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Abstract 

Loosely coupled programming is a powerful paradigm for 

rapidly creating higher-level applications from scientific 

programs on petascale systems, typically using scripting 

languages. This paradigm is a form of many-task computing 

(MTC) which focuses on the passing of data between 

programs as ordinary files rather than messages. While it has 

the significant benefits of decoupling producer and consumer 

and allowing existing application programs to be executed in 

parallel with no recoding, its typical implementation using 

shared file systems places a high performance burden on the 

overall system and on the user who will analyze and consume 

the downstream data. Previous efforts have achieved great 

speedups with loosely coupled programs, but have done so 

with careful manual tuning of all shared file system access. In 

this work, we evaluate a prototype collective IO model for file-

based MTC. The model enables efficient and easy distribution 

of input data files to computing nodes and gathering of output 

results from them. It eliminates the need for such manual 

tuning and makes the programming of large-scale clusters 

using a loosely coupled model easier. Our approach, inspired 

by in-memory approaches to collective operations for parallel 

programming, builds on fast local file systems to provide high-

speed local file caches for parallel scripts, uses a broadcast 

approach to handle distribution of common input data, and 

uses efficient scatter/gather and caching techniques for input 

and output. We describe the design of the prototype model, its 

implementation on the Blue Gene/P supercomputer, and 

present preliminary measurements of its performance on 

synthetic benchmarks and on a large-scale molecular 

dynamics application. 

1 Overview 
We define “loosely coupled applications” as programs that 

involve the sequenced execution of other programs. In this 

programming model, programs exchange data via files; the 

application typically involves a large number of invocations, 

often of several different programs; and programs are typically 

feature a high degree of inter-task parallelism, enabled by data 

independence within the flow graph of files. Applications are 

typically written in scripting languages (Perl, Python, Tcl, and 

numerous “shells”) [Ousterhout1998], which facilitate both 

the invocation of application programs and the passing and 

manipulation of files for program inputs and outputs. This 

style of programming is extensively employed in virtually 

every domain of science. For example, biologists run PERL 

scripts of BLAST and PFAM; neuroscientists run shell scripts 

of AIR, AFNI and FSL; physicists analyze collision data with 

scripts that execute analysis applications written in ROOT. 

It is difficult to efficiently map this common and useful 

programming model onto computing clusters of rapidly 

increasing scale. We note that we are mainly concerned here 

with applications running on what we term “petascale-

precursor” systems, where the sheer parallelism of the 

computing nodes of the system can easily overwhelm a 

traditional IO subsystem, and in particular, its shared file 

systems. As clusters have grown larger, to tens or, recently, 

hundreds of thousands of nodes, the IO strategies of loosely 

coupled applications have become both a performance 

bottleneck and a source of complexity. Significant manual 

effort is needed to scale application performance as cluster 

size grows. 

The specific problem we address here is that as the number 

of nodes in large-scale clusters contending for shared 

resources grows large, the IO bandwidth, volume and/or file 

management transaction rate exceeds some aggregate capacity 

limit, bottlenecks arise and the system becomes unbalanced. 

Thus, CPU cycles are wasted because the IO subsystem cannot 

service the CPUs fast enough. (We are concerned here with 

applications with high enough IO-to-compute ratios for IO to 

become the primary obstacle to parallel speedup. Applications 

that do relatively little IO while computing for long periods 

typically perform well in loosely coupled settings without any 

change to their IO strategy.) 

While petascale systems have massive shared IO 

subsystems, these subsystems often have vulnerabilities in 

handling file management transactions (e.g., creating and 

writing huge numbers of files at high rates) that are ill-

matched with the needs of loosely coupled programs. Our 

work remedies this deficiency and makes petascale systems 

attractive for this important and productive paradigm for 

knitting existing scientific programs into powerful workflows.  

Our strategy of collective IO is inspired by the collective 

data operations employed by tightly coupled message passing 

programming models. In these models, data is exchanged, 

both between in-memory tasks and between tasks and files, 

using operations such as scatter (often assisted by broadcast) 

and gather. In our model: 

• Input files are broadcast from shared file systems to local 

file systems. 



