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Abstract—Demand responsive transport (DRT) has become
very important in the last years and is being tested in differ-
ent cities worldwide. Due to the complexity and diversity of
these services, their planning is quite challenging. This paper
introduces a tool to simulate different types of DRT services.
The open source micro-simulation Eclipse SUMO (Simulation of
Urban MObility) is used as a framework. The tool was written
in Python 3 and calculates the best routes for each DRT vehicle
based on information about requests, vehicle fleet and network.
As test case, multiple requests between a peri-urban area and the
city center of Brunswick (Germany) were simulated for different
DRT services. The results show the practicality of the tool as a
form of analysis and planning of DRT systems.

I. INTRODUCTION

In recent years, technological advances and improvements
in computer power and digitization have made it possible to
develop new forms of demand-based mobility, which are a
booming market and are already being used or tested in several
cities worldwide. Demand Responsive Transport (DRT) also
referred to as ride-sharing services like ”UberPool” and ”Lyft
Shared” are an example of latter. This shared service without
fixed routes seeks to bundle requests in minimizing the number
of vehicles and route lengths without compromising passenger
travel times. Resulting, according to various simulations, in
a more efficient service compared to taxi and ride-hailing
services (”Uber” or ”Lyft”) [1]–[3]. A significant impact on
vehicle mileage and traffic in general only occurs if many
customers switch from individual car-based transport. Ac-
cording to Feigon et al. [4], only New York City has so
far published sufficient data on DRT systems to analyze and
evaluate their impact. Based on the latter data, Schaller [5]
found that in fact only 20 % of the trips are shared and that
the majority of the customers switched from non-vehicle-based
modes of transport (e.g. public transport, bicycle and walking).
Additionally most of the times the service is only used by
one person, which leads to an increase in traffic instead of
the planned reduction. The acquisition of passengers from
public or non-motorized transport is a critical point, since DRT
systems are not well suited for high-demand connections [6].
Conventional high capacity public transport, such as trains,
subways or Bus Rapid Transit (BRT) are best suited for this

purpose due to their higher operational efficiency [7]. Hence,
the combination of both systems by using the DRT as a feeder
system for high capacity transit would be the first best solution.

DRT systems vary not only if they work as feeder system
of transit or as a unique system. The results vary signifi-
cantly depending, for example, on the capacity and number
of vehicles, whether requests can be booked in advance or
whether the service is provided door-to-door or with virtual
stops. The results also vary depending on how the routes are
calculated, which is referred to as the Dial a Ride Problem
(DARP). According to [8], the DARP generalizes a number of
vehicle routing problems such as the vehicle routing problem
with pickups and deliveries (PDVRP) and the VRP with time
windows (VRPTW). The main difference between this prob-
lem and other routing problems is that the DARP transports
passengers instead of goods. Therefore other constrains must
be contemplated to ensure the quality of the service from a
human perspective. Due to the wide and varied constrains
that a DARP can present, there are different methods and
models for solving them either approximately or exactly.
Another important classification is between static and dynamic
solution. In a static DARP, all requests are known in advance,
meanwhile in the dynamic DARP requests are revealed and
managed in real time [9].

Several simulation programs such as Eclipse SUMO (Simu-
lation of Urban MObility) and MATSim (Multi-Agent Trans-
port Simulation) have been further developed to allow the
simulation of DRT services. However, to the best knowledge
of the author, they are generally very specific and do not
allow the evaluation of different DRT services. Over the last
months, a new element called Taxi Device has been developed
to allow the simulation of on-demand services with different
dispatching algorithms in SUMO. However, at this moment,
the device does not yet allow for real-time modification of
the route, which is indispensable for evaluating shared DRT
services.

This paper introduces a Python tool to simulate different
types of DRT services in SUMO [10]. The tool is written
in Python and calculates the best routes by solving an static
DARP. To test the tool, a set of requests between a peri-
urban area and the city center of Brunswick (Germany) were
simulated for different DRT services. The paper is organized
as follows. First a description of the developed tool and the978-1-7281-8995-6/21/$31.00 ©2021 IEEE



method used to solve the DARP is given. This is followed by a
summary of the different DRT services that can be simulated
within the tool. Finally, the simulation results are presented
and discussed.

