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Abstract— This paper is concerned with the development of 

intelligent safety modelling for cycling safety at the nanoscopic 

level. The present models are primarily focused on the motorists 

modelling at an aggregate level. In this work a framework for 

safety analysis is proposed consisting of a) Data collection unit, 

b) Data storage unit, and c) Knowledge processing unit. The 

predictive safety model is developed in the knowledge 

processing unit using supervised deep learning with neural 

network classifier, and gradient descent backpropagation error 

function. This framework is applied to a case study in Tyne and 

Wear county in England's northeast by using the crash 

database. An accurate safety model (88% accuracy) is developed 

with the output of the riskiest age and gender group, based upon 

the specific input variables. The most critical variables affecting 

the safety of an individual belonging to a particular age and 

gender groups, are the journey purpose, traffic flow regime and 

variable environmental conditions it is subjected to. It is hoped 

that the proposed framework can help in better understanding 

of cycling safety, aid the transportation professional for the 

design and planning of intelligent road infrastructure network 

for the cyclists.  

Keywords—intelligent transportation system, road safety 

models, infrastructure, deep learning 

I. INTRODUCTION 

There were 1,870 fatalities, 25,950 serious and 129,810 
slight injuries due to road traffic crashes in Great Britain in 
2019 [1].  Nationally, the road traffic collisions cost the UK 
economy more than £35 billion every year [2]. While cyclists 
account for only 2% of the trip share and only 1% of the 
distance travelled in Great Britain, they, however, face a 
disproportionate share of risk and causalities. In effect, the risk 
currently faced by cyclists is highest amongst any road user in 
Great Britain, 12.5 times higher than the motorist for the same 
traversed distance. In the European region, the percentage of 
cyclist fatalities has increased from 6% in 2007 to 8% in 2016. 
Therefore, the problem of improving the safety of cyclists to 
reduce the numbers of cyclist’s fatalities is a primordial one 
requiring special attention. 

The preference and requirements of cyclists are different 
from other road users [3]. Safety is the main barrier associated 
with this mode, which is a critical mode and route choice 
variable [4]. The cycling time spent in varying infrastructural 
and environmental conditions is an important variable [5] and 
is influenced by sociodemographic and work characteristics of 
the trip maker [6]. There are limited studies which explore the 
risk of cyclists to their exposure [7], and there is insufficient 
evidence to understand the relationship between cyclist safety, 
and the identified safety parameters [8]. Additionally, there is 
a need for the capabilities to assess the safety of the 

experimental roadway designs and operational strategies 
before they are built or employed in the field [9]. This can be 
achieved by constructing a dynamic safety model, which is 
based upon these identified variables rather than the present 
probabilistic function of the traffic flow. 

An increase in the safety for cyclist will result in an 
increase in the cycling mode share. The real and perceived 
risks are the major barrier for the uptake of this sustainable 
mode of travel. The personal attributes of the rider have been 
reported as a significant variable which affects the safe usage 
of the infrastructure. In Czech Republic [10] (Bíl, Bílová and 
Müller, 2010), found that males account for around 69% of 
the crashes, and are more likely to be involved in a fatal crash 
(80%) [10]. Similarly (Rodgers, 1995), found that males are 
at a higher risk than females (around 5 times more likely than 
females for the same distance traversed) [11]. Similarly, the 
age of the rider significantly affects the safety of this mode, 
which is dominated by younger adults [12]. The study in 
England for the assessment of road safety by travel mode led 
them to conclude that risks for road users are highest in their 
youth. Their risks fall with the age. The similar results were 
also obtained in the Netherlands [13].  

The study to understand the cyclist's injury by age and 
gender in Sweden concluded that the females show a lower 
incidence than males, however, the elder women are more 
likely to be involved in a serious crash, than the younger 
women. The same results have been reported for males, with 
even more difference between the young and elderly 
population. They found that females sustain more work trip 
injuries than men[14]. However, men are more reluctant for 
modal shift to cycling than women [15], and it takes much 
more improvement in the infrastructure and environment for 
the women to consider cycling [12]. 