 

• Output files are locally batched up from applications and 

efficiently transferred to shared persistent storage. 

• Intermediate file systems are provided within the cluster 

to aid in efficient input and output staging and to 

overcome the limitations that large-scale clusters impose 

on local file system capacity. 

In the remainder of this paper we first present an abstract 

model that maps collective IO concepts, previously applied in 

message-passing and in-memory programming environments, 

to the file-based MTC domain. We then review the 

architecture of the IBM Blue Gene/P (BG/P) system, which 

we use as an exemplar of large-scale clusters (and as a base for 

our prototype and measurements), and describe prior work on 

collective IO. We then describe a new collective model that 

addresses the challenges described above, detail its 

implementation, and present preliminary measurements of its 

performance. We conclude with an outline of our plans to 

extend and improve the model. 

2 Abstract Collective IO Model for File Objects 
Our abstract model, which is independent of specific cluster 

architectures, is based on the following elements. 

1) We have applications involving multiple tasks that can 

run concurrently, each reading zero or more named objects, 

performing some computation, and writing zero or more 

named objects. (These objects are typically files – a detail that 

will become important when we talk about implementation 

specifics). The length of individual tasks, and of the objects 

read and written, are typically not known ahead of time. 

2) We can distinguish between two principal input 

patterns: a) read-many, in which many or all tasks read the 

same object; b) read-few, in which the number of tasks 

reading a particular object is small – often only one. We 

assume that each object is written by just one task. 

 
Typically, we know the objects to be read by each application 

ahead of time, and thus assume that applications will not 

determine at run time which files to read. (This restriction can 

be relaxed for some files, which would be considered outside 

of, or an extension to, the model). We further assume that we 

know (typically, from dependency information) which objects 

are read-many. 

3) In the simplest form of these applications, the set of 

objects read and the set of objects written are disjoint. In more 

complex forms, one task may write an object that is then read 

by another. In that case, we assume dataflow synchronization 

between the writer and the reader, meaning that the reader can 

only execute when the writer completes execution (as below). 

 
4) We assume a computer system architecture in which (a) 

all processors can access a high capacity persistent shared 

storage system (shared-store), albeit with modest performance, 

and (b) each processor has some local object storage (memory 

or disk) of modest capacity, but offering high performance 

(local-store). When many processors access the shared file 

system concurrently, contention leads to degraded and often 

unpredictable performance. 

5) An abstract cluster IO 

architecture is useful to 

define terminology. As 

shown in Figure 4, this model 

has three levels of file 

system: Global persistent 

shared file systems (GFS) are 

accessible from all compute 

nodes of a cluster, and are 

typically the persistent home 

of all data. Local file systems 

(LFS) are per-compute-node 

file systems, and are only 

directly accessible to tasks running on the processors of that 

compute node. As cluster size and density increases, the LFS 

may be implemented in RAM or FLASH memory, and is 

typically constrained in size between a few hundred 

megabytes and a few gigabytes. Intermediate file systems 

(IFS) are found, typically, only on the largest and most 

complex clusters, such as the IBM BGP. On the BGP, IFSs 

exist on the “IO node” processors (IONs); systems such as the 

SiCortex 5832 allow larger IFSs to be constructed by striping 

RAM-based LFSs. We use the acronyms GFS, LFS, and IFS 

throughout. 

Based on this abstract model, we employ two simple 

collective methods to improve IO performance: (a) routines to 

broadcast read-many objects to many processors; and (b) two-

stage IO operations to accelerate read-few and write 

operations, by staging objects between the many local-stores, 

an intermediate-store (created, for example, on a set of local-

 
Figure 2: Abstract application program IO profile 

 
Figure 3: Common Application Dataflow Pattern 
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stores), and the shared-store. We implement IFSs on LFSs 

using MosaStore [Al-Kiswany+2007] and Chirp 

[Thain+2008]. Our prototype of these methods was 

implemented on the BG/P and is described in Section 5. 

