiomwith the 5 to 10% of what is possible in an efficient single-node

kernel page write-back thread, and secure shared memory. We implementation [2]. Further, power efficiency is directly
implement such a system, and experiment with a user-level ggct ~ related to performance efficiency [34]. As these systemk see

store built on top. Our object store is a complete re-design o out economies in performance and power usage, a modular

the wraditional storage stack and demonstrates the efficiery o ser |eve| storage API with kernel-level speed and contithl
our technique, and the flexibility it grants to user-level sbrage .
come into demand.

systems. Our current prototype file system incurs between a% . .
and 6% overhead on the default native file systemExT3 for There has been a flurry of excitement in the research

in-cache system workloads. Where the native kernel file sysin community over user-level storage stacks and APIs such
design has .traditic.)nallyfound its primary motivation. For update g5 Anvil [22], Rose [33], and Stasis [32]. New indexing
and insert intensive metadata workloads that are out-of-cehe, naeqs have prompted new file system architectures that break
we perform 39 times better than the native ExT3 file system, ; - -
while still performing only 2 times worse on out-of-cache radom away from hierarchical name-space_s such as Perspec_tljl,e [31
lookups. Spyglass [20], and hFAD [36]. File system extensions to
track provenance [26] also make more sense architecturally
|. INTRODUCTION as modular user-level extensions [37], but only if the write
semantics are correct and the performance is good.
User-level programs that perform I/O are becoming ever Unfortunately to get proper write semantics and good per-
more critical to the user. Performance of user-level da@bgormance, many implementers must rely on ad-hoc techniques
APIs and web-service infrastructure is the new storagdedottto achieve proper write ordering such as accidental write
neck, and is critical to the average Internet user. Howaver ardering of the lower file system [22], non-standdrslync
the current 1/O stack, for purposes of memory managemefidgs such as= FULLSYNC [4], or complex interposition
write ordering, and caching, databases are subordinate-torechanisms [25]. Turning off disk caching in the physical
kernel file systems. hardware is another common practice to ensure proper write
There is a strong modularity and security argument agairsgmantics for database APIs [27], but hurts performance
allowing user-level programs unchecked kernel privilegedramatically. Finally, it is standard practice for databadls
The argument is that the file system represents a genaiw servers tae-implementpage caching to ensure control
commonly used interface to on-disk data. Recently howeverer write-ordering, page pinning, cache eviction pokciend
file systems have been continuously growing in number, afallting [39].
in complexity, with more file systems offering more features We argue that the common interface exposed by the kernel
such as snapshotting, attribute indexing, checksummieg, pshould not be a host of different mounted file systems in a
file striping, logical volume management, network disttibn, hierarchical name space, but instead a shared-memory page-
deduplication, copy-on-write, and more. Future in-kestel- cache service with configurable eviction, faulting, wiiteek,
age systems, even more complex than the current generatamg dirtying policies. To allow kernel-level performanoe iin-

978-1-4244-7153-9/10/$26.0@) 2010 IEEE

cache workloads, we have added support to Linux for a thisle modify the 2-COLA to support deletes, finite disk space,
kind of privilege level between user and kernel space callatomic flush to disk for ordered writes, 2-phase commit
library space. The MMU unit is used to protect privilegeavith other COLAs, and a special kind of query that avoids
libraries in an analogous way to how it is used to protegerforming lookups on disk for faults into sparse files.
the kernel at a different ring level. Although our system can The lower layer consists of a series mffaps on top of a
support many different kinds of 1/O interfaces besides a trkarge disk (30GiB in our evaluation). We operate only on 64-
ditional file system, to compare with current in-kernel age bit architectures due to address space requirements. fogup
running current work loads, we have implemented a privitegeroper ordering of writes, we have modified the Linux kernel
library that supports standard UNIX file system calls. W& support a new flag tomap called MPI N which pinsfile
have implemented our own path name resolution and cachijpages dirtied by writes, preventing them from being written
rather than using Linux’s VFS, and have implemented our ovirack to disk (unlikem ock which only prevents pages from
file mapping layer rather than using Linux’s VM. With someswapping out and not writing back to disk). To avoid memory
minor caveats, the only kernel interface our privilegeddiy squeezes we employ a signaling mechanism between the page
currently utilizes is our exported page caching interface @llocator in the kernel and the process utilizimgi n. Backing
top of a raw block device. We have evaluated both our librargur memory mappings is a single-file file system that we wrote
and our underlying system’s performance, against natiuedke to optimize reads and writes withmap, control write-back
file systems, finding for almost all workloads we perfornof dirty pages, and ensure sync requests wait for a disk cache
competitively, equivalently, or even better than the rafile flush.
system.

In Section Il we discuss the design and implementation of
our exported page caching technique and our object store. In 111 ‘ Journal

Section Ill we discuss related work. We relate our experime g
tal findings in Section IV. Finally we conclude in Section V. :% ’_{%‘ Dmap
[I. DESIGN AND IMPLEMENTATION
. o o || L | .| omaps
The object store is designed with efficiency of data trarssfe]
and metadata operations in mind. It utilizes several writ(g '
z Fmaps
optimized indexes to perform rapid insertion, deletiond arg / 1 — 1 P

update of metadata values in a space-efficient manner. |8 / Buddy
data transfers, it adopts a read-optimized file system form

To make calls into the object store efficiently while provigli 1 [[T [|
security to other users, we utilize a modified trap instiascti Block Store T I |

A. Object Store Architecture

As seen in Figure 1, the architecture of the object store Fig. 1. The object store architecture
consists of a library loader and trapping mechanism to wafel
call into a journaling layer. This layer then calls into the
namespace layer which performs path traversals to find bbj&c Library Loader and Trapping Mechanism
IDs. The namespace then calls into the object layer whichThe trapping mechanism uses the same technique the kernel
exports an interface to POSIX-style sparse files with objegses, to trap into our shared user-level library. When meee
IDs for names. Finally the object layer sits on top of a lowawish to call into our user library, they call a special sysieat
layer which interacts with the Linux kernel to provide effist r er out e which redirects them to a system call handler in our
and recoverable write-back to disk that does not cause resowshared library based on an integer id we store in their peoces
deadlock. block. The redirection process modifies the segment descrip
The namespace and object layer utilize four indexes: (1) Théthe process so that it has access to the shared librargssldr
dmap index(2) Theomap index(3) thefmap indexand (4) range. Without trapping into the kernel it would not be alole t
the buddy index The dmap index stores dmaps, equivalericcess this address range. Individual stacks are maidtéine
to dentri es. The omap index stores onodes, which areach client that enters into the shared library as in a typica
compact versions of nodes. The fmap index acts like a kernel. To return from a privileged library call, the libyar
range tree for each file, storing which ranges of file offsetallsr er out e again to reset the segment descriptor. In our
in each file are backed by which physical extents of storagairrent implementation, theer out e system call makes all
The buddy index acts like a buddy allocator tree, storingcWwhi necessary traps but does not modify the segment descriptor.
blocks on the disk are free, and splitting or merging blocks a If the user traps into the kernel, but has loaded arbitrary
necessary. Actual blocks are allocated from the block storecode at the reroute point (where the library should have oeen
We implement our own indexing technology for each dfie could execute code at an unauthorized privilege level. To
the four indexes using a simple 2-COLA [5] data structurstop this, the kernel only er out es to privileged address