II. METHODOLOGY

To be able to simulate DRT systems in SUMO, a Python
tool was developed, which allows to communicate with the
simulation framework and calculates the routes for the DRT
vehicles and person. As output, the founded routes for each
vehicle and person are written in SUMO format, what allows
to use them for further simulations. SUMO proves to be the
best option in this context, since it allows the simulation of
large road networks with different modes of transportation on
a microscopic level and its open source license allows the
implementation and testing of new algorithms.

To model the DRT services, the exact solution method
developed by [11] was taken as benchmark and extended to
allow for more service options and a coupling to SUMO. In
the following, the basic problem is explained. Afterwards the
more complex configurations will be listed.

The algorithm assigns a set of n requests R = {r1, ..., rn}
to a set of m vehicles V = {v1, ..., vm}, in order to minimize
a cost function V and satisfy a set of constraints Z, allowing
multiple passengers per vehicle. All travel requests are known
in advance and consist at least of the desired pick-up time, a
pickup location and a drop-off location. Each vehicle of the
fleet has a capacity ν and a depot location, where the vehicle
starts and ends the service. The locations are defined as a
position on a lane (edge) in the SUMO network.

The algorithm consists of three steps: (i) calculating the
shareability graph and (ii) the feasible trips graph and finally
(iii) solving an integer linear programming (ILP) to find the
optimal routes. In sections II-A to II-C this steps will be
described in detail.

A. Shareability graph

The first step of the algorithm is to compute a pairwise
shareability graph with all possible combinations between a
vehicle and a request and between two requests. As the DRT
system can be shared, a combination between two requests can
be by combining the pick-ups or drop-offs of both requests or
by combining the pick-up of a request and the drop-off of the
second. The pair corresponding to the pick-up and drop-off of
the same request is also considered.

For each pair, the number of passengers (+1 for pick-up and
-1 for drop-off) and the travel time are stored. The travel time
consists of the sum of the service time at the stop (15 seconds
as default) and the minimum travel time, which is estimated
using the SUMO application DUAROUTER.

Initially only the travel times for each request (pick-up to
drop-off) are estimated, being comparable to the direct travel
times. Based on this time and a direct route factor (drf), the
time windows for pick-up and drop-off are defined. The direct
route factor is the maximum relation between the travel time
with the DRT and the direct travel time. As default, a drf of 2

is taken. The time window for the request pick-up and drop-off
are defined as:
• earliest pick-up = desired pick-up time,
• earliest drop-off = earliest pick-up + direct travel time,
• latest drop-off= earliest pick-up + direct travel time * drf,
• latest pick-up = latest drop-off - direct travel time.
Once the time windows are set, the travel times for all pairs

are estimated and the feasibility of each pair is verified. A
pair vehicle-request pick-up is feasible if the start time of the
vehicle service plus the travel time is smaller than the request
pick-up time. A pair request drop-off -vehicle is feasible if the
request pick-up time plus the travel time is smaller than the
end time of the vehicle service. Two requests can be combined
if the time windows of both requests are compatible. For
example, for the pair request 1 drop-off - request 2 pick-up is
feasible if the earliest drop-off time of request 1 plus the pair
travel time is smaller than the latest pick-up of request 2.

If a pair is not feasible, it will be deleted of the shareability
graph.

B. Feasible trips graph

Next, the cliques of the shareability graph are explored to
find feasible trips for each vehicle. A trip T = {r1, ..., rnT

} is
a set of nT requests transported by a specific vehicle. A trip
is feasible if:
• all requests are picked up and dropped off,
• time windows of each request are satisfied,
• vehicle returns to the depot on time,
• the vehicle capacity is never surpassed and
• the maximum waiting time (default 180 seconds) for a

request pick-up is not exceeded if passengers are in the
vehicle.

The time windows are checked by adding the travel times of
each pair and the capacity by adding the number of passenger
of each pair.

The algorithm to compute the feasible trips proceeds in-
crementally in trip size for each vehicle, starting from the
vehicle-request pair in the shareability graph. If two vehicles
have the same characteristics, the exhaustive search to compute
the feasible trips graph will be performed only once.

Depending on the number of requests and the shareability of
them, the exhaustive search may take a long time and memory.
To allow for a faster (but not exact) solution the search time
for the trips of a determined size can be limited.