3 Blue Gene/P System Architecture 
The 163,834-processor IBM BG/P computer at the Argonne 

Leadership Computing Facility [ALCF] is at the time of 

writing the world’s largest open-science computing system 

[TOP500]. We view it as an exemplar of the coming wave of 

“petascale” systems, and we base the work described here on 

this system. 

We present here a brief overview of the characteristics of 

the GPFS distributed parallel file system that serves as the 

GFS for the ALCF BG/P. We then describe the ZeptoOS 

operating system environment that we employ for MTC 

programming of the BG/P, as this environment is critical to 

enabling the MTC model to be used on this machine, and 

because its BG/P implementation – some of which was 

influenced by the work described here – has not to date been 

published elsewhere. 

3.1 Characteristics of GPFS as a Global File system  
GPFS – the General Parallel File system [Schmuck+2002] – 

is configured on the ALCF BG/P with 24 IO servers, each 

with 20Gb/s network connectivity, and can sustain an 

aggregate IO rate of ~8GB/sec. 

GPFS is in general proficient at reading and writing large 

units, can handle vast numbers of files, and can maintain huge 

directories. It also excels at parallel IO operations from 

multiple client hosts, for which it maintains a sophisticated 

lock resolution protocol and heuristics. It has, however, two 

areas of weakness: it is relatively slow at creating new files, 

and can perform very poorly when multiple clients attempt to 

create files within the same parent directory (due to lock 

contention and its approach for maintaining global file system 

integrity in the face of metadata updates). These 

characteristics are typical for distributed parallel file systems 

which maintain local file system semantics in a distributed 

environment. However, they pose a challenge to MTC 

workloads, which can, if not carefully planned to avoid GFS 

weaknesses, perform exceedingly poorly. 

3.2 BG/P OS and IO Architecture to support MTC 
The ZeptoOS project [ZeptoOS] provides an open-source 

alternative to the proprietary software stacks available on 

contemporary massively parallel architectures. Its aim is to 

make petascale architectures more productive for the scientific 

user community, to enhance community collaboration and to 

enable computer science research on these architectures. 

ZeptoOS uses the Linux kernel to create an alternative, fully 

open software stack on large-scale parallel systems. 

The project currently focuses on the IBM BG/P 

architecture. These machines normally run a limited 

microkernel on the compute nodes. While the default compute 

node kernel is highly scalable, it lacks many capabilities that 

MTC jobs expect, such as the ability to execute sub-processes 

or run shell scripts. ZeptoOS replaces that kernel with a 

Linux-based ZeptoOS compute node kernel, which lifts those 

limitations. 

The default IBM BG/P microkernel forwards all file and 

socket IO calls to the IO nodes, which run Linux. IO nodes run 

a daemon that receives IO requests from the compute nodes 

and replays them against the Linux kernel. IO nodes also run 

file system clients for remote file systems such as NFS, GPFS, 

or PVFS, which handle the actual file IO.  

ZeptoOS also uses a similar, but more general, forwarding 

architecture for IO requests. ZOID, the ZeptoOS IO Daemon 

[Iskra+2008], is a replacement IO daemon running on the IO 

nodes, used to communicate with the compute nodes when 

they are running Linux. ZOID provides a generic, high-

performance function-forwarding infrastructure for compute 

nodes. This infrastructure is extensible through the use of 

plug-ins: users can define their own API and have data 

efficiently forwarded between the applications running on the 

compute nodes and the implementation code running on IO 

nodes. Generic plug-ins for POSIX file and socket IO are 

available which standard applications can take advantage of. 

ZOID also performs job management and IP packet 

forwarding between IO nodes and compute nodes (allowing 

users to, e.g., perform interactive debugging sessions on the 

compute nodes over telnet). 

Figure 5 and Figure 6 present in more detail the hardware 

and software components of the ZeptoOS environment on the 

BG/P. The ratio of compute nodes to IO nodes for a given 

BG/P installation can vary from 16:1 to 128:1 depending on 

the machine configuration; the ratio on the Argonne machine 

is fixed at 64:1. Compute nodes communicate with the IO 

nodes over a custom “collective” (also known as “tree”) 

network, with a bandwidth of 6.8 Gb/s (850 MB/s). Once 

protocol overheads are considered, the maximum throughput 

that ZOID can achieve over this network is around 760 MB/s. 