ranges. An address range is considered privileged if its itarget level are merged into the target level, thus frediregnt
kernel mapping structvfra in Linux) is marked as privileged. all for insertions.
If a user process wants to mark an address range as privilegeBy ensuring the levels increase in size by a factor of two, we
it must use theseal system call. After a user process loads are guaranteed to always have enough space to merge adl level
library into an address space usimgap, it seal s the entire above a target level into that target level The amortized cos
library’s address range before usingr out e. Duringseal , of insertion into this structure is asymptotically supetothe
the kernel disables read, write, and execute permissiomiseon B-Tree, and has been shown to insert up to 700 times faster
range, and then it checksums the range. To ensure that finerandom insertions [5]. Lookups in the COLA are slower,
contents of the loaded library have not been tampered witlp to ten times slower. Fractional cascading can optimize
the kernel marks the mapping corresponding to the libranjsokups [5], but we do not implement this optimization in
address range as privileged only if the checksum is foutlis work.
in a list of valid checksums that the kernel maintains. The The COLA has several other attractive properties, incladin
library’s mapping does not permit reads, writes, or exerigi the tendency to place recently inserted and updated items
except viar er out e. The list of valid checksums is hard-at the top where the backing page is more likely to be in
coded within a separate kernel module that is loaded befd?&M and even CPU cache. In addition the COLA adopts a
any privileged libraries are loaded. naturally log-structured layout on disk which is ideal fapid

This allows for arbitrary users to directly read from or \erit insertion to other high-latency high-bandwidth mediumshsu
into a user-level storage system cache with minimal messaea network.
passing overhead and by utilizing a context-switching mech
anism which is already highly optimizedysent er/ exi t coa
on Intel). We show in our evaluation that the overhead of our -
r er out e routine is negligible.] -

C. Alternative Storage Stack [TTTT]

The typical user of an exported page cache would be a
user-level database or storage server. We experiment gth t
flexibility and performance characteristics of our apptobg
re-implementing the VFS in C++ where objects are cached
and written back to disk using the four 2-COLA [5] indexes. - —_—
We find that our alternative storage stack has interesting] [
performance properties regarding metadata update anchsear [TTTT] L[TTT]

oA s1 coa s2

performance for extremely large numbers of file objects. R
Journal Journal
Newnsert COWA COLA Fig. 3. The COLA performs a journal commit.

COLA journaled: The COLA does not typically support
deallocating disk space after deleting elements. We maldifie
the data structure to percolate into a higher level after myme
[TT1] [T 1] Since all levels above the target level become free after a
merge, if the target level can fit into a higher level, we capy i
upward, reclaiming space after a series of deletes. Thisegs
is called percolationand in Figure 3 we see the target level
in S1 percolate upward irb2 after finding a higher level that

Fig. 2. The COLA performs a single insertion. fits.
The output of a merge can be smaller than the input if

COLA: We utilize the cache oblivious look-ahead array dat@ere arecancellationkeys which are inserted during deletes
structure to provide our indexing needs. We have made soteancel out existing key-value pairs during a merge. Tokira
alterations to the data structure to allow journaling arottilog. the amount of elements in each level, we maintaicussor

The cola maintains fon key-value pairs (typically stored which all readers share, and which writers must take a lock
asstruct s)log(n) sorted arrays of packed key-value pairoon to update after performing a merge into a target level.
As seen in Figure 2, when a new element is inserted into tfliese cursors are appended to the journal as part of the flush
COLA, if the top level is free, it is inserted there directlyprocedure.
otherwise we find the first free level by searching from the The journaling layer of our system instantiates a thread
top down: this is called théarget level All levels above the which periodically executes the flush procedure. To provide

COLA Insert

recovery of the object store in case of a crash, we modifigdlue is the child-id. The child-id is equal to the object ID o

the COLA to flush to disk in an atomic manner. We serializeithe object in the object layer that tlikent r y points to.

the cursors for each level into a journal as part of a 2-phaseThe object layer supports POSIX like semantics for manip-

commit protocol as seen in Figure 3. The flush procedure istating file objects. A file object is similar to a POSIX file
1) Take a write lock orall COLAs, waiting for existing except the file name (object ID) is chosen by the system, and

readers to leave. is returned to the namespace layer to lindent r y against,
2) For each COLA, flush all levels to the level below th@nalogous to annode number. Otherwise the file can be read
lowest level; sync that target level to disk. from, written to, and sought through. The object store sutgpo

3) Write the state of all COLASs’ cursors to the journapparse files, and rewards sequential appends with incgipsin
followed by a sector containing a checksum of the newlrger contiguous allocations. File objects can be precatied

added cursors; sync the journal. in advance, and can specify a preferred block size during
4) For each COLA, percolate the target level to any levarites that would require allocating new blocks to back the
that fits; sync that level to disk. file. We have designed our object layer in a peculiar way to

5) Write the state of all COLAS’ cursors to the journaPptimize performance on the COLA.
followed by a sector containing a checksum of the newly @) Omaps and fmapsAll files in the system are associ-
added cursors; sync the journal. ated with a single omap object, whose primary key in the omap

An example is seen in Figure 3. The COLA begins with i(,pd.ex is its object ID. Rathe.r than using a radix tree of bI_oc_k
cursor that points to the data stored at sgdn the COLA. A Pointers to support sparse files, we adopt an approach simila
flush is requested, so the COLA transitions to stgtewhere 0 XFS. We introduce the idea of an fmap which contains
all contents are merged into the level underneath the lowdormation about a contiguous range of virtual offsets in a
level. A new cursor is appended to the journal. If anythingfe: Newly allocated files start off with a single fmap that
happens, the datd0 points to is still on disk and was notindicates the entire range is empty and is not backed by any
overwritten by the merge i§1. Finally we percolate upward physical .blocks from the blqck store._An fmap which |lnd|csate
in 52, with the data fromS1 again being unaffected leaving® "@nge is not backed and is empty is callege@ As virtual
the S1 cursor usable in case of a crash. offsets are faulted by write requests, the fmap containtireg t

This series of actions allows us to write elements to a cCOLWrtual offset is broken into two or three new fmaps, where
index and know they will hit the disk in the order we wrotdn€ ranges not containing the faulted offset are assocvaited
them, assuming callers take the appropriate locks, andrass{naps set as gaps. The range containing the faulted offset is
ing dirty pages are not written back until flush (guarantegd @ssomated with Backedfmap. Backed fmaps.pomt to extents
our page pinning implementation). The additional sync sepin the block store, allocated by the buddy index. Fmaps are
needed as we may write over an existing level pointed to §jored in the fmap index, and utilize obucket query
the last-known good cursor in the journal while percolatipg ~ Bucket queries can take any virtual offset, and find the
Our multi-state approach to avoid this scenario is simitar fmap in the fmap index that contains it. This is done without
protocols used in log truncation of a transaction manag#j [1P€rforming a merge of all levels in the COLA, making faulting

