

Design and Evaluation of a Collective IO Model

for Loosely Coupled Petascale Programming

Zhao Zhang
+
, Allan Espinosa

*
, Kamil Iskra

#
, Ioan Raicu

*
, Ian Foster

#*+
, Michael Wilde

#+

+
Computation Institute, University of Chicago & Argonne National Laboratory, USA

*
Department of Computer Science, University of Chicago, IL, USA

#
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA

zhaozhang@uchicago.edu, aespinosa@cs.uchicago.edu, iskra@mcs.anl.gov, iraicu@cs.uchicago.edu, {foster,wilde}@mcs.anl.gov

Abstract

Loosely coupled programming is a powerful paradigm for

rapidly creating higher-level applications from scientific

programs on petascale systems, typically using scripting

languages. This paradigm is a form of many-task computing

(MTC) which focuses on the passing of data between

programs as ordinary files rather than messages. While it has

the significant benefits of decoupling producer and consumer

and allowing existing application programs to be executed in

parallel with no recoding, its typical implementation using

shared file systems places a high performance burden on the

overall system and on the user who will analyze and consume

the downstream data. Previous efforts have achieved great

speedups with loosely coupled programs, but have done so

with careful manual tuning of all shared file system access. In

this work, we evaluate a prototype collective IO model for file-

based MTC. The model enables efficient and easy distribution

of input data files to computing nodes and gathering of output

results from them. It eliminates the need for such manual

tuning and makes the programming of large-scale clusters

using a loosely coupled model easier. Our approach, inspired

by in-memory approaches to collective operations for parallel

programming, builds on fast local file systems to provide high-

speed local file caches for parallel scripts, uses a broadcast

approach to handle distribution of common input data, and

uses efficient scatter/gather and caching techniques for input

and output. We describe the design of the prototype model, its

implementation on the Blue Gene/P supercomputer, and

present preliminary measurements of its performance on

synthetic benchmarks and on a large-scale molecular

dynamics application.

1 Overview
We define “loosely coupled applications” as programs that

involve the sequenced execution of other programs. In this

programming model, programs exchange data via files; the

application typically involves a large number of invocations,

often of several different programs; and programs are typically

feature a high degree of inter-task parallelism, enabled by data

independence within the flow graph of files. Applications are

typically written in scripting languages (Perl, Python, Tcl, and

numerous “shells”) [Ousterhout1998], which facilitate both

the invocation of application programs and the passing and

manipulation of files for program inputs and outputs. This

style of programming is extensively employed in virtually

every domain of science. For example, biologists run PERL

scripts of BLAST and PFAM; neuroscientists run shell scripts

of AIR, AFNI and FSL; physicists analyze collision data with

scripts that execute analysis applications written in ROOT.

It is difficult to efficiently map this common and useful

programming model onto computing clusters of rapidly

increasing scale. We note that we are mainly concerned here

with applications running on what we term “petascale-

precursor” systems, where the sheer parallelism of the

computing nodes of the system can easily overwhelm a

traditional IO subsystem, and in particular, its shared file

systems. As clusters have grown larger, to tens or, recently,

hundreds of thousands of nodes, the IO strategies of loosely

coupled applications have become both a performance

bottleneck and a source of complexity. Significant manual

effort is needed to scale application performance as cluster

size grows.

The specific problem we address here is that as the number

of nodes in large-scale clusters contending for shared

resources grows large, the IO bandwidth, volume and/or file

management transaction rate exceeds some aggregate capacity

limit, bottlenecks arise and the system becomes unbalanced.

Thus, CPU cycles are wasted because the IO subsystem cannot

service the CPUs fast enough. (We are concerned here with

applications with high enough IO-to-compute ratios for IO to

become the primary obstacle to parallel speedup. Applications

that do relatively little IO while computing for long periods

typically perform well in loosely coupled settings without any

change to their IO strategy.)

While petascale systems have massive shared IO

subsystems, these subsystems often have vulnerabilities in

handling file management transactions (e.g., creating and

writing huge numbers of files at high rates) that are ill-

matched with the needs of loosely coupled programs. Our

work remedies this deficiency and makes petascale systems

attractive for this important and productive paradigm for

knitting existing scientific programs into powerful workflows.

Our strategy of collective IO is inspired by the collective

data operations employed by tightly coupled message passing

programming models. In these models, data is exchanged,

both between in-memory tasks and between tasks and files,

using operations such as scatter (often assisted by broadcast)

and gather. In our model:

• Input files are broadcast from shared file systems to local

file systems.

• Output files are locally batched up from applications and

efficiently transferred to shared persistent storage.

• Intermediate file systems are provided within the cluster

to aid in efficient input and output staging and to

overcome the limitations that large-scale clusters impose

on local file system capacity.

In the remainder of this paper we first present an abstract

model that maps collective IO concepts, previously applied in

message-passing and in-memory programming environments,

to the file-based MTC domain. We then review the

architecture of the IBM Blue Gene/P (BG/P) system, which

we use as an exemplar of large-scale clusters (and as a base for

our prototype and measurements), and describe prior work on

collective IO. We then describe a new collective model that

addresses the challenges described above, detail its

implementation, and present preliminary measurements of its

performance. We conclude with an outline of our plans to

extend and improve the model.

2 Abstract Collective IO Model for File Objects
Our abstract model, which is independent of specific cluster

architectures, is based on the following elements.