C. Integer linear programming

Finally, the optimal trips are calculated by solving an integer
linear programming (ILP) with the Python LP modeler PuLP
[12].

A binary variable εi,j ∈ {0, 1} is defined for each trip Ti ∈
τ of a vehicle vj ∈ V. If εi,j = 1, then the trip Ti of vehicle
vj is selected. An additional binary variable ρi,n ∈ {0, 1} is
defined for each request rn =∈ R in trip Ti ∈ τ . If the trip Ti

is selected and therefore the request rn is served, the variable
ρi,n = 1. If a request rn ∈ R is not served by any of the
selected trips, then

∑
i∈T ρi,n = 0.



The objective of the ILP is defined in 1. Three cost terms are
considered. The cost ci,j is the calculated travel time (service
time at stops included) for the trip Ti with the vehicle vj .
The cost cko is a large constant to penalize the rejection of
requests. Finally, a constant and small cost cb is introduced
to prevent the use of several vehicles, if the requests can be
served with fewer vehicles at comparable costs.

∑
optimal

:= argmin
∑

i∈T,j∈V

(ci,j+cb)εi,j−cko
∑

i∈T,n∈R

ρi,n (1)

∑
i∈T,j∈V

εi,j ≤ 1 ∀vj ∈ V (2)

∑
i∈T,n∈R

ρi,n ≤ 1 ∀rn ∈ R (3)

∑
j∈V

∑
i∈T

εi,j ≤ 1 ∀vj ∈ V (4)

Two types of constraints are included. Constraint 2 imposes
that each vehicle is assigned to one trip at most and Constraint
3 imposes that each request is assigned to a single trip or
ignored. The last constraint 4 only ensures that at least one
trip is defined.

The trips found by the ILP are then written into a summary
file with information about each vehicle, the request and the
total DRT system. Another file with the trips written in SUMO
format is given for further simulations.

D. Variations of the DRT service

As mentioned before, the tool is able to simulate different
DRT services. In section II the model for a basic DRT
shared system was explained. By adding extra information or
changing some parameter, different variations of the system
can be obtained. These are listed below:

• Requests admit the following extra parameters: number
of passengers, number of wheelchair passengers, explicit
time window for pick-up, explicit time-window for de-
livery and value for drf.

• Vehicles admit the extra parameters: vehicle cost, number
of wheelchair spaces, service area, start and end time of
service.

• Public transport services (route, schedule and stops) that
can be served by the DRT, now working as a feeder
system.

• Option for search the minimum number of vehicles to
serve all requests.

• Maximum time in seconds for search trips of the feasible
trips graph, allowing a fast (but not exact) result.

• Maximum waiting time for passengers on the vehicle to
pick-up another request.

III. TESTING SCENARIOS

For a demonstration of the proposed DRT tool, different
DRT systems were simulated in a real-world study case. The
study area includes six villages located in the west of the
city of Brunswick. The area shows the characteristic mobility
problems of peri-urban and rural areas, such as high percent
of commuters traffic, limited local supply and limited public
transport. This study area has been analyzed by [13] and used
in some simulation studies [14] but with a more simpler DRT
algorithm.

In [13], [14] the implementation of a Bus Rapid Transit
(BRT) line with a frequency of 15 minutes to serve the
high demand between the peri-urban area and the city center
was evaluated with good results. This BRT line will be
contemplated for the simulation scenarios as the only transit
service in the area. Fig. 1 shows the study area and the BRT
line and its mobility hubs.

All test scenarios are simulated for 55 requests arriving
between 18:30 and 19:30 during the afternoon peak hour.
The travel requests have either origin or destination in the
study area. The simulations were carried out in standard
modern laptop with an Intel i7 core processor. Each scenario
is described below.

1) Scenario 1: The basis scenario contemplates a DRT
feeder to the BRT line. The DRT service has a fleet of three
vehicles with a capacity of 3 passengers each. The service
is door-to-door and the vehicles operate in the entire area,
being able to serve any of the three mobility hubs. Passengers
could be transported only if the total travel time from origin
to destination does not exceed the travel time by car by 2.5
times. This is equivalent to a drf of 2.5.

2) Scenario 2: This scenario search the number of vehicles
needed to serve all requests of scenario 1.