Our file system upon which our object store is backeRerformance fast for fmaps still in cache.
supports a truly synchronoussync that explicitly flushes To reward serial writes with increasingly larger extents
the disk caches by issuingSATA FLUSH_CACHE command allocated from the block store, each gap is given a link
and waiting for its successful return and full flush of anf0st. When the virtual offset at the beginning of the gap
pending writes or commands before issuing any more writssfaulted, the link boost is used to determine the size of the
to the disk cache. This allows us tparanteefull atomicity allocated extent. This is called serial allocation When a
of writes in our system without having to turn off the diskéerial allocation occurs, the subsequent gap is given an eve
caches [27]. We would not have to hold a write-lock on thigrger link boost. Gaps created by random faults are always
COLAs during flush if we utilized copy-on-write, this is agdiven a link boost of 1. Over-allocation of extents can betdea
subject of future investigation. Additionally, our flushopwcol With by having the buddy allocator reclaim unused portiohs o
is currently linear with respect to the size of the indexstheXtents past the end of the file when free space is low.
can be improved and is a subject of future work. Currently D) Buddy allocator:The buddy allocator is implemented
we at least allow readers to continue performing reads whigthin an index and does not use a binary tree. During
a merge into the target level is ongoing. We wait for them téeallocation we simulate traversing the binary tree, mghi

with them. Blocks allocated by the buddy allocator havediffs

relative to the start of the allocation region. Reading fisah
The namespace stores eabdnt ry as an element in the a block is equivalent to doing a memory copy from the read

dmap index. Elements in this index consist of tharent- block to the reader’s buffer, a write is the same.

id, the componentand thechild-id. The parent-id is equal ¢) Optimizing for COLA journaling:Our object store is

to the child-id of the parentlent ry. The primary ordering careful to write out updates to the lower COLAs such that

of elements is parent-id, followed by the component, and tlhlependencies are always written before dependent objacts.

D. Namespace and object layer

4

case of crash we may utilize an asynchronous back-groumdte-back is due to memory pressure, 1ffs writebacks the
cleaner thread to perform a sequential range query throudjity pages to a special swap partition it maintains. Iraégg

the indexes to garbage collect objects not pointed to. Thhes swapping mechanism with the system swap would require
would not be possible if our COLAs did not guarantee propeareful understanding of the interaction between these two
ordering of insertions (e.g., inserting into the fmap COLA kinds of swapped pages, and how it would effect thrashing
and then inserting3 into the omap COLA should result inon the system, and is a subject of future work. If the page-
A hitting disk beforeB). We therefore rely on our journalingwriteback is a periodic flush for durability, 1ffs does notter
protocol to ensure this property is held. back the pinned pages.

d) Optimizing for COLA write-optimizationPerforming In this manner 1ffs makes a best effort to not write-back
any kind of query in the COLA is slow, and the slowespinned pages, while still offering a last recourse to thenkkr
queries are those that perform range queries, or non-exdeting a memory squeeze. Further, if the user-level storage
match queries (e.g., lower bound). This is because the negimponent ensures it never pins more pages than what could
key in a cursor increment could be in the coldest cache levbe swapped out, 1ffs can guarantee the process will not be
On the other hand, queries which look for exact matché&sled due to pinned pages.
can stop searching downward the moment they find a match. f) MPI N The MPI N flag that we add taymap marks
Also insertions, updates, and deletes are inserted from fheges belonging to that mapping as pinned. When a pinned
top, and so a key which is updated frequently, or was deletpdge is written to, it is marked dirty, and is written back bg t
frequently results in a fast exact-match search. We thexef&/FS as part of a periodic flush for durability, or in response
have designed the object layer to perform all operations i@ memory pressure. 1ffs’ page write-back checks if pages
terms of insertions, updates, deletes, and exact matclieguerare pinned before writing them back, and does not write back

For example, in our name space layer dmaps refer to thpinned pages. If the sync bit is set in the write-back control
child directory entries via the parent-id in each child'ykeo parameter, then 1ffs syncs the pages. This bit is only sehwhe
we can perform pathname lookup without performing a ranglee pages are synced as part of an explicit user-invokgohc
query. File creation consists of performing a path lookuy arequest on the page mapping.
if no entry is found, creating an object id in the omap, foléalv g) 1ffs andset _vnma: The Linux out-of-memory Kkiller
by creating a gap fmap. A special extension offered by oig responsible for killing processes to reclaim pages ir ads
object store is alind createwhich performs no path lookup, a memory squeeze that will cause resource deadlock. Althoug
and if errors arise, they are dealt with asynchronously late 1ffs is able to prevent processes from being killed by the out
during a COLA merge. This allows for near to disk-throughpwtf-memory killer, thrashing from writing back swapped psge
file creations that are actually faster than the natixa Efile can harm performance. User processes can not determine if
system’s creation throughput. they will fault a page on a read or a write, or they will be
forced to maintain their own page table and perform lookups
on every access. The purpose of exporting the kernel page

To minimize the performance penalty of a user-level pagmache was to avoid this. Therefore 1ffs offers processesva ne
cache, we use the kernel's page cache for our object stamgstem callset _vma which allows a process to set a high
Rather than maintain a page table which is checked on everster mark. When the total number of dirty pinned pages
access, wemap the entire store, and use the hardware to fallelonging to a particular process exceeds the thresholih set
cache misses. This allows the object store to avoid paying et _vma, the kernel sends &l GUSRL1 signal to the process,

a software hash table or software lookup calculation foheacto which it can respond by immediately flushing its dirty page
hits. However, Linux does not permit applications to prévero disk, or face being swapped out.

write-back of dirty file mappings to disk. Linux relies onghi To write into the exported page cache, we simply use
to prevent memory squeezes, and has been a sticking pombtpy into the mapped address corresponding to the physi-
for user-level file systems. We resolve this issue by addingcal block on disk allocated by the buddy allocator. To préven
new flag tommap calledMPI N, along with a new system call a read fault on the first copied bytes (as the kernel trieslto fil
set _vmma, and a custom file system 1ffs. Among other thingshe page to prevent data inconsistencies visible to the),user
1ffs has been especially modified to provide a full disk cacHer future work we could modify the kernel to detect a read
flush onmsync. or write fault, and tonot read in the page on a write fault.

e) 1ffs and swappingThe file system we use underneath We implementset _vna by modifying thenm st r uct
our object store library is a simple file system that whehandle, which aggregates all the virtual memory mappings
mounted, appears to have only one file in its root directofyelonging to a process. During a page fault, the kernel de-
The file has a hard-coded inode and when the file systemsiends a red-black tree of virtual memory areassis) until
mounted, the file is always considered to be owned by thtefinds the one containing the fault. Thisra is passed into
root user. 1ffs provides a direct interface to the disk fathe fault handler which determines if the page is anonymous
applications that usemap. When 1ffs is asked to perform(e.g., frommal | oc) or backed by a file. At this point we use
page-writeback, it first determines if page write-back i® dua back pointer in thesma to access therm st ruct which
to memory pressure or a periodic flush for durability. If theontains the global count of dirty pages and increment it. If

E. Lower Layer: Exported Page Caching

the count is over the set threshold, we send $h&ALRM they do not benefit from the review and testing that a kernel
signal. component receives.