1) We have applications involving multiple tasks that can

run concurrently, each reading zero or more named objects,

performing some computation, and writing zero or more

named objects. (These objects are typically files – a detail that

will become important when we talk about implementation

specifics). The length of individual tasks, and of the objects

read and written, are typically not known ahead of time.

2) We can distinguish between two principal input

patterns: a) read-many, in which many or all tasks read the

same object; b) read-few, in which the number of tasks

reading a particular object is small – often only one. We

assume that each object is written by just one task.

Typically, we know the objects to be read by each application

ahead of time, and thus assume that applications will not

determine at run time which files to read. (This restriction can

be relaxed for some files, which would be considered outside

of, or an extension to, the model). We further assume that we

know (typically, from dependency information) which objects

are read-many.

3) In the simplest form of these applications, the set of

objects read and the set of objects written are disjoint. In more

complex forms, one task may write an object that is then read

by another. In that case, we assume dataflow synchronization

between the writer and the reader, meaning that the reader can

only execute when the writer completes execution (as below).

4) We assume a computer system architecture in which (a)

all processors can access a high capacity persistent shared

storage system (shared-store), albeit with modest performance,

and (b) each processor has some local object storage (memory

or disk) of modest capacity, but offering high performance

(local-store). When many processors access the shared file

system concurrently, contention leads to degraded and often

unpredictable performance.

5) An abstract cluster IO

architecture is useful to

define terminology. As

shown in Figure 4, this model

has three levels of file

system: Global persistent

shared file systems (GFS) are

accessible from all compute

nodes of a cluster, and are

typically the persistent home

of all data. Local file systems

(LFS) are per-compute-node

file systems, and are only

directly accessible to tasks running on the processors of that

compute node. As cluster size and density increases, the LFS

may be implemented in RAM or FLASH memory, and is

typically constrained in size between a few hundred

megabytes and a few gigabytes. Intermediate file systems

(IFS) are found, typically, only on the largest and most

complex clusters, such as the IBM BGP. On the BGP, IFSs

exist on the “IO node” processors (IONs); systems such as the

SiCortex 5832 allow larger IFSs to be constructed by striping

RAM-based LFSs. We use the acronyms GFS, LFS, and IFS

throughout.

Based on this abstract model, we employ two simple

collective methods to improve IO performance: (a) routines to

broadcast read-many objects to many processors; and (b) two-

stage IO operations to accelerate read-few and write

operations, by staging objects between the many local-stores,

an intermediate-store (created, for example, on a set of local-

Figure 2: Abstract application program IO profile

Figure 3: Common Application Dataflow Pattern

Figure 1: Abstract Cluster

stores), and the shared-store. We implement IFSs on LFSs

using MosaStore [Al-Kiswany+2007] and Chirp

[Thain+2008]. Our prototype of these methods was

implemented on the BG/P and is described in Section 5.

3 Blue Gene/P System Architecture
The 163,834-processor IBM BG/P computer at the Argonne

Leadership Computing Facility [ALCF] is at the time of

writing the world’s largest open-science computing system

[TOP500]. We view it as an exemplar of the coming wave of

“petascale” systems, and we base the work described here on

this system.

We present here a brief overview of the characteristics of

the GPFS distributed parallel file system that serves as the

GFS for the ALCF BG/P. We then describe the ZeptoOS

operating system environment that we employ for MTC

programming of the BG/P, as this environment is critical to

enabling the MTC model to be used on this machine, and

because its BG/P implementation – some of which was

influenced by the work described here – has not to date been

published elsewhere.

3.1 Characteristics of GPFS as a Global File system
GPFS – the General Parallel File system [Schmuck+2002] –

is configured on the ALCF BG/P with 24 IO servers, each

with 20Gb/s network connectivity, and can sustain an

aggregate IO rate of ~8GB/sec.

GPFS is in general proficient at reading and writing large

units, can handle vast numbers of files, and can maintain huge

directories. It also excels at parallel IO operations from

multiple client hosts, for which it maintains a sophisticated

lock resolution protocol and heuristics. It has, however, two

areas of weakness: it is relatively slow at creating new files,

and can perform very poorly when multiple clients attempt to

create files within the same parent directory (due to lock

contention and its approach for maintaining global file system

integrity in the face of metadata updates). These

characteristics are typical for distributed parallel file systems

which maintain local file system semantics in a distributed

environment. However, they pose a challenge to MTC

workloads, which can, if not carefully planned to avoid GFS

weaknesses, perform exceedingly poorly.

3.2 BG/P OS and IO Architecture to support MTC
The ZeptoOS project [ZeptoOS] provides an open-source

alternative to the proprietary software stacks available on

contemporary massively parallel architectures. Its aim is to

make petascale architectures more productive for the scientific

user community, to enhance community collaboration and to

enable computer science research on these architectures.

ZeptoOS uses the Linux kernel to create an alternative, fully

open software stack on large-scale parallel systems.

The project currently focuses on the IBM BG/P

architecture. These machines normally run a limited

microkernel on the compute nodes. While the default compute

node kernel is highly scalable, it lacks many capabilities that

MTC jobs expect, such as the ability to execute sub-processes

or run shell scripts. ZeptoOS replaces that kernel with a

Linux-based ZeptoOS compute node kernel, which lifts those

limitations.

The default IBM BG/P microkernel forwards all file and

socket IO calls to the IO nodes, which run Linux. IO nodes run

a daemon that receives IO requests from the compute nodes

and replays them against the Linux kernel. IO nodes also run

file system clients for remote file systems such as NFS, GPFS,

or PVFS, which handle the actual file IO.