At the present road, safety analysis is performed using 
fatality and injury rate. The sole usage of statistics is 
insufficient to achieve a thorough understanding of road safety 
and developments over time [17], [18]. The current modelling 
is based upon the complex human factors [19] [20], believed 
to be directly or indirectly responsible for most of the crashes. 
The output of these prediction models gives prediction over a 
long-term with the main aim to forecast the yearly crash, their 
seasonal variation and identification of the major black spots. 
These are primarily based upon the assumption that 
instantaneous traffic flow is the direct representation of the 
human factors responsible for the crashes. As the flow 
increase, the probability of the interaction increases and so 
does the probability of a crash [21]. All the major crash 
prediction models British [22], USA /Canada Model [23], 
Danish Model [24], Swedish Model [25], Finnish Model [26], 
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etc. are all based on this assumption. However, from the 
literature, the cyclist is found to be susceptible to several 
parameters which other road users are not subjected to, such 
as the personal attribute of age and gender. Therefore, the 
present safety models are inable to model the cyclist safety 
effectively and efficiently.  

Cycling can result in both cognitive and physical strains, 
to which riders of different age and gender will respond 
differently due to different physical and physiology 
capabilities. The motorists are also influenced by the 
appearance of the cyclist [6], which further complicates the 
interaction, thereby making it a major road safety variable. 
The modelling at present is focussed on the overall usage of 
the infrastructure primarily at an aggregate, rather than at 
microscopic level. The attempt to model such a variable is 
now possible due to the advancement in data-driven science. 
If we are to increase the cycling mode share, mitigation 
measures/ planning of infrastructure needs to be user-focussed 
at the microscopic level and then aggregation can take place 
to obtain the results at the city or a . The motorists have the 
advantage of being in a closed relatively safe environment. 
Also, the cities are randomly changing, the age and gender 
distribution of one city can be significantly different from the 
other, e.g. in the UK; a university town such as Oxford or 
Cambridge has significant different age distribution than the 
old English mining towns such as Sunderland. Similarly, the 
cities are now growing differently due to changing land-use-
pattern, immigration, education institutes, etc. Therefore, with 
the changing patterns of the cities, planning needs to 
incorporate these through the development of Intelligent 
Transportation Systems, adhering to the specific needs of the 
city. This will result in more sustainable and smart cities, 
which will significantly improve urban liveability.  

It is evident that presently there is a discrepancy between 
what is reported in the literature and what is practised by the 
professional. Therefore, the work presented here aims to 
develop a framework for developing a real-time Intelligent 
road safety model which can have direct implications for 
infrastructure planners/modellers. To achieve this, the 
following objectives are designed: 

1. To develop a framework for road safety analysis. 

2. To check the hypotheses that the safe usage of the 
infrastructure is dependent upon the personal 
attributes of the rider 

3. To develop a road safety model. 

4. Develop an understanding of the relationship 
between the identified input variables and safety 

5. Identify the most important variables affecting 
safety. 

In the next section, the proposed framework and the study 
area are defined (section II), followed by the methodology 
section (III). The results are presented in section IV, and the 
conclusions drawn in section V.  

II. PRPOSED FRAMEWORK AND STUDY AREA 

The following Intelligent modelling framework is 
proposed (Fig 1) 

A. Data Collection Unit  

The data collection unit will continuously collect the data 
concerning the safety of the modelled user. This can be from 
a variety of sources depending upon the type of investigation 
e.g. instrumented vehicle for a naturalistic study, the dash-
board camera of the response vehicle, crash database, etc. 