By utilizing the features provided by 1ffs and our trapping i) Micro-Kernel Approaches: The body of work on
mechanism, a user-level process can efficiently use thekernmicro-kernels includes a large and extensive list of ofiregat
page cache to fault in pages on reads and writes to digkstems. The major contributions include L4 [21], L4-Vexifi
while working with the kernel to keep memory pressure ofecently [19], Spring [24], Exokernel [15], Pebble OS [11],
the system low. The kernel is not deprived of total control &fINO [35], Synthesis [23], Accent [30], and Mach [1]. Each
the system, and can swap pinned pages if necessary, orljustdi these projects are all new operating environments, some
the process and release the pinned pages (without writerg thinclude modular APIs to re-use kernel components at the user
back) if swap space is exceeded. User processes can trap ligwel, such as VINO. L4 and Mach are the canonical micro-
privileged shared memory libraries that use these famdlito kernels, offering a practical implementation of the concep
efficiently modify the caches of these shared-memory datbdcxokernel utilizes an even smaller micro-kernel that only
and storage servers without the use of costly message gassiandles permission and resource availability. Our pagbecac
mechanisms. We have used these features to implemergxgorting technique is designed with monolithic kernels in
simple but scalable object store which competes favorably mind. It is an explicit endorsement of the memory mapping to

native file system performance. backing store model. Page cache exporting is part of a mature
and fully developed modern monolithic kernel and is not an
I1l. RELATED WORK alternative operating system or hyper-visor like substrat

Page cache exporting utilizes some features from other

Previous work related to our object store built on top of ouficro-kernels. The idea of trapping into a privileged lityra
exported page caching technique can be categorized as Wi less privilege than the main kernel by utilizing the dhar
dealing with currentmmap semantics and design decisions ifvare segment descriptors of the CPU is an alteration of one
commodity kernels, external paging, user-level file systeraf the existing ideas in Pebble OS: portals. Pebble OS portal
(namely FUSE), other object-store and indexing file systemglow applications to transfer control to other applicatio
and alternative indexing technologies. using special automatically generated trap routines. Sike-

h) Existing In-Kernel Mechanismsthe virtual memory thesis, Pebble OS generates these trap routines autoliyatica
management component of the kernel has grown consideased on a specification language that has semantic riestsict
ably since Linux 2.4. Memory management of anonymoulat protect the system (e.g., from infinite loops). Pagdeac
memory has been merged with management of dirty fikxporting utilizes a trap instruction only as a practicalywa
pages. The swapper has been implemented to act liketoacontext switch efficiently to a shared user-level storage
special file system to write-back dirtiAP_ANONYMOUS stack to access that server’s page cache for a lookup or
pages to the swap. Newer features suciMaB_POPULATE write. The privileged library must be authorized by the main
andMAP_NONBL CCK were introduced and not reserving swajkernel with theseal system call discussed earlier. Granting
space for read-only pages has been introduced since 2.5. phigilege to new libraries can only be done by re-compiling
m ock system call and its cousin flag in temap system theseal module to include the new library. No other security
call are typically referred to as pagsnning system calls; mechanisms or context switching primitives are needed or
they are not that however. Thal ock system call simply employed by page cache exporting.
ensures that a page will never be written to swap, and will j) External paging: External paging is an ongoing field
never be released/evicted. It doest guarantee that it will of research trying to find a better abstraction between pro-
not be written back. This is in fact difficult to design aroundesses and memory management. In a similar vein to micro-
due to the fact that Linux still treats dirty file pages an#ternel approaches, the majority of this work focuses on
dirty anonymous pages quite differently in its virtual mesno introducing new operating systems with alternative memory
management code. manager designs.

Other kernels such as Solaris and MacOS X also provideThe issue of giving applications efficient page-caching
the standard POSDémap and ml ock system calls, but is long-standing. Stonebraker in 1981 discusses the inap-
they have the same semantics on these systems [42]. pmpriateness of LRU (default in Linux) page replacement
instance, Solaris also handles file pages and anonymous pdge database workloads [40]. Several architectures to re-
differently, since Solaris 8 dirty file pages are placed on air this have been proposed, including external paging in
separate list to reduce pressure on anonymous memory Mhch [13] [10], an extension to a communication-oriented
Solaris and Mac OS X also provide the same POSIX stand&aknel by Young [45] and a further extension to Mach external
m ock semantics. Solaris and Linux offer Direct 10 to givepaging by McNamee [7]. Other works include a scheme to
user-level database processes the opportunity to perfoem t partition physical memory, and grant user applicationgalir
own caching. However these cache implementations remawntrol in a novel kernel (V++) by Harty [15]. Haeberlen and
separate, distinct, and are difficult to make as efficientas tElphinstone discuss a combination @iP and GRANT that
in-kernel page cache, requiring careful implementati®® [provides a super-set of the functionality offered by Liraux’
44] and tuning cache size to avoid thrashing [29]. In additicspl i ce system call [21].

Mach external paging is an alternativertoap that allows mode that mostly eliminates these overheads, but then the
micro-kernel servers the ability to map pages into oth&USE daemon will not receive every read request, making
processes [10]. Clients make requests to servers via RB@stom or alternative cache implementations like our dbjec
and receive an authorization token in reply. This token catore impossible.
be exchanged with the memory manager server to have a |) System metadata indexing mechanisms and object
page mapped into the client's address space. Evictionipslicstores: Our object store system is an example of a storage
are not configurable in this environment. McNamee proposégick which is considerably different than what a typicalSVF
to solve this by using RPC to signal page faults and allogtovides. We utilize several cache-oblivious indexes tiee
processes the ability to specify eviction policies. UnlMe- caching of metadata in RAM and do not haveode or
Namee’s approach, we do not require RPC and instead usgeat ry caches.
shared memory approach which they deemed too complex tgxisting indexing systems on Linux (e.g., inotify) and athe
implement. Haeberlen and Elphinstone propose an extens{98s provide user applications with an event queue to signal
similar to spl i ce with the exception that processes cayhen a directory or file has changed. User-space indexing
gift pages to other processes, not just the kernel, and thgktems use these mechanisms but pay heavy message-passing
processes will receive a message from the kernel on a pagRis.
fault. Evaluation of this work was scant. Unlike Harty, we do |, hFAD, the authors propose a B-tree index to store offsets
not physically partition the memory, but let the kernel i@ta 1, oytents and argue that the file system should be reduced
full control over all aspects of memory, and instead use:g 5, object store [36]. Their prototype uses FUSE, and it

soft signal-handler to signal page-writeback to maintaod) 5 ynciear in their short paper how they will achieve proper
disk throughput, and use a swapper to ensure liveness ‘i‘@goverability in crash.

performance guarantees to applications yvhen necessary (bfserspective [31], a distributed object-store—based fatesy

swapping out pages that need to be e\{lcted .bl,lt are _d!r%th metadata indexing and query capabilities uses FUSE [25

Unlike McNamee, we do not allow alternative eviction paei and MySQL; MySQLUs InoDB [16] back-end employs write

to be selected, and this is a SUbJeCt.Of future work. ... off-loading to handle write bursts and uses a B-Tree to index
Our _apprpach IS fundamentally dlfferen_t_ from preexisting Perspective argues for more flexible namespaces and

works in this area in that we have modified and extend etadata capabilities. Its performance is limited by iterus

the eX|_st|ng virtual memory implementation of UNIX (L'n_ux)space implementation and the authors focus instead on a user
to achieve kernel-like 1/0 performance, rather than replic udy

or start again from scratch with generalized approaches. OuSpygIass [20] optimizes metadata queries on large file

focus is on using this technology for user-level storage and . ; : .
systems by improving performance when queries are limited

file systems in existing commodity operating systems. We ar . "
Y 9 yop g sy ato a file system namespace subtree. Spyglass partitions the

able to abide by a simple architecture that is a better fit f?l[e system namespace into subtrees that maintain separate
existing UNIX-like operating systems. Unlike much work in Y P p

this area, we focus on file system and I/O benchmarks, Indexes. Each partition index is kept small enough to fit into