ZeptoOS also uses a similar, but more general, forwarding

architecture for IO requests. ZOID, the ZeptoOS IO Daemon

[Iskra+2008], is a replacement IO daemon running on the IO

nodes, used to communicate with the compute nodes when

they are running Linux. ZOID provides a generic, high-

performance function-forwarding infrastructure for compute

nodes. This infrastructure is extensible through the use of

plug-ins: users can define their own API and have data

efficiently forwarded between the applications running on the

compute nodes and the implementation code running on IO

nodes. Generic plug-ins for POSIX file and socket IO are

available which standard applications can take advantage of.

ZOID also performs job management and IP packet

forwarding between IO nodes and compute nodes (allowing

users to, e.g., perform interactive debugging sessions on the

compute nodes over telnet).

Figure 5 and Figure 6 present in more detail the hardware

and software components of the ZeptoOS environment on the

BG/P. The ratio of compute nodes to IO nodes for a given

BG/P installation can vary from 16:1 to 128:1 depending on

the machine configuration; the ratio on the Argonne machine

is fixed at 64:1. Compute nodes communicate with the IO

nodes over a custom “collective” (also known as “tree”)

network, with a bandwidth of 6.8 Gb/s (850 MB/s). Once

protocol overheads are considered, the maximum throughput

that ZOID can achieve over this network is around 760 MB/s.

However, such throughput is only achievable when processes

on the compute nodes communicate with ZOID directly. A

modified GNU libc library that enables this direct

communication is in progress but is currently incomplete.

A solution available to processes on the compute nodes

through standard kernel interfaces would be far more

desirable. Since our communication stack is in user space, we

need mechanisms to forward data between the user and kernel

space. The Linux kernel does offer easy to use interfaces for

such purposes, in the form of FUSE and TUN. FUSE [FUSE]

is a pseudo-file system that performs callbacks from the kernel

VFS layer to a user-space daemon, which provides the

implementation of file IO operations. TUN [TUN] simulates a

network-layer device, allowing one to forward IP packets

between a user-space process and the kernel’s TCP/IP stack.

The problem is that neither of these solutions is particularly

fast. Their designs (particularly that of FUSE) are simple and

focused on flexibility, not high performance.

The overheads they introduce are considerable. FUSE can

read data in chunks of 128 KB, but writes are performed in

chunks no larger than a single memory page. With a page size

of 64 KB on the compute nodes we get at most 230 MB/s on

input and 180 MB/s on output. (These are raw transfer speeds;

if we include file system overhead, then even in the case of

local RAM disk on the IO nodes, the read speed is reduced to

180 MB/s and the write speed to 130 MB/s).

The situation with TUN is even worse, because the data is

transferred in individual IP packets of no more than 1500

bytes. As a result, we only achieve ~180 Mb/s (22 MB/s)

between compute nodes and IO nodes. IP communication

works between compute nodes as well, but for simplicity this

is implemented in ZeptoOS by sending the packets to the IO

node and letting it forward the data to the intended destination.

Consequently, as the number of communicating compute node

processes increases, the fraction of throughput available to

each goes down.

The collective network is not the only one available on

BG/P: the primary network for point-to-point communication

between compute nodes is the 3-D torus. Every compute node

has torus links to six neighbors, each with a bandwidth of 3.4

Gb/s (425 MB/s). Until recently, the torus network was not

accessible when running under ZeptoOS, because the torus

network’s DMA engine lacks scatter/gather capability and

thus requires large, continuous areas of physical memory,

normally unavailable under Linux.

To enable use of the torus network under ZeptoOS, we

modified the Linux kernel to reserve a considerable “flat”

segment of memory at boot time. A process wishing to

communicate over the torus is mapped into this memory

region, so that the DMA engine can operate on its memory

buffers. While this capability is still under development, we

have implemented IP forwarding over MPI (which uses the

torus), again using the TUN device. We measured peak torus

point-to-point throughput of around 1.15 Gb/s (140 MB/s).

This throughput is an order of magnitude higher than over the

collective network, for several reasons, the most significant

being that we have increased the maximum transmission unit

(MTU) of the TUN network device to 65535 bytes (the

maximum value allowed with IPv4). While we would have

liked to do the same with the TUN device operating over the

collective network, the older version of the Linux kernel used

on the IO nodes does not allow an increase in the MTU of the

TUN device. We are currently prevented from upgrading that

kernel version because the GPFS kernel module depends on it.

4 Prior work
There has been much research on collective operations in

the context of the message passing programming paradigm.

These operations allow a group of processes to perform a

common, pre-defined operation “collectively” on a set of data.

For example, the MPI standard [MPI] offers a large number of

such operations, from a basic broadcast (delivering an

identical copy of data from one source to many destinations),

through scatter (delivering a different part of input data from

one source to each destination) and its opposite, gather

(assembling the result at one destination from its parts

available on multiple sources), to reduction operations (like

gather, but instead of assembling, the parts of the result are

combined). These operations are considered so crucial for the

performance of message passing programs that the BG/P

provides the separate collective tree network to perform them

efficiently in hardware [BGP].

Similarly, collective IO is not a new concept in parallel

computing. It is employed, e.g., by ROMIO [Thakur+1999],

the most popular MPI-IO implementation, in its generalized

two-phase IO implementation. When compute tasks want to

perform IO, they first exchange information about their

intentions, in an attempt to coalesce many small requests into

fewer larger ones (an assumption being that the processes

access the same file). When reading, in the first phase the

processes issue large read requests, and in the second phase,

they exchange parts of their read buffers with one another,

using efficient MPI communication primitives so that each

process ends up with the data it was interested it. For writing,

the two phases are reversed.