B. Data Transmission/ Storage Unit  

The data collected will be transmitted to the main 
database/ server, either immediately through the internet or 
stored in a memory device and later transmitted to the server 
to ensure safe and secure storage. In this unit, the aggregation 
of data will be performed for further evaluation and 
modelling. As the data inflow is continuous, therefore new 
data transmitted will be used to constantly update the model, 
ensuring the final in-use model does not age with time. 

C. Knowledge Processing Unit (KPU). 

This raw data will be transformed into knowledge by the 
Knowledge Processing Unit (KPU) Fig 1. This will be 
undertaken by identifying the correlation between the input 
parameters, and then developing causation matrices. It will be 
performed by KPU through deep learning with neural network 
classifier, and gradient descent backpropagation error 
function. A predictive model will be constructed based upon 
the pre-defined attributes, which when given the input can 
predict the safety in real-time for the end-user. For each new 
dataset, the model will first train itself and then test to ensure 
the desired accuracy is achieved, followed by validation.  

In this study, the framework is applied for the safe 
modelling of cycling infrastructure based upon the historic 
crash dataset (2005-2018) on the study area of Tyne and Wear 
county in the northeast of England (Fig. 2). The output 
modelled is the riskiest age and gender of the rider based upon 
the attributes of a) Spatial, b) Environmental, and c) 
Infrastructure variables. It is one of the nine official regions of 
England, encompassing an area of 3,317 sq. miles, housing 
five boroughs with a population of 1.13 million, and an 
estimated 693,000 jobs.  

 

Figure 1: Knowledge Processing Unit (KPU). 

  

Figure 2: Location and Boundaries of the study area 



III. METHODOLOGY  

The detailed crash investigation for each crash is 
performed by the concerned local authorities. A trained road 
crash investigator visits crash site and records the requisite 
crash details in a pre-defined document, set out by the 
department for Transport known as “STATS 19”, consisting 
of four sections, i) Accident Statistics, ii) Vehicle Record, iii) 
Casualty Record and iv) Contributory Factors. The attributes 
of each crash are recorded, i.e., i) type of severity, ii) Time, 
date and location of the crash, iii) Environment conditions 
such as lighting conditions, weather, road surface condition, 
type of infrastructure and number of vehicles involved, iv) 
Sociodemographic information such as age, gender, 
intoxication, journey purpose of the cyclist. These details are 
stored on an online platform, housed by the Department for 
Transport (DfT). For this study, we were provided access to 
the crash database Traffic and Data Unit (TADU) available 
with the Gateshead city council.  

In the Knowledge Processing Unit, correlation, and 
causation is investigated, and a predictive model is developed 
by using deep learning with neural network classifier, and 
gradient descent backpropagation error function. It is the sub-
group of a machine learning techniques based upon 
computational methodologies which imitate working of the 
human brain.  The neural networks were introduced firstly in 
transportation research in the 1990s [27]. The infrastructure 
problems are characterized by interconnectivity between 
physical and tangible assets, required for developing and 
supporting the nation. The neural network has been widely 
applied as a data analytic method in transportation [28]. They 
are very generic, accurate, and convenient mathematical 
models, simulating the numerical model components  [29]. 
This is due to their ability to work with the huge amount of the 
multi-dimensional data, modelling flexibility, learning, 
generalization ability, adaptability and good predictive ability 
[29]. The main motivation for using deep learning for 
modelling safety is that crashes are highly non-linear, and the 
modeller has no guidance from either theory or even 
dimensional analysis for modelling. Although there exist other 
algorithms and deep learning is not a new concept, however, 
its ability to solve the complex and the interchangeable system 
problems, which the transportation system is characterized by, 
is the main motivation for employing it [30]. 

EXPAND THIS ONE. 

A learning algorithm is developed to divide the data set 
randomly into training (65%), testing (30%), and validation 
(5%).  This division ensures enough dataset for learning, 
assessment of the trained model and relevance to untrained 
scenarios [28]. The following network structure is used to 
construct the model. 