: M. Spyglass maintains an index of partition indexes which
memory transfer performance or faulting overheads [7,33,1 .) .
21]. is structured as a traditional file system tree, using a block

allocation strategy similar to a B-Tree. Spyglass’s irieart
delete, and update speed depends on its partition indexhwhi
utilizes a B-tree like structure that will scale poorly faserts
and updates compared to a COLA, especially when RAM is

k) User-level file system supporithe file system ab-
straction is simply one kind of storage stack; however, éns
important one. Itis one of the most widely used abstractions
interact with on-disk data. Although there are many usesile
) : . . full.
file system frameworks, including NFS interceptors, share])])

m) Alternative fast indexing technologies:The

libraries, and even one of our own [38] basedptir ace, the -) e)]
framework which behaves most like a native kernel file systeffOLA [5] is one example of a write-optimized indexing

is FUSE. The FUSE file system is broken into two parts: (1) &R¢hnelogy; other write-optimized indexing technologgso
in-kernel file system that behaves like an NFS client, anca(2fXiSt- The log-structured merge tree (LSM) [28] maintains
user-level library that simplifies the process of creatitue 2" IN-RAM cache, a large B-Tree called on disk which
daemons that act like NFS servers, responding to this clieft # times larger than the in-RAM cache, and an even
They communicate across a shared memory interface. FUSEJer B-Tree also on disk calleg which is 12 times larger
and NFS interceptors and custom NFS file systems only exptien ¢1, ideally. When RAM is full of insertions, they are
the POSIX service requests of processes. FUSE does not HA®ged in sorted order inte,. Whene, is full, it is merged

a mechanism for allowing client file systems to participate i" sorted order intocs. Amortized insertion time here is
write-back of dirty pages, and has no mechanisms to allcﬁl((\ﬂN) log(N)) /B [33]. As there are only two trees,
file systems to interface with the page cache like kernedlewquery time is optimaD 10g3+1(N)) but in practice is slower
file systems can [25]. Further FUSE incurs context switchirthan a B-Tree as two trees are searched. LSM is a classic
and message passing overheads for most in-cache workload#te-optimized data structure, but the COLA maintains an
this is confirmed by our evaluation. FUSE supports a cachiagymptotically better amortized insertion time. Rose [33]

is an LSM-based database which exploits compression We observed during experimentation that with regularitg, w
improve throughput. were asked to flush due to memory pressure, and responded
Partitioned exponential file trees [17] are similar to LSMyromptly by performing a journal commit of our indexes and

trees and like Spyglass, include an optimization for bursésfull data flush.
of insertions with a limited range of keys by relying on a 0) In-cache, out-cache:All benchmarks that we ran
partitioning scheme. Such an optimization can be easilgdddall into one of two categories: (lin-cache or (2) out-of-
to the COLA. cache Due to the extreme variation in benchmark results
across hardware and file systems [34], we focused on in-
cache benchmarks where almost all operations can be service
We tested the performance of our.object store pased. ON\ghout accessing the disk, and out-of-cache benchmarks,
exported kernel page cache by running standard intense/e {jjere almost no operations can be serviced without acegssin
system workloads with the FileBench utility [41]. We an@yiz ihe disk. Both workloads are important (e.g., Facebook’s
several cache intensive workloads, as well as larger SyStFIsttack [18] relies heavily on memcached [9], a distridute
benchmarks including a video server, a file server, and a W@é’che). We confirmed the presence or absence of block 1/0
server. We also analyzed the cost of our trapping mechanigfRen appropriate usingst at . We also ensured the working
compared to standard system calls and FUSE, and evaluaigflsize was large enough that random accesses almost always
our metadata indexing against standard Linux file systems.n5q to access the disk.
~ n) Experimental setupAll benchmarks were run on six p) Interposition: The cost of only intercepting user-level
identically configured machines each W_lth a 2.8GHz X_eoflﬂe system calls and passing them down to the lower file
CPU and 1GB of RAM for benchmarking. Each machingystem can be very high. It is important to minimize this

was equipped with six Maxtor DiamondMax 10 7,200 RPN gt 45 it establishes an upper-bound on in-cache throtighpu
250GB SATA disks and ran CentOS 5.3x86-64 with the late§fhere context switching is a critical path. Ouer out e
updates as of December 28, 2009. To ensure a cold cache %/@em call re-directs every relevant user-level systelntaa

an equivalent block layout on disk, we ran each iteration @le privileged shared library. To precisely measure the abs
the relevant benchmark on a newly formatted file system with, equivalent context switch to the user-level FUSE daemon,
as few services running as possible. We ran all tests at leqst enabled its odi r ect _i o feature which simply forwards

three times or until the standard deviation was within 5% %fvery user-level system call to the user-level file systenhear
the mean, except where explicitly noted. To compensate #@f3" utilizing its in-kernel caches. This is identical to ath

disk geometry and partitioning irregularities, and to taM® | o1 oyt e does. Without receiving every file system call, a

account the ZCAV effect, all benchmarks were run on newlyser-jevel storage server can not implement its own cache (a

formatted identically sized 30GiB partitions [43]. we have to), or modify the cache’s semantics, as it would
We ran several configurations during our benchmarks, il?ﬁplicitly be using the kernel’s cache.

cluding: The rest of Section IV discusses experimental results con-

« ext 3 is a default &T3 file system. cerning in-cache performance (Section IV-A), and out-of-
« fuse has caching disabled and is a pass-through fileche (Section IV-B) performance.

system mounted on top ofHRSER 3.

IV. EVALUATION

. xfs is a default XFS file system. A. Shared Memory In-Cache Performance
o reiserfs is a default RISER3 file system. The Hotset workload consists of randomly reading 128B
o btrfsis a default BTREEFS file system. from a randomly selected file from a set of 65,536 4KiB files.

« hook is a pass-through file system using onlgr oute An operation is opening a file, reading 128B, and closing
to intercept file system calls, and call down int&€IRER jt. The total workload of 256MiB easily fit in cache for all
3, and therr er out e back on completion. file systems. We confirmed this by monitoring zero block 1/0
« exp-pc is our whole storage stack, utilizinger out e (except for periodic write-back) and decreasing the wa#lo
to trap into our object store, which runs on top 6fF% size until throughput did not increase. Figure 4 shows that
which runs directly on top of the disk device. hook (11,723 ops/sec) was equivalent in performance to
The object store was compiled with all optimizations turnedei serfs (11,721 ops/sec), which implies thaker out e
on, and so were all benchmarks for all configurations. Onhas a negligible overhead in this workload. On the other
the hook andexp- pc benchmarks used our modified kernelhand,f use (7,960 ops/sec) was only running at 65% of the
all other standard file systems used the version of LindRroughput ofrei serfs which it is based on. Every single
we forked from during development: 2.6.31.6. The in-kernelperation includingpen, r ead, andcl ose must call down
watermark for theset _vma system call was set to 500MiB.into the FUSE kernel file system, queue a message, wait for
Similarly, the dirty page ratio for the Linux kernel on all-in the daemon to be scheduled, call down into the lower file
cache configurations was set to 50% to equal the cache sigstem (RISER 3), and then reverse the process to return
used by our system, and the default 10% for out-of-cacke the caller. We saw that other kernel level file systems
workloads to keep the disk plugged with 1/O. Journal flusperformed comparably texp- pc for both single and multi-
and dirty page write-back of all file systems was set to 30#readed performance.

14000

W 1-thr = 48-thr 9000
8000
7000
6000
5000
4000 -+
3000
2000
1000 -+

12000

10000

Ops/Sec

8000

Ops/Sec

6000 -

4000 -
ext3 fuse xfs exp-pc hook btrfs reiserfs

2000 - File System

0 4
ext3 fuse xfs hook exp-pc reiserfs btrfs Fig. 6. In-cache fileserver workload.