MPI collective communication and IO operations require

applications to be at least loosely synchronous, in that progress

Figure 6: ZOID/ZeptoOS and BG/P Torus Network

Figure 5: ZOID and ZeptoOS

must be made in globally synchronized phases, and that all

processes participate in a collective operation. These

conditions restrict the use of standard collective operations in

loosely coupled, uncoordinated scenarios, limiting them to

initialization time (before any individual tasks start running),

and possibly termination time (once all individual tasks have

completed).

Until recently, such uncoordinated jobs were primarily run

on moderate scale clusters or on distributed (“grid”) resources.

Most clusters were not large enough to encounter IO

contention problems such as those described here.

Furthermore, cluster nodes generally have considerable local

disks suitable for storing large input and output data. The

primary problem on such systems has thus been mainly to

efficiently stage data and schedule jobs so that they can best

benefit from the staged data [Khanna+2006; Khanna+2007].

File IO is a more significant problem with distributed

resources. Condor provides a remote IO library that forwards

system calls to a shadow process running on the “home”

machine where the files actually reside. Global Access to

Secondary Storage (GASS [Bester+1999]) available in Globus

takes a different approach, transparently providing a

temporary replica cache for input and output files. Our

collective IO goes beyond these approaches to intelligently

utilize local filesystems, and to provide intermediate file

systems, broadcasting of input files, and batching of output

files. Unlike Condor remote IO, our approach does not require

relinking. Our approach makes it practical for tens to hundreds

of thousands of processor cores now (and in a few years, a

million cores) to perform concurrent, asynchronous IO

operations. These numbers are easily an order of magnitude

greater than what has been addressed in any previous

implementation.

5 Design and Implementation
The requirements described to this point translate into a

straightforward design for handling collective IO, which

consists of three main components: 1) one or more

intermediate file systems (IFSs) enabling data to be placed and

cached closer to the computation (from an access-latency and

bandwidth perspective) while overcoming the size limitation

of the typical RAM-based local file systems that are prevalent

in petascale-precursor systems; 2) a data distributor, which

replicates sufficiently large common input datasets to

intermediate file systems; and 3) a data collector mechanism,

which collects output datasets on IFSs and efficiently writes

the collected data to large archive files on the GFS.

Our implementation of this design, which we have

prototyped for performance evaluation, uses simple scripts to

coordinate “off the shelf” data management components. All

of our prototypes and measurements to date have been done on

the Argonne BG/P systems (Surveyor, 4096 processors, and

Intrepid, 163,840 processors). Not all of the design aspects

described below exist yet in the prototype. These are indicated

in the description. We executed all of our compute tasks under

the Falkon lightweight task scheduler [Raicu+2007;

Raicu+2008] running under ZeptoOS [ZeptoOS2008].

The structure of the system is shown in overview in Figure

7, and in more detail in Figure 9, which depicts the flow of

input and output data in our BG/P-based prototype. Within the

BG/P testbed, the RAM-based file system of the local node,

which contains about 1GB of free space, is used as the LFS.

For input staging, the LFS of one or more compute nodes is

set aside as a “file server” and is dedicated as an IFS for a set

of compute nodes.

We create large IFSs from fast LFSs by striping IFS

contents over several LFS file systems, using the MosaStore

file IO service [Al-Kiswany+2007]. Compute nodes access the

IFS using the BG/P torus network [BGP]. The creation of the

IFS and the partitioning of compute nodes between IFS

functions and computing can be done on a per-workload basis,

and can vary from workload to workload. In the same manner

that compute node and IO node operating systems are booted

when a BG/P job is started, the creation of the IFSs and the

CN-to-IFS mapping can be performed as a per-workload setup

task performed when compute nodes are provisioned by

Falkon [Raicu+2007; Raicu+2008]. This enables the CN-to-

IFS ratio to be tailored to the disk space and bandwidth needs

of the workflow (Figure 8).

Figure 7: Logical Distributor/Collector Design

Figure 8: Allocation and mapping of compute nodes to IFS

servers: 2:64 ratio (top) and 4:64 ratio (bottom)

5.1 Input Distribution
The input distributor stages common input data efficiently

to LFS or IFS. This mechanism is used to cache files that will

be frequently re-read, or that will be read in inefficient buffer

lengths, closer to the compute nodes. The key to this operation

is to use broadcast or multicast methods, where available, to

move common data from global to local or intermediate file

systems. For accessing input data, we stage input datasets as

follows:

• Small input datasets are staged from GFS to the LFS of

the compute nodes which read them.

• Datasets read by only one task but that are too large to be

staged to an LFS are staged to an IFS of sufficient size.

• All large datasets that are read by multiple tasks are

replicated to all IFSs that serve the set of compute nodes

involved in a computation.

In our prototype implementation, data is replicated from

GFS to multiple IFSs by the Chirp replicate command

[Thain+2008]. (Steps 1 and 2 in Figure 7.) We employ two

functions: the first identifies if a given compute node is a data-

serving or application-executing node. The second maps

executor compute nodes to its IFS data server. The decision of

whether to place an input file on LFS or IFS is made explicitly

(i.e., hard-coded in our prototype). Each IFS is mounted on all

associated compute nodes, and accessed via FUSE.