3) Scenario 3: In this case three different DRT service
with 2 vehicles each will be simulated. The first DRT service
operates in the area of Vechelde (pink area in Fig. 1), the
second in the area of Denstorf (green area) and the last DRT
service can only serve request from/to the area of Lamme (blue
area). Each DRT can only serve the respective mobility hub
of the area.

Fig. 1. Study case (Background map from Google Map)



4) Scenario 4: For this scenario the maximum computing
time was incremented to see if relevant changes in the routes
were made and on which computing time cost.

5) Scenario 5: In this case, a higher drf was used to allow
later arrival times. A higher drf does not implied directly
longer routes, but the possibility of contemplate them.

6) Scenario 6: The DRT service will no longer be used
as feeder system for the BRT line, meaning no combination
with public transport. The vehicles have now a capacity of 12
passengers and the required fleet will be searched. Passengers
can be picked up between an interval of half an hour. This is
simulated by using time windows for the pick-up.

A. Results

Table I summarizes the relevant results for each scenario. As
it is shown, the results vary significantly. In the basis scenario
1, in which the fleet counts with only three vehicles with a
capacity of 6 passengers, 39 of 55 requests must be rejected. 28
of them, could not be served, because there where no possible
combination with the BRT line. This means, that by taken the
next bus, the arrival time to final destination would surpass
the possible arrival time with the private car by the given drf
of 2.5. The rest 11 requests could not be served because of
fleet limitations.

The scenario 2 shows that the necessary number of vehicles
to served all incoming requests is 5. This kind of simulation is
important to estimates the required fleet for peak hours and the
fleet for low demand hours. Having both results, the evaluation
of the service can be carried out with a specific fleet.

Based on the results of scenario 3, when DRT vehicles
operate in a single area (scenario 1) the service is more
efficient. The total trip duration and the total waiting time are
considerably lower for scenario 1 and using one less vehicle.
The only positive difference for this scenario is that only 33
requests instead of 39 were rejected.

In the scenario 4, the maximum step time to calculate the
shareability graph (see section II-A) was incremented from 5
to 20 seconds. This means a total increase in calculation time
of only 5 minutes. The results are nevertheless comparable.
Although the travel times were reduced by 8%, the number of
requests transported remained constant.

For the scenario 5, the drf was incremented, allowing more
connections with the BRT line to take place. The travel times
for the vehicles were not significantly changed. The travel
times for each request show slight increments of less than
5 minutes. What has changed significantly is the variation
between the desired departure time given by the passenger
at request time and the actual pick-up time.

Scenario 6 shows the results of implementing the DRT as a
unique system, with no connection to public transport. For this,
a total of 13 vehicles are needed. Regarding the implementa-
tion of larger vehicles with a capacity of 12 passengers, the
system was not able to accommodate more than 4 passengers
at the same time. Comparing the travel times of all vehicles
with the scenario 2, there is an relevant increase, which implies
an increase in the mileage.

In this study case, the use of DRT as a feeder system
operating in an unique service ares proves to be the best
option. Fig. 2 shows a picture of the simulation of scenario 1
in SUMO. The DRT vehicles are shown in red and the green
buses represent the BRT vehicles. Requests are modeled as
person elements and are represented as the blue triangles. The
further simulation in SUMO allows to calculate more results,
such as emissions, time losses and stopped times.

IV. CONCLUSION AND FUTURE WORK

Technological advances and improvements in computer
power and digitization have made the implementation of DRT
systems possible in real life, making them a booming market.
Due to the wide range of possible services and therefore
variation in results, these services pose a problem for the
planner. The use of micro-simulations to evaluate different
service options can contribute to their optimization.

This paper presents a tool that allows the simulation of a
wide range of DRT configurations using the micro-simulation
Eclipse SUMO as a framework. The option of choosing
between an approximate or an exact solution of the DARP
makes it possible to obtain fast or optimal results depending
on the user’s needs.

The limitations of the tool are related to the complexity of
solving static and exact DARP. The possible future extension
of the software SUMO to allow dynamic route changes of
DRT vehicles (in SUMO called Taxi devices) would allow
the extension of the present tool for the dynamic case. This
would reduce calculation times significantly, as the number of
combinations between requests would decrease.
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