File System

48 threads. Figure 5 shows thatp- pc was running at 9,940
Fig. 4. Hotset benchmark. ops/sec, whereei serfs andext 3 respectively maintained
10,980 and 11,061 ops/sexxp- pc incurred a 10% overhead.
- Lthr = 48thr We measure@xp- pc with no memory transfers in the page
12000 cache, and throughput increased to 10,788 ops/sec. Qyrrent
when flushing, we stop all readers and writers, and appeeds ar
dirtying enough pages to cause the synchronous write to disk
on flush to damage our throughput. Readers are stopped for
a shorter period than writers during flush due to our flushing
protocol, so in the multi-threaded workload this affects ou
performance less.
Fuse at 6,541 ops/sec for single-threaded, and 6,276 ops/sec
for multi-threaded was again bottlenecked on context figic
which were slowing down every op in this in-cache workload.

10000 -

8000 -

6000 -

Ops/Sec

4000 -

2000 -

ets fuse xfs hook exp-pc - reiserfs As in Hotset, the other file systems were primarily doingdgljtt
File System with the Linux VFS handling most of this workload.
r) Mixed read and write system workloadJnlike the
Fig. 5. In-cache webserver workload. webserver workload, the in-cache fileserver workload seés

an equal number of reads and writes, as well as creating
and deleting files within subdirectories. The fileset caesis
Our multi-threaded run consisted of the same workload 86 1000 files, each 64KiB large. Figure 6 shows thate
above, with 48 threads in parallel. On our hardware setUpcurs a 34% overhead axt 3 since it suffers from the same
multi-threaded performance was worse for all file systenggntext-switching bottleneck as in other in-cache woréiba
(@ 27% drop in performance) as our machine has a singlgp- pc suffered a 6% overhead oext3 due to writers
core, and the overhead of locking and scheduling was eatifigcluding unlink and create) stopping due to flushing. Tée 1
away at useful good-put through our single core. Due to igyerhead ohook onr ei ser f s demonstrates thater out e
shared-memory exported page cachep-pc was able t0 has negligible overhead in both read-heavy, and mixed read-

maintain equivalent performance to the native file system. Write in-cache workloads that include unlinks and creates.
believe the primary bottleneck in the Hotset workload waes th

VFS, since all operations accessed files amdes which B. Out-of-Cache Performance

should have been cached. This explains the almost uniformFor out-of-cache performance, we stressed the on-disk for-
performance across all native kernel file systemsead pc. mat of the file system, as well as the efficiency of the Linux
The largest discrepancy in performance among the kernel fiteap implementation’s read-ahead, faulting, and writing com-
systems was about 10% betweesi serfs andbtrfs. pared to direct in-kernel block device requests.

g) Read-heavy system workloadhe Webserver work- The videoserver workload consisted of a single uploading
load represents a read-heavy workload where again the wathkeead, pushing a queue of up to 194 new media files to the
ing set was confirmed to fit into cache. In the webserveerver, while one or more clients downloaded a differentimed
workload, threads open, do a whole read, and close ten filékg at the same time from a set of 32 pre-existing media files.
and then append a 16KiB block to a log file. Each open, whotgach media file was 50MiBL.- t hr is a configuration with one
read, close and append are an operation. The in-cache walient, 4-t hr is with four clients, and#8-t hr is with forty-
load had 1,000 files of 4KiB. The multi-threaded workload haegight clients. Figure 7 shows that all systems have equivale

W 1-thr = 4-thr m48-thr 250

200
3 150
d
S
8
° o 100
7]
wv
7 50
o
0
ext3 xfs exp-pc
File System
ext3 fuse xfs exp-pc hook btrfs reiserfs Fig. 9. Out-of-Cache fileserver workload.

File System

(447 ops/second) is designed for random reads to a large
number of small files due to its global S+-tree it can quickly
perform lookups on objects, and can keep all the parent nodes
in this tree cached in RAMXf s (366 ops/second) has a similar
advantage. Both of these file systems were able to fit a larger
amount of the workload in cache. Obpok instrumentation
induced a 14% overhead as the additional calf & out e

took long enough that there was time for the kernel to evict
more pages to make room for new reads, decreasing the chance

1
zzz j I I I that it can avoid a disk /0 on a read even furtheuse
150 I at a 46% overhead overei serfs magnified this problem
100 | with even longer context switching times, further harming
50 throughput.
0 ‘ ‘ ‘ ‘ ‘ t) Mixed read and write out-of-cache workloadh this

ext3 fuse «fs hook exppc reiserfs benchmarkext 3 had a standard deviation within 8% of
its mean. We found that read performanceeafp- pc was
competitive, but write performance was lacking due to the
kernel's current inability to distinguish between full gagver-

Fig. 8. Out-of-cache webserver workload. writes, and partial page writes (which require precedirafire
faults). Therefore in all write workloadgxp- pc performed
reads of pages before dirtying them with writes. This was

performance (380 ops/second)use was not slower here confirmed by temporarily modifying the kernel to not fault
because context-switching was no longer the bottle nesk: din pages on writes. Before this change, we would see disk-
I/O performance wasxp- pc uses extents for serially written throughput block reads (50,000 to 60,000 blocks per second)
files, so blocks of video files are mostly contiguous, a commejeceding large flushes of our page cache. Afterward, we saw
design decision used by the other file systems. For small block reads (except on read cache misses). This caused
numbers of reader threads, the performancexaf-pc was an increased lag for flushes that were performing writes. In
good sincemmap read-ahead was still able to pre-fetch blocksigure 9 we see that reading pages before writing them, and
but as the number increased to 48rap read-ahead stoppedionger flush times induced a 37% overhead ower3, and a
working effectively and our throughput decreased by 51%. 349 overhead ovexf s.

s) Read-heavy out-of-cache workloa@ihe out-of-cache u) Metadata insertion performanceThe performance
webserver workload was identical to the in-cache workloadrgument for user-level storage is workload specialiratio
but stressed 1/0-bound random reads. Due to high varianceé/ifhile exp-pc performs extremely competitively in other
disk performancef use had a standard deviation of 13% ofworkloads compared to native kernel file systems, it is speci
the mean. We used 100,000 files of 32KiB each, and appermsd for rapid metadata updates. We discusshiived create
of 16KiB. We found that during our runs botéxt 3 (244 optimization. A blind create is a create that does not return
ops/second) anelxp- pc (228 ops/second) spent 9.8ms in eacan error if the file already exists, or if a part of the path
read operation as seen in Figure 8. This latency was verg claes not exist. This allows us to avoid performing an initial
to the disk-arm latency to perform a seek on our hardware. Wokup during create and defer error handling until merge, a
monitored block I/O and found a steady stream of block readshich point the error condition can be appended to a log. The
not at disk throughput. This implies that both systems weepplication level semantics are changed as the error is not
performing a block read on each read system &ali.serfs reported during file creation but rather asynchronouslgrlat

Fig. 7. Out-of-Cache videoserver system workload.