Table 1: Network structure of the deep learning model 

Network 

Topology 

Number of hidden layers 2 

Elements in each layer 30 

Activation function between 

the hidden layers 

Hyperbolic Tangent 

Activation function between 

hidden and output layer 

SoftMax 

Error function Cross-entropy 

Training Type Batch 

Error function Scaled conjugate gradient 

Initial Lambda 0.0000001 

Initial Sigma 0.000001 

Initial Centre 0 

Initial offset ±0.001 

Stopping 

and 

Memory 

Criterion 

Steps (max) without a change 
in the error 

999 

Training (max) time 999 

Training (max) epochs  999 

Relative change in the training 

error (min) 

0.0001 

Relative change in the training 

error ratio (min) 

0.001 

Cases to store in the memory 

(max) 

999 

Hidden 

layers 

Total No. of Hidden Layers 2 

Elements in each layer 30 

A four-step iterative backpropagation algorithm is used. 

Step 1: Random weights are assigned to each weighted 
connection between the input and hidden, first and second 
hidden, and between the hidden and output layers).  

For signal propagation within hidden layers, Hyperbolic 
tangent’ activation function is used given by: 

  𝑂𝑎 = tanh(𝑆𝑎) =  
𝑒𝑆𝑎−𝑒−𝑆𝑎

𝑒𝑆𝑎+𝑒−𝑆𝑎
      (1) 

𝑂𝑎  is the activation of the 𝑎𝑡ℎ output neuron 

The ‘SoftMax’ activation function is used between the 
hidden and output layer, given by:  

  𝑂𝑎 = σ(𝑆𝑎) =
𝑒𝑆𝑎

∑ 𝑒𝑆𝑘𝑚
𝑘=1 

                 (2) 

  𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

These functions take real numbers as arguments and return 
real values [-1, +1]. 

Step 2: The error between the predicted output and target 
output is calculated through cross-entropy error function. 

  𝐸 =  − ∑ 𝑡𝑎 ln 𝑂𝑎
𝑚
𝑎=1                  (3) 

𝑂𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒 𝑎, 

𝑡𝑎 is the largest value 𝑎, and 𝑚 is the number of output nodes 

Step 3: The initial random synaptic weights are updated 
based upon the error obtained in step 2. In each epoch, the 
backpropagation algorithm calculates the gradient of the 
training error as  

 a)  nodes between the input and hidden layer 

 
𝜕𝐸

𝜕𝑤ℎ𝑎
= ∑ (𝑂𝑎 − 𝑡𝑎)𝑚

𝑎=1 𝑥ℎ𝑤ℎ𝑎(1 − 𝑥ℎ)𝑥𝑏     (4) 

b) nodes between the output and hidden and layer 

  
𝜕𝐸

𝜕𝑤ℎ𝑗
= (𝑂𝑎 − 𝑡𝑎)𝑥ℎ                 (5) 

In each of the training case (epoch), the weight 𝑤𝑖ℎ  is 
updated by adding it   

  ∆ 𝑤𝑏ℎ =  −𝛾
𝜕𝐸

𝜕𝑤ℎ𝑎
                (6) 

  ∆ 𝑤𝑏ℎ+1 =  𝑤𝑏ℎ + ∆ 𝑤𝑏ℎ                  (7) 

𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑎𝑛𝑑 𝛾 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒. 

Step 4: Iteration (scaled conjugate gradient): The updating 
of weights is iterated until either the minimum change in the 
training error or the maximum number of these iterations 
(epochs) is achieved. 

To evaluate the performance of the constructed models, 
Area Under the Curve (AUC) of the Receiver Operating 



Characteristics (ROC) curve is used, considered an effective 
measure of the accuracy [31]. It is a plot between the true 
positive rate (sensitivity) and false-positive rate (1-
specificity), which evaluates distinguishable power of the 
constructed model between the true safety, and riskiest age 
and gender group. The numerical value of the area under this 
curve (AUC) is a measure of the separability, i.e. it measures 
whether a risky scenario based upon the input values is 
correctly predicted risky or not. 