5.2 Output Collection
The output collector gathers (small) output data files from

multiple processors and aggregates them into efficient units

for transfer to GFS. In this way, we reduce greatly the number

of files created on the GFS (which reduces the number of

costly file creation operations) and also increase the size of

those files (which permits data to be written to GFS in larger,

more efficient block sizes and write buffer lengths). The use of

the output collector also enables data to be cached on LFS or

IFS for later analysis or reprocessing.

Our goal is that files which can fit on the LFS can be

written there by the application program, while larger output

files can be written directly to IFS, and output files too large to

fit on the LFS or IFS are written directly to GFS. (This

differentiation is not implemented in the prototype). In this

way, we can optimize the performance of output operations

such as file and directory creation and small write operations.

The collector operates as follows. When application

programs complete, any output data on the LFS is copied to an

IFS (Figure 7, Step 3). When the copy is complete, the data is

atomically moved to a staging directory, where the following

algorithm (Step 4) is used:

while workload is running
 if time since last write > maxDelay
 or data buffered > maxData
 or free space on IFS < minFreeSpace
 then write archive to GFS from staging dir

One consequence of this design is that short tasks can

complete quicker, without having each task remain on a

compute node waiting for its data to be written to GFS, as the

staging of data from IFS to GFS is handled asynchronously by

the collector, as

shown in Figure

10. In our

prototype, the IO

node (ION) file

system serves as

the IFS, and data

moving relies on

POSIX atomicity

semantics for data

integrity. Files are

moved from LFS

to IFS via tar, and

are then

transferred to GFS

using dd with a

large efficient

blocksize.

In our

prototype, the LFS and IFS file systems are both RAM-based,

and behave somewhat like an in-memory message exchange

system, in which messages are moved by read() and write()

from one namespace (file server) to another. While these

“messages” may be more expensive than MPI messages (the

difference remains to be measured), this approach lets users

integrate existing application programs into larger application

workflows without requiring disk IO.

5.3 Downstream data processing
The fact that data managed by the output collector on LFSs

or IFSs can be retained for subsequent processing makes it

possible to re-process the output data of one stage of a

workflow far more efficiently than if the data had to be

retrieved from GFS. When previously written output does

need to be retrieved from GFS, the ability to access files in

parallel from a randomly accessible archive (as described

below) further improves performance. And intermediate

output data that doesn’t need to be retained persistently can be

left on LFS or IFS storage without moving it to GFS at all.

To facilitate multi-stage workflows, in which the output of

one stage of a parallel computation is consumed by the next,

we incorporate two capabilities in our design: 1) the use of an

archive format for collective output that can be efficiently re-

processed in parallel, and 2) the ability to cache intermediate

results on LFS and/or IFS file systems.

We base our output collector design on the use of a

relatively new archive utility xar [XAR], which unlike

traditional tar (and similar) archive formats includes an

updateable XML directory containing the byte offset of each

Figure 10: Output staging: synchronous, top, without collector;

asynchronous, bottom with collector.

Figure 9: Data flow on BG/P

archive member. This directory enables files to be extracted

via random access, and hence xar (unlike tar) archives can be

processed efficiently in parallel in later stages or a workflow.

In the future, it is likely that we can implement parallel IO to

an xar archive from multiple compute nodes, thus enhancing

write performance potential even further. To enable testing of

such re-processing of derived data from LFS, we employ a

prototype of a new primitive collective execution operation

“run task x on all compute nodes” which enables all previous

outputs on LFS to be processed. Our prototype does not yet

use xar, but rather tar, which has a similar interface.

6 Performance Evaluation
We present measurements from the Argonne ALCF BG/P,

running under ZeptoOS and Falkon. We have evaluated

various features on up to 98,304 (out of 163,840) processors.

Dedicated test time on the entire facility is rare, so all tests

below were done with the background noise of activity from

other jobs running on other processors. Nonetheless, the trends

indicated are fairly clear, and we expect that they will be

verifiable in future tests in a controlled, dedicated

environment. We have made measurements in both areas of

the proposed collective IO primitives (denoted as CIO

throughout this section), such as input data distribution, and

output data collection. We also applied the collective IO

primitives to a molecular dynamics docking application at up

to 96K processors.

6.1 Input Data Distribution
Our first set of results investigated how effectively

compute nodes can read data from the IFSs (over the torus

network), examining various data volumes and various

IFS/LFS ratios. We used the lightweight Chirp file system

[Thain+2008] and the Fuse interface to read files from IFS to

LFS. Figure 11 shows higher aggregate performance with

larger files, and with higher ratios, with the best IFS

performance reaching 162 MB/s for 100 MB files and a 256:1

ratio. However, as the bandwidth is split between 256 clients,

the per-node throughput is only 0.6 MB/s. Computing the per-

node throughput for the 64:1 ratio yields 2.3 MB/s, a

significant increase. Thus, we conclude that a 64:1 ratio is

good when trying to maximize the bandwidth per node. Larger

ratios reduce the number of IFSs that need to be managed;

however, there are practical limits that prohibit these ratios

from being extremely large. In the case of a 512:1 ratio and

100 MB files, our benchmarks failed due to memory

exhaustion when 512 compute nodes simultaneously

connected to 1 compute node to transfer the 100 MB file. This

needs further analysis.

Our next set of experiments used the lightweight

MosaStore file system [Al-Kiswany+2007] to explore how

effectively we can stripe LFSs to form a larger IFS. Our

preliminary results in Figure 12 show that as we increase the

degree of striping we get significant increases in aggregate

throughput, up from 158 MB/s to 831 MB/s.