500
450
400
350
300

Ops/Sec

File System

10

eXp-pC seseees reiser Xfs ————axt3 M Creating Lookups
45000 25000
€ 40000 /f
§ 35000 / 20000
b 30000 7 g
‘o 25000 L £ 15000 -
E 20000 /o 3
2 S & 10000 -
2 15000 - e ©
(9 0
2 10000 WA wr” .
o P 5000 -
w 5000 e m—
o 74£.M m——o=” ‘ ‘ . ‘ ‘ || : .
1 2 4 8 16 ext3 exp-pc reiserfs xfs
Millions of empty files File System

Fig. 10. Out-of-Cache object creation and lookup.
g) P Fig. 11. Partially out-of-cache object creation, deleted sokup.

during merge. For some applications (e.g., those that ,ely gng plock allocation in the same leaf node. XFS must update
O_EXQL) this is not a viable option. multiple leaf nodes for each of its trees, inducing addiion

In this workload we created 1,000,000 to 16,000,000 filggndom writes per createx&3 allocates nodes serially, but
with randomly generated names in the same directory, agde to thedi r _nane option uses a B-tree to store mappings
then performed 100,000 random |OOkUpS within this dir@CtOI'of hashes of path Components' toode numbers, and this B+-
Due to the excessive amount of time to perform runs, we oniee will induce similar random writes induced by the stress
ran each benchmark once. Since we intend to measure ogfythe other file systems.
the performance of indexing, we disabled journaling in & fi To compare lookup performance, we ran another workload
systems. Inext 3 andxfs this means using a RAM devicewhere 20,000,000 path names were inserted in stripes, which
for the journal, and ei serfs andexp- pc were configured js much closer to sorted order. In Figure 11 We see an
to have their journals disabled. Furthefr's was configured jmmediate increase in performance in all the B+-tree file
to aggressively batch super-block updates. Figure 10 shoyy&tems compared text 3. Due to the pseudo-sorted order of
the performance okfs andreiserfs started to decreaseinsertions the B+-tree of the indexing file systems is making
rapidly as the file set size grew beyond 1 million files. Thifyuch better use of its cache, staging updates in the same
workload forced each file system to index @entry to |eaf nodes before writing them ougei serfs andxfs are
i node mappings or suffer intractable lookups. For these filgow inserting within 1,456 and 1,777 seconds each, compared
systems which are using read-optimized indexing, thisfietli to exp- pc performing its insertions in 571 seconds. Now
random writes. Our write-optimized indexing is sorting andyxp- pc is only 3.1 times faster thaxf s and 2.5 times faster
merging, and is better exploiting disk throughput. Figu®e lthan rei serfs. We are still seeing a 33.5 difference for
shows that at 1 million files we were 20 times the speed gkt 3 though. Its inserting hashes of path components, so the
ext 3, 58 times the speed oki ser f s, and 69 times the speedinsertion workload still appears random ¢at 3 and it has
of xf s. These results are similar to those found in the COLeomparab|e performance to the previous workload. Lookups
paper when comparing random B-tree insertions to 2-COL#ye different though. We sawfs as the clear winner with
insertions [5], and to our own results in previous experiteen 75 second lookup time for 100,000 random lookups, and
with write-optimized structures. At 4 million, we were 62 gj ser f s andext 3 with 1043 and 1187 second lookup times
times faster thamxt 3, 150 times faster thanei ser f S, and each. ThQBXp- pc pays for its fast inserts with slower |Ookup5,
188 times faster tharf s. For 8 million,rei serfs was 163 We|gh|ng in with an e|apsed time dfi87 seconds. Lookup
times slower tharexp- pc, andxfs was 262 times slower performance is bounded by random block read performance,
than exp- pc. Runs of 16 million took more than 20 hoursand the B+-tree based file systems have large fan-out and can
to complete. Theexp- pc configuration inserted 16 million keep all or almost all of the parent nodes in their trees in
random keys in 422 seconds. It performed 100,000 |OOkUR$M, performing On|y a 5ing|e block-read per |00kup_ Our
afterward in 676 seconds. The massive performance deft&OLA based implementation usésy. N binary trees, and
is the difference between serial reads and writes and m@fige to the smaller fan-out and multiple trees, can not contai
efficient use of cache for inserts and updates, and rand@g many parent nodes in RAM. This cause®- pc to exit

reads and writes with very inefficient cache use. XFS UB.“ZQhe cache sooner, and to perform more block reads when out
a B+-tree for itsi nodes, as well as its free extents andof the cache.

dentri es. REISER3 uses one B+-tree for everything, with

the primary ordering being the directory id, and subsequent V. CONCLUSIONS

orderings being the object id, and the offset in the objebisT The argument for user-level storage is a non-POSIX inter-
is to induce grouping by directory on the disk. This allowface, ease of development, separability from the kerneal, an
REISER 3 to perform its inode allocation, dentry insertionpptimizing performance for important workloads. We have

11

shown that one can implement an efficient file system that[is]
as fast as or comparable to in-kernel file systems for standar
workloads both in and out of cache, and yet is optimizgds)
for high-throughput metadata insertions and updates. We h
shown how to do this without compromising the security of
the kernel, or of the data cached in shared memory. The
implication of this research is that future file systems glesis
should seriously consider development at the user-lekat, tHg
user-level storage services can have kernel-like effigiesmd
that future operating system design should consider fagusi
on more general access to the page cache and block deJ%%,
rather than a host of different POSIX file systems. [19]
v) Future Work: We plan to further develop our write-
optimized indexing approach for metadata storage. In@gexin
in file systems is not new, however designing around a cache-
oblivious architecture poses new challenges, but couldaed [20]
the complexity of scalable storage systems immensely. We
plan to further explore the modularity and flexibility of our
system by implementing a re-configurable user-level VH3L!]
composed of interchangeable modules where caches with dif-
ferent performance characteristics for different workleaan [22]
be mixed and matched. We plan to develop a simple distributed
file system based on our cache-oblivious technology and
exploit exported page caching to maximize our efficiency aré?!
compare it with existing distributed file systems like Gangl|
FS [12]. We expect our performance will be equivalent for B4l
RAM and disk machine where the index fits in RAM, but we
are interested in comparing performance with machines with
additional types of media or with workloads where the inddg>!
is larger than what fits in RAM. We also plan to benchmar6]
existing user level file systems using exported kernel page
caching and measure their performance improvements. [27]
We would like to acknowledge the useful assistance and
help of Zhichao Li. [28]

[29]
[30]

REFERENCES

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, Aevanian,
and M. Young. Mach: A new kernel foundation for UNIX developmh
In Proc. of the Summer USENIX Technical Copp. 93-112, Atlanta,

GA, Jun. 1986. .
Eric Anderson and Joseph Tucek. Efficiency matteBIGOPS Oper.

S%/st. Rey.44:40-45, Mar. 2010.
The Apache Foundation. Hadoop, Jan. 2010. http://hpdpache.org.
Apple, Inc. Mac OS X Reference Librar2009.

. A. Bender, M. Farach-Colton, J. T."Fineman, Y. R. Fogel C.

Kuszmaul, and J.Nelson. Cache-oblivious streaming Isirée SPAA
'07: Proc. of the nineteenth annual ACM symposium on Parallgzg)

algi_orithms and architectu_res)g. 81-92, New York, NY, USA, 2007
J.’L. Bertoni. Understanding Solaris Filesystems angifta Technical

Report TR-98-55, Sun Microsystems Research, Nov. 1998.p:/htt [34]

research.sun.com/research/techrep/1998/abstraurd5s.
K. Armstrong D. McNamee. EXxtending the mach external grag

interface to accommodate user-level page replacemerdigmlilnProc.

of the USENIX MACH Symposiurh990. o .
J. Dean and S. Ghemawat. Mapreduce: Simplified data pstag on

Iar%e clusters. IMOSD|, Elp. 137-150, 2004.
B. Fitzpatrick. Memcached. http://memcached.org,. Z010.
Free Software Foundation. External pager mechanistp:/fvww.gnu. [36]

org/software/hurd/microkernel/mach/externahger mechanism.html, 37]

Maé 2009. . .
E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Siichatz. The
Pebble Component-based Operating System. Ptac. of the 1999

USENIX Annual Technical ConfUSENIX Association, 1999.
S. Ghemawat, H. Gobioff, and S. T. Leung. The Google filstam.