 After establishing the credibility and predictive power of 
the constructed model, the research also aims to develop an 
understanding of the relationship between the input variables 
and safety. Therefore, the importance of each of the variable 
in the prediction model is determined by evaluating the 
sensitivity of the model to the change in the input values. 
Besides, normalized importance concerning the most critical 
variable is also determined. 
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IV. RESULTS 

The following outputs are obtained from the KPU. 

A. Statistical  

There are 3,325 bicyclist crashes recorded in the study 
area, 79.3 % slight, 19.9% serious and 0.8% fatal crashes. The 
age and gender distribution of the crashes are presented in 
Tables 2 and 3. 

Table 2: Crash distribution across age groups. 

Age Frequency Per cent Cumulative 
Percent 

17-24 537 16.2 16.2 

25-34 494 14.9 31.0 

35-44 347 10.4 41.4 

45-54 251 7.5 49.0 

55-64 115 3.5 52.5 

Over 64 65 2.0 54.4 

Under 17 1420 42.7 97.1 

Unknown 96 2.9 100.0 

Total 3325 100.0   

Table 3: Crash distribution across gender 

Gender 
 

Collision Severity 
 

  
Fatal Serious Slight Total 

Female Number 1 90 278 369 
 

Percentage 0.03% 2.71% 8.36% 11.10% 

Male Number 25 571 2360 2956 
 

Percentage 0.75% 17.17% 70.98% 88.90% 

It is evident that the risk that cyclist's faces vary with their 
gender and age. Therefore, the normalized risk for each age 
groups is presented in Table 4. which also considers the miles 
traversed by each group.  
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Table 4: Normalized risk across age and gender  
Male/Female   

Age group Risk rate Age group Risk rate 

0-16 1.46 40-49  1.02 

17-20  0.27 50-59 0.81 

21-29  1.67 60-69 0.77 

30-39 1.11 70+ 0.10 

Therefore, based upon the statistical output, we can 
conclude that the risk for the cyclist is highly varied based 
upon its attribute of age and gender. The risk is highest for the 
cyclists in the early stage of their life, and male cyclist faces a 

disproportionately higher risk in their youth compared to 
females. The risk for females increases as they grow older. 

B. Predictive model  

To develop the predictive model, the following input 
variable regarding each crash is inputted in the developed deep 
learning framework.   

Table 5: Input variable table for the predictive model 

No. Input Variable Values 

1. Spatial  

a) Month of Journey Jan-Dec. 

b) Journey Day Monday, Tuesday, Wednesday, Thursday, 
Friday, Saturday, Sunday. 

c) Journey 
Weekday/ 
Weekend 

Weekday. Weekend. 

d) Journey Hour 0-23. 

e) Number of 
vehicles 

1-5. 

f) Journey Purpose Commuting, work trip, School Journey by Pupil, 
taking pupil to school, other, Unknown. 

2. Environmental  

a). Lighting 
conditions 

Daylight /Darkness- No Street Lighting, Street 
Lighting Unknown, Street Lights present and lit, 
Street Lights present but unlit, 

b). Weather 
(Meteorological) 
conditions 

Fine/Rain/Snow-with high winds, without high 
winds, fog, or Mist Hazard, Other. 

c). Road Surface 
Condition 

Dry, Frost/ice, Wet/damp, Snow 

3. Infrastructure 
 

a) Road Type Dual Carriageway, One-way street, Roundabout, 
single carriageway, slip road, 

b) Speed limit 20-70 

c) 1st Road Class A, B, C, E, U 

d) Road Hierarchy 
Level 

0-4 

e) Road Hierarchy 
level and 
direction 

-4 to 4 

f). Junction Detail Crossroad, Mini Roundabout, Multiple Junction, 
Straight Road, Roundabout, Slip Road, T or 
Staggered, Private Drive 