21

103

148

43

129

155

60

144

162

72

150

0

20

40

60

80

100

120

140

160

180

CIO(1MB) CIO(10MB) CIO(100MB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

64:1
128:1
256:1
512:1

Figure 11: Read performance while varying the ratio of LFS to

IFS from 64:1 to 512:1 using the Torus network.

The best performing configuration was 32 compute nodes

aggregating their 2GB-per-node LFSs into a 64 GB IFS. This

aggregation not only increases performance, but also allows

compute nodes to keep their IO relatively local when working

with large files that do not fit in a single compute node 2GB

RAM-based LSF.

Our final experiment for the input data distribution section

focused on how quickly we can distribute data from GFS to a

set of IFSs, or potentially to LFSs. As in our previous

experiment, we use Chirp (see Figure 13). Chirp has a native

operation that allows a file (or set of files) to be distributed to

a set of nodes over a spanning tree of copy operations. The

spanning tree has the benefit of requiring fewer data transfers:

log(n) instead of n, where n is the number of nodes.

In the case of a naïve data distribution in which compute

nodes read data directly from GFS (GPFS in our case as noted

in the figure), computing the aggregate throughput is

straightforward: throughput = nodes*dataSize/workloadTime.

For the spanning tree distribution, computing the actual

throughput is problematic since the number of transfers is

lower than in the naïve method. To make the comparison fair,

we compute throughput for the spanning tree distribution with

the same formula as for the naïve data distribution, although

the actual network traffic would have been significantly less.

We believe this is the correct way to compare the two

approaches, as it emphasizes the time to complete the

workload. On up to 4K processors, GPFS achieves 2.4 GB/s at

the largest scale (2.4 MB/s per node). This is the peak rated

performance for the file system we tested (/home). However,

the spanning tree approach achieves an equivalent of 12.5

GB/s on 4K processors. We plan to explore the performance

of the spanning tree distribution at larger scales to find the

torus network saturation point. We expect to achieve at least

one order of magnitude better performance (for distributing a

set of files to many compute nodes) at large scales when using

the spanning tree approach as opposed to the naïve approach

which reads each file from GPFS directly.

158
187

315

532

746

831

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16 32
Degree of Striping over Multiple Nodes

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Throughput (MB/s)

Figure 12: Read performance, varying the degree of striping of

data across multiple nodes from 1 to 32 using the torus network

0

2000

4000

6000

8000

10000

12000

14000

4 256 512 1024 2048 4096

Number of Processors

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

CIO

GPFS

Figure 13: CIO distribution via spanning tree over Torus

network vs. GPFS over Ethernet & Tree networks

6.2 Output Data Collection
Our second goal for the collective IO primitives was to

support the aggregation and transfer of many files from

multiple LFSs or IFSs to the GFS. When writing from many

compute nodes directly to GPFS (the GFS on the BG/P), care

must be taken to avoid locking contention on metadata. One

way to avoid this problem is to ensure that each compute node

writes files to a unique directory. It is desirable to have as few

clients as possible writing to GFS concurrently to limit any

locking contention, and to allow the largest buffer sizes and

aggregation and potentially small files into larger ones. It is

also desirable to make write operations as asynchronous as

possible to allow the overlap of computing and data transfer

from the compute node. To achieve all these desirable

features, we have implemented an output data collector (CIO,

which we previously discussed) that resides on an IFS and acts

as an intermediate buffer space for output generated on

compute nodes. We use a ratio of 64:1 IFS to LFS, which

significantly reduces the number of clients that write to GFS.

Our measurements (see Figure 14 and Figure 15) show that

the CIO collector strategy yields close to the ideal efficiency

when compared to compute tasks of the same length with no

IO. For example, in Figure 14 we show the efficiency

achieved with short tasks (4 seconds) that produce output files

with sizes ranging from 1KB to 1MB. We see that CIO (the

dotted lines) is able to achieve > 90% efficiency in most cases,

and almost 80% in the worst case with larger files. In contrast,

the same workload achieved only 10% to < 50% efficiency

when using GPFS. We also observed an anomaly: a slight

efficiency increase at the largest scale of 32K processors. One

possible cause of this is that we reached the limit of Falkon

dispatch throughput.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 2048 4096 8192 32768

Number of Processors
E

ff
ic

ie
n

c
y

4sec+GPFS(1KB)
4sec+GPFS(16KB)
4sec+GPFS(128KB)
4sec+GPFS(1MB)
4sec+CIO(1KB)
4sec+CIO(16KB)
4sec+CIO(128KB)
4sec+CIO(1MB)

Figure 14: CIO vs. GFS efficiency for 4 second tasks, varying

data size (1KB to 1MB) on 256 to 32K processors

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 2048 4096 8192 32768 98304

Number of Processors

E
ff

ic
ie

n
c

y

32sec+GPFS(1KB)
32sec+GPFS(16KB)
32sec+GPFS(128KB)
32sec+GPFS(1MB)
32sec+CIO(1KB)
32sec+CIO(16KB)
32sec+CIO(128KB)
32sec+CIO(1MB)

Figure 15: CIO vs GPFS efficiency for 32 second tasks, varying

data size (1KB to 1MB) for 256 to 96K processors.

Figure 15 is similar to Figure 14, but uses 32 second tasks.

We see a similar pattern, in which CIO achieves 90%

efficiency, while GPFS achieves almost 90% efficiency with

256 processors but less than 10% on 96K processors.