In Proc. of the 19th ACM Symposium on Operating Systems Pléscip
pp. 29-43, Bolton Landing, NY, Oct. 2003.

[31]

[2]
3
igi [32]
[6]
[7]

18] [35]

]
[11]
[12]

(38]

12

] Kieran Harty and David

D. B. Golub and R. P. Draves. Moving the Default Memory idger
out of the Mach Kernel. IrProceeding of the Second USENIX Mach

Symposium Com;?p. 177-188, Monterey, CA, Nov. 1991.
J.” Gray and A. Reuter.Transaction Processing: Concepts and Tech-

nigues Morgan Kaufmann, San Mateo, CA, 1993.

R. Cheriton. Appficati%n-ccmlted physical
memory using external page-cache managementASRLOS-V: Proc.
of the fifth international conference on Architectural sagpfor pro-

gramming languages and operating systemg. 187-197, New York,

NY, USA, 1992 .
InnoDB. Innobase qy. www.innodb.com, 2007. i)
C. Jermaine, E. Omiecinski, and W. G. Yee. The partéttbexponential

file for database storage managemenhe VLDB Journagl 16(4):417—

437, 2007. . .
N. Kennedy. Facebook’s photo storage rewrite. httpuit.niallkennedy.

com/blog/operations, Apr. 2009. .)
Gerwin “Klein, Kevin Elphinstone, Gernot Heiser, Junndkonick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai EngeltitaRafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, &ichon
Winwood. selL4: Formal verification of an OS kernel. Pmoc. of the
22nd ACM Symposium on Operating Systems Pringiglps 207-220,

Big Sk{, MT, USA, Oct 2009 _
A.”W. Leung, M. Shawo, T. Bisson, S. Pasupathy, and E. lilek

Spyglass: Fast, scalable metadata search for large-soadge systems.
In FAST '09: Proc. of the 7th USENIX conference on File and Sjera

TechnologiesBerkeley, CA, USA, 2009.))
Jochen Liedtke, Uweé Dannowski, Kevin Elphinstone, @Gereflander,

Espen Skoglund, Volkmar Uhlig, Christian Ceelen, Andreaglbérlen,

and Marcus \olp. The l4ka vision, Apr 2001.
M. Mammarella, S. Hovsepian, and E. Kohler. Modularadatorage

with anvil. In SOSP '09: Proc. of the ACM SIGOPS 22nd symposium
on Operating systems principlepp. 147-160, New York, NY, USA,

N
o

09
H. Massalin. Synthesis: An Efficient Implementation of Fundamental
Operating System ServiceBhD thesis, Computer Science Department,

Columbia Université_lggz. . o
J. G. Mitchel, J. J. Giobbons, G. Hamilton, P. B. KesskrA. Khalidi,

P. Kougiouris, P. W. Madany, M. N. Nelson, M. L. Powell, andFs.
Radia. An overview of the Spring system. @ompCon Conf. Proc.
San Francisco, CA, Feb. 1994. CompCon.

D. Morozhnikov. FUSE ISO File System, Jan. 2006. httipse.sf.net/
wiki/index.php/Fuselso.

K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Selt
Provenance-aware storage systems. Ptoc. of the Annual USENIX
Technical Conf.pp. 43-56, Boston, MA, Mar./Apr. 2006. .

E. B. Nightingale, K. Veeraraghavan, P. M. Chen, andlidnF Rethink

the sync. InProc. of the 7th Symposium on Operating Systems Design

and Implementatignpp. 1-14, Seattle, WA, Nov. 2006.
P. O'Neil, E. Cheng, D. Gawlick, and E. O'Neil. The logtsctured

merge-tree (LSM-tree)Acta Inf, 33(4):351-385, 1996.
Oracle. Database administrator's reference. httpaihload.oracle.com/

docs/cd/B1930601/server.102/b15658/tuning.htm, Mar. 2009,
Richard F. Rashid and George G. Robertson. Accent: Angonication

oriented network operating system kernel. imProc. 8th Symposium

on Operating Systems Principlgsp. 64-75, 1981. .
B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R. GarRnspective:

Semantic data management for the homeEAST '09: Proc. of the 7th
USENIX conference on File and Storage Technolqgierkeley, CA,

USA, 2009. . . .
R. Sears and E. Brewer. Stasis: Flexible TransactiGtadage. InProc.

of the 7th Symposium on Operating Systems Design and Imptiztine,

Seattle, WA, Nov. 2006.
R. Sears, M. Callaghan, and E. Brewer. Rose: Compreseed

structured replication. IProc. of the VLDB Endowmentolume 1,

Auckland, New Zealand, 2008.)
P. Sehgal, V. Tarasov, and E. Zadok. Evaluating Perdmice and Energy

in File System Server Workloads extensions. Rroc. of the Eighth
USENIX Conf. on File and Storage Technologigp. 253-266, San

Jose, CA, Feb. 2010.) .
M. Seltzer, Y. Endo, C. Small, and K. Smith. An introdoct to the

architecture of the VINO kernel. Technical Report TR-34-&ECS

Department, Harvard University, 1994.
M. Seltzer and N. Murphy. Hierarchical file systems aeadl InProc.

of the 12th Workshop on Hot Topics in_Ogeratir] Syste2089.
R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, Mirdi, and

E. Zadok. Story Book: An Efficient Extensible Provenancenkeaork.
In Proc. of the first USENIX workshop on the Theory and Practite o

Provenance San Francisco, CA, Feb. 2009. o
R. Spillane, C. P. Wright, G. Sivathanu, and E. ZadolpiR#&ile System

Development Using ptrace. Technical Report FSL-06-02, Qder
Science Department, Stony Brook University, Jan. 2006.

[39] R. P. Spillane, S. Gaikwad, E. Zadok, C. P. Wright, and Ghinni.
Enabling transactional file access via lightweight kerneéesions. In
Proc. of the Seventh USENIX Conf. on File and Storage Teobiey

W' 29-42, San Francisco, CA, Feb. 2009.

ichael Stonebraker. Opérating system support forlsse manage-

ment. Commun. ACMZAgY):412—418, 1981. . .

[41] Sun Microsystems. ilebench. www.solarisinterram/si/tools/
filebench.

[42] Inc. Sun Microsystems. man pp. section 2: System Calls Sun

Microsystems, Inc., 4150 Network Circle, Santa Clara, CA®E USA,

[40]

2009.
[43] R. Van Meter. Observing the effects of multi-zone disksProc. of the

Annual USENIX Technical Com’p{a. 19-30, Anaheim, CA, Jan, 1997.
[44] C.P. Wright, R. Spillane, G. Sivathanu, and E. ZadokteBding ACID

Semantics to the File SystemACM Transactions on Storage (TQS)

%2 :1-42, Jun. 2007. .
. Young. Exporting a user interface to memory manageniem a

communication-oriented operating system. RhD Thesis Pittsburgh,

PA, USA, 1989. Carnegie Mellon Universli\tk{. . . .
[46] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budidiad Erlingsson,

Pradeep Kumar, and Gunda Jon Currey. Dryadling: A system for
general-purpose distributed data-parallel computingngusi high-level
language.

[45]

13