g). Junction Control No Control, Traffic Signal, Give way or 
uncontrolled, Stop sign 

h) 2nd Road Class A, B, C, E, U 

i) Vehicle 
Maneuver 

Changing lanes, Going ahead, Moving off, 
Overtaking, Parked, Reversing, 
Slowing/stopping, Turning, U-turn, Waiting to 
go ahead, waiting to turn 

j) Vehicle Junction 
Location 

Approaching junction or waiting/parked at 
junction exit, cleared junction, or waiting/parked 
at junction exit, Entering, Leaving, Mid 
Junction, Straight Road (Not at or within 20 
meters of the junction) 

k) Road Location of 
vehicle 

Bus Lane, Busway, Cycle lane, cycleway, 
footpath, on layby or hard shoulder, main 
carriageway, tram/light rail track 

l) Skidding and 
Overturning 

No skidding or overturning or jack-knifing, 
overturned, skidded, overturned, and skidded 

 Output Variable Risk gender and Age Group 

The predictive model constructed, can accurately predict 
the riskiest age and gender group based upon the specific input 
variables. The KPU not only develops the models but also 
provides the evaluating matrix for evaluation by the end-user. 
This helps to develop confidence in the constructed model for 
its application by road safety professionals. The evaluation is 
performed through a) ROC Curve (Fig. 3), b) AUC value 
(Table. 7), c) Gain charts (Fig. 4), and d) Lift charts (Fig. 5).  

The ROC curve is close to the top left-hand corner 
(optimum ideal hypothetical scenario), depicting a good 
overall prediction capability of the constructed model. The lift 
chart evaluates the benefit of using the model rather than a 



general probability model. A significant gain as evident from 
the gain chart is achieved by the model, which is also depicted 
in the cumulative gain achieved shown in the lift chart, in 
which the gain at 10% data points varies between 2-8, with an 
average gain of 6.5.  

EXPAND A BIT MORE  

  

 
Figure 3:Receiver operating characteristic curve for the constructed model. 

 

Figure 4: Gain chart for the constructed model 

 

Figure 5: Lift curve for the constructed model 

The accuracy of the models is evaluated through the 
prediction capability of each of the output variable, rather than 
the aggregate model only. This ensures that the predictive 
capability of one variable is not overrepresented and verifies 
that the model can estimate all the subgroups efficiently and 
accurately. The AUC values of the ROC curve for each output 
variable is presented in Table 6.  

Table 6: Area under the ROC curve for different output variables 

Area Under the ROC Curve   

Variable Area Variable  Area 

Under 17 Female 0.86 35-44 Male 0.89 

Under 17 Male 0.92 45-54 Female 0.90 

17-24 Female 0.86 45-54 Male 0.88 

17-24 Male 0.86 55-64 Female 0.82 

25-34 Female 0.88 55-64 Male 0.88 

25-34 Male 0.85 Over 65 Female 0.91 

35-44 Female 0.83 Over 65 Male 0.88 

Average 0.87 Standard Deviation 0.03 

Median  0.88 Mode 0.86 

Significantly high accuracy is obtained in the constructed 
model with average AUC value of 0.88 and a standard 
deviation of 0.03. This implies that the model can distinguish 
between the risky and non-risky scenarios in 88% of the 
presented scenarios. As the standard deviation is very low (3% 
of mean), we can therefore conclude the accuracy achieved is 
high across the output spectrum. Through inverse analysis, 
this leads us to infer that the risk which each sub-group faces 
is dependent upon the specific combination of input variables. 
This combination is specific to each subgroup of age and 
gender. The importance and normalized importance with 
respect to the most critical variable (journey purpose), for each 
of the input variable, is presented in Table. 7. 