We also extract from these experiments the achieved

aggregate throughput (shown in Figure 16). We limit this plot

to the 1 MB case for readability. Notice the extremely poor

GPFS write performance as the number of processors

increases, peaking at only 250 MB/s. The CIO throughput is

almost an order of magnitude higher, peaking at 2100 MB/s,

and is within a few percent of the ideal case (tasks with the

same duration, but with only local IO to RAM-based LFS,

labeled 4sec+RAM and 32sec+RAM).

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

256 2048 4096 8192 32768 98304

Number of Processors

W
ri

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

4sec+GPFS(1MB)

32sec+GPFS(1MB)

4sec+CIO(1MB)

32sec+CIO(1MB)

4sec+RAM(1MB)

32sec+RAM(1MB)

Figure 16: CIO collection write performance compared to GPFS

write performance on up to 96K processors

6.3 Application Evaluation
We have shown significant performance and scalability

improvements for synthetic data-intensive workloads. To

determine how these improvements translate into real

application performance, we evaluated the utility of collective

IO on a molecular dynamics workflow which screens

candidate drug compounds against metabolic protein targets

using the DOCK6 application [DOCK] to simulate the

“docking” of small molecules to the “active sites” of large

macromolecules. A compound that interacts strongly with a

receptor, such as a protein molecule, associated with a disease,

may inhibit its function and thus act as a beneficial drug. In

this application run, a database of 15,351 compounds was

screened against nine proteins that perform key enzymatic

functions in the metabolism of bacteria and humans.

The molecular dynamics docking workflow has 3 stages: 1)

read input, compute the docking, and write output; 2)

summarize, sort, and select results; and 3) archive results. In

out tests, the DOCK6 invocations averaged 10KB of output

every 550 seconds.

In the simple case where we use GFS, the input data of

stage 1 is read from GFS to LFS, the application reads from

LFS and writes its output to LFS, and finally the output is

synchronously copied back to GFS. Stage 1 is parallelized to

process each DOCK invocation on a separate processor core.

Both stage 2 and stage 3 were originally a single process

application that would run on a login node and access input

data directly from GFS. In the case of using CIO, the stages

are a bit different: stage 1 writes the output data from LFS to

IFS asynchronously; stage 2 is parallelized across all

processors and works on IFS; stage 3 copies the data from IFS

to GFS. Figure 17 shows the breakdown of the 3 stages, and

where time was being spent, for a total of 1412 seconds for

CIO and 2140 seconds for GPFS. The first stage is negligibly

faster with CIO (1.06X), and the third stage is 1.5X faster, but

the second stage is 11.7X faster with 694 seconds being

reduced down to 59 seconds. Stage 2 summarizes, sorts and

filters the results, which CIO can handle much better in a

distributed fashion (as opposed to the centralized GFS

solution) with data accesses localized to IFS instead of GFS.

2140 sec

1412 sec

0
18

0
36

0
54

0
72

0
90

0
10

80
12

60
14

40
16

20
18

00
19

80
21

60

Time (sec)

GPFS

CIO Stage 1

Stage 2

Stage 3

Figure 17: DOCK6 application summary with 15K tasks on 8K

processor comparing CIO with GPFS

In order to see the effects of CIO at larger scale, we also

ran the DOCK6 stage 1 with 135K tasks on 96K processors.

The net result was a 1.12X speedup using CIO (1772 seconds)

as compared to GPFS (1981 seconds) – a negligible speedup,

as we expected for this compute-bound workload.

7 Future Work
The prototype implementation we describe here, while in its

early stages of development, has been sufficient to make a

reasonable assessment of the performance and usability

potential of a file-based collective IO model that can handle at

least O(100K) BG/P processors. Our next major focus will be

to integrate the model into the Swift parallel programming

environment [Zhao+2007], so that BG/P users can benefit

from this higher-level programming model without explicitly

programming the collective IO operations.

We intend to investigate algorithmic questions and

enhancements, such as determining the optimal ratio of IFS

nodes to compute nodes for various workloads; determining

when we can effectively use the compute nodes of IFS data

hosts for computing in addition to file serving; automatically

optimizing input data placement on LFSs vs. IFSs;

determining if we can learn from the IO patterns of previous

runs where best to locate a given input or output file; finding

algorithms for automating output data caching in IFSs and

LFSs for re-processing by subsequent workflow stages; and

determining when data on IFSs/LFSs can be removed.

Lower-level implementation issues we intend to explore

include the use of the tree network to enhance the performance

of input broadcast, and comparing the performance and

reliability benefits of MosaStore, Chirp, and native Linux

approaches to IFS striping. We also intend to explore how the

random access capabilities of archive formats such as xar can

enable parallel reading and parallel archive creation, and what

role compression should play in the output process.

We will continue to drive this work with an expanding

measurement effort, on both synthetic and actual applications.

We are particularly interested in measuring the behavior of

applications (such as BLAST runs on large databases) that will

benefit greatly from striped IFS capabilities.

8 Conclusion
We have identified, characterized, and started to address a

critical problem for enabling the use of petascale

supercomputers by a far larger community of scientific

applications and users: how to enable efficient file-based IO

by large numbers of independent parallel tasks, as required by

many-task computing applications involved in loosely coupled

parallel programming.

Our results indicate that it is possible to adapt principles of

collective data operations to the world of parallel scripting

linked by file interchange. While our results are preliminary,

and are based on simple prototypes, they suggest that

collective IO primitives, when effectively integrated into

parallel scripting programming systems and languages (such

as Falkon and Swift) can yield excellent performance on

100,000 processors – and likely well beyond – while greatly

enhancing scientific programming productivity.

ACKNOWLEGEMENTS

This work was supported in part by the National Science

Foundation under Grant OCI-0721939, by NASA Ames

Research Center GSRP Grant Number NNA06CB89H, and by

the Mathematical, Information, and Computational Sciences

Division subprogram of the Office of Advanced Scientific

Computing Research, Office of Science, U.S. Dept. of Energy,

under Contract DE-AC02-06CH11357.

The authors would like to thank Samer Al-Kiswany of the

University of British Columbia for assistance with MosaStore,

Kazutomo Yoshii of Argonne National Laboratory for

assistance with ZeptoOS, the Argonne Leadership Computing

Facility team for their tremendous support in our use of the

Intrepid BG/P, and Mike Kubal of the Computation Institute

for providing and explaining the molecular docking workflow.

REFERENCES

[ALCF] Argonne Leadership Computing Facility,
http://www.alcf.anl.gov

[Al-Kiswany+2007] S. Al-Kiswany, M. Ripeanu, S.

Vazhkudai, “A Checkpoint Storage System for Desktop

Grid Computing”, Networked Systems Lab, U. of British

Columbia, Tech Report NetSysLab-TR-2007-04, 2007.

[Bester+1999] J. Bester, I. Foster, C. Kesselman, J. Tedesco,

and S. Tuecke, “GASS: A data movement and access

service for wide area computing systems”, IOPADS 99:

Proceedings of the Sixth Workshop on IO in Parallel and

Distributed Systems, Atlanta, GA, pp 78-88, 1999.

[BGP] IBM Blue Gene team, “Overview of the IBM Blue

Gene/P Project”. IBM Journal of Research and

Development, vol. 52, no. 1/2, pp. 199-220, Jan/Mar 2008.

[DOCK] Overview of DOCK,
http://dock.compbio.ucsf.edu/Overview_of_DOCK/index.htm

[FUSE] FUSE: File System in Userspace.
http://fuse.sourceforge.net/

[Iskra+2008] K. Iskra, J. W. Romein, K. Yoshii, and P.

Beckman. “ZOID: IO-forwarding infrastructure for

petascale architectures”. 13th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pp.

153-162, Salt Lake City, UT, Feb. 2008.

[Khanna+2006] G. Khanna, N. Vydyanathan, U. V.

Catalyurek, T. M. Kurc, S. Krishnamoorthy, P. Sadayappan,

J. H. Saltz, “Task Scheduling and File Replication for Data-

Intensive Jobs with Batch-shared IO”, Proceedings of the

15th IEEE International Symposium on High-Performance

Distributed Computing (HPDC-15) pp. 241-252, June 2006.

[Khanna+2007] G. Khanna, U. V. Catalyurek, T. M. Kurc, P.

Sadayappan, J. H. Saltz, “Scheduling File Transfers for

Data-Intensive Jobs on Heterogeneous Clusters”,

Proceedings of Euro-Par 2007 Parallel Processing, pp. 214-

223, August, 2007.

[MPI] Message Passing Interface Forum, “MPI-2: Extensions

to the Message-Passing Interface”, http://www.mpi-

forum.org/docs/mpi-20-html/mpi2-report.html

[MPI-IO] K. Coloma, A. Ching, A. Choudhary, W. Liao R.

Ross, R. Thakur, L. Ward, “A New Flexible MPI Collective

IO Implementation”, International Conference on Cluster

Computing, 2006.

[NBD] Network Block Device. http://nbd.sourceforge.net/

[Ousterhout1998] J. Ousterhout, “Scripting: Higher-level

programming for the 21
st
 century”, IEEE Computer Mar.

1998.

[Raicu+2007] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M.

Wilde. “Falkon: a Fast and Light-weight tasK executiON

framework”, IEEE/ACM Supercomputing 2007.

[Raicu+2008] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P.

Beckman, K. Iskra, B. Clifford. “Toward Loosely Coupled

Programming on Petascale Systems”, to appear,

IEEE/ACM Supercomputing 2008.

[Schmuck+2002] F. Schmuck, R. Haskin, GPFS: A Shared-

Disk File System for Large Computing Clusters,

Proceedings of the USENIX FAST02 Conference on File

and Storage Technologies, Monterey, California, 2002.

[Thain+2005] D. Thain, T. Tannenbaum, and M. Livny,

“Distributed Computing in Practice: The Condor

Experience” Concurrency and Computation: Practice and

Experience, vol. 17, no. 2-4, pp. 323-356, Feb-Apr 2005.

[Thain+2008] D. Thain, C. Moretti, and J. Hemmes, Chirp: A

Practical Global File system for Cluster and Grid

Computing, Journal of Grid Computing, Springer, accepted

for publication in 2008.

[Thakur+1999] R. Thakur, W. Gropp, E. Lusk. Data Sieving

and Collective IO in ROMIO, 7th Symposium on the

Frontiers of Massively Parallel Computation, 1999.

[TUN] Universal TUN/TAP Driver.
http://vtun.sourceforge.net/tun

[XAR] XAR – eXtensible ARchiver Project home page,
http://code.google.com/p/xar/

[TOP500] http://www.top500.org/system/9158

[ZeptoOS] The ZeptoOS Project. http://www.zeptoos.org/

[Zhao+2007] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G.

vonLaszewski, I. Raicu, T. Stef-Praun, M. Wilde, “Swift:

Fast, Reliable, Loosely Coupled Parallel Computation”

IEEE Workshop on Scientific Workflows 2007