Table 7: Importance and Normalized importance values of the input 
variables 

1.   Spatial  Importance Normalized 
Importance 

a) Month of Journey 0.05 45% 

b) Journey Day 0.05 42% 

c) Journey Weekday/ Weekend 0.02 20% 

d) Journey Hour 0.06 55% 

e) Number of vehicles 0.05 41% 

f) Journey Purpose 0.11 100% 

2.   Environmental  
  

a). Lighting conditions 0.05 48.2% 

b). Lighting and road surface condition 0.06 50.9% 

3 Infrastructure  
  

a) Road Type 0.04 36.6% 

b) Speed limit 0.05 41.1% 

c) 1st Road Class 0.04 35.5% 

d) Road Hierarchy level and direction 0.05 43.7% 

e) Junction Detail 0.05 42.1% 

f) Junction Control 0.04 31.9% 

g) 2nd Road Class 0.04 37.4% 

h) Vehicle Maneuver 0.05 46.3% 

i) Road Location of vehicle 0.05 45.6% 

j) Vehicle Junction Location  0.05 45.4% 

k) Skidding and Overturning 0.03 29.1% 

The most critical variables affecting the safety of the rider 
is the journey purpose, followed by the hour of the journey (a 
heterogeneous variable representing the traffic flow regime), 
environmental condition of lighting and road surface 
condition, and vehicle manoeuvres. These variables belong to 
different sub-groups, which reinforces the traditional road 
safety theory that the crashes are a multi-factor element  

V. SUMMARY AND CONCLUSION   

In this work, we have proposed a three-phase framework 
for road safety analysis of a) Data collection unit, b) Data 
transmissions/storage unit, and c) Knowledge processing unit 
(kpu). This framework is applied to a case study of the crash 
database in Tyne and Wear county in the northeast of England. 
Through the kpu, an accurate and efficient road safety model 
is developed with a high prediction capability to predict the 
most risk subgroup of age and gender, based upon the 
combination of input variables. We have proven the 
hypothesis that the safe usage of the infrastructure is 
dependent upon the personal attribute of the rider. It has been 
demonstrated that it is possible to predict the characteristic 
safety of the infrastructure for an individual using a) Spatial, 
b) Environmental, and c) Infrastructural parameters. The 
combination of these variables presents a specific risk to a 
specific population group.  



The proposed model is validated using the available test 
data and an overall high level of accuracy (88%) is achieved. 
This small inaccuracy can be attributed to the dynamic nature 
of crashes. The results from the ROC curve, gain and lift 
charts suggest that the model can be employed for safety 
analysis with certainty. This proves the effectiveness of the 
proposed framework and develops the requisite confidence in 
the developed model for use by road safety professionals.  

An understanding of the relationship between the 
identified input variables and safety have been developed. The 
most important variables affecting the safety of an individual 
is dependent upon the following variables in the descending 
order, a) The purpose of the journey, b) Traffic flow regime 
that is plying, and c) Prevalent environmental conditions. This 
reinforces that safety is a multi-factor element, which requires 
a dynamic approach. Therefore, based upon these input 
parameters we can assess the safety of the infrastructure. The 
results of the study can have a significant impact on the route 
choice, modelling and planning of infrastructure. Through the 
inverse analysis, the constructed model can assess with 
certainty regarding the type of infrastructure required to 
increase safety, thereby paving way for a knowledge-driven 
approach to cycling infrastructure. 

HOW CAN THE MODEL RELATE WITH VEHICLE 
AUTOMATION. 

Presently, we are at the doorstep of the fourth industrial 
revolution (autonomous transportation system ), in which the 
route will be selected automatically by the autonomous 
system, therefore it is essential that the planning of 
transportation system also evolves, and real-time models are 
developed for city planners. These should be able to develop 
different measures/ optimize the infrastructure based upon its 
intended users and develop recommendation measures to 
increase safety (modal share) for a particular targeted 
population. The future direction of research should aim to 
develop a dynamic real-time road safety model. 

We would like to thank Northumbria University for 
funding the research and Gateshead city council for providing 
access to crash database TADU. 
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