However, such throughput is only achievable when processes 

on the compute nodes communicate with ZOID directly.  A 

modified GNU libc library that enables this direct 

communication is in progress but is currently incomplete. 

A solution available to processes on the compute nodes 

through standard kernel interfaces would be far more 

desirable. Since our communication stack is in user space, we 

need mechanisms to forward data between the user and kernel 

space. The Linux kernel does offer easy to use interfaces for 

such purposes, in the form of FUSE and TUN. FUSE [FUSE] 

is a pseudo-file system that performs callbacks from the kernel 

VFS layer to a user-space daemon, which provides the 

implementation of file IO operations. TUN [TUN] simulates a 

network-layer device, allowing one to forward IP packets 

between a user-space process and the kernel’s TCP/IP stack. 

The problem is that neither of these solutions is particularly 

fast. Their designs (particularly that of FUSE) are simple and 

focused on flexibility, not high performance. 



 

 
The overheads they introduce are considerable. FUSE can 

read data in chunks of 128 KB, but writes are performed in 

chunks no larger than a single memory page. With a page size 

of 64 KB on the compute nodes we get at most 230 MB/s on 

input and 180 MB/s on output. (These are raw transfer speeds; 

if we include file system overhead, then even in the case of 

local RAM disk on the IO nodes, the read speed is reduced to 

180 MB/s and the write speed to 130 MB/s). 

The situation with TUN is even worse, because the data is 

transferred in individual IP packets of no more than 1500 

bytes. As a result, we only achieve ~180 Mb/s (22 MB/s) 

between compute nodes and IO nodes. IP communication 

works between compute nodes as well, but for simplicity this 

is implemented in ZeptoOS by sending the packets to the IO 

node and letting it forward the data to the intended destination. 

Consequently, as the number of communicating compute node 

processes increases, the fraction of throughput available to 

each goes down. 

The collective network is not the only one available on 

BG/P: the primary network for point-to-point communication 

between compute nodes is the 3-D torus. Every compute node 

has torus links to six neighbors, each with a bandwidth of 3.4 

Gb/s (425 MB/s). Until recently, the torus network was not 

accessible when running under ZeptoOS, because the torus 

network’s DMA engine lacks scatter/gather capability and 

thus requires large, continuous areas of physical memory, 

normally unavailable under Linux. 

To enable use of the torus network under ZeptoOS, we 

modified the Linux kernel to reserve a considerable “flat” 

segment of memory at boot time. A process wishing to 

communicate over the torus is mapped into this memory 

region, so that the DMA engine can operate on its memory 

buffers. While this capability is still under development, we 

have implemented IP forwarding over MPI (which uses the 

torus), again using the TUN device. We measured peak torus 

point-to-point throughput of around 1.15 Gb/s (140 MB/s). 

This throughput is an order of magnitude higher than over the 

collective network, for several reasons, the most significant 

being that we have increased the maximum transmission unit 

(MTU) of the TUN network device to 65535 bytes (the 

maximum value allowed with IPv4). While we would have 

liked to do the same with the TUN device operating over the 

collective network, the older version of the Linux kernel used 

on the IO nodes does not allow an increase in the MTU of the 

TUN device. We are currently prevented from upgrading that 

kernel version because the GPFS kernel module depends on it. 

 

4 Prior work 
There has been much research on collective operations in 

the context of the message passing programming paradigm. 

These operations allow a group of processes to perform a 

common, pre-defined operation “collectively” on a set of data. 

For example, the MPI standard [MPI] offers a large number of 

such operations, from a basic broadcast (delivering an 

identical copy of data from one source to many destinations), 

through scatter (delivering a different part of input data from 

one source to each destination) and its opposite, gather 

(assembling the result at one destination from its parts 

available on multiple sources), to reduction operations (like 

gather, but instead of assembling, the parts of the result are 

combined). These operations are considered so crucial for the 

performance of message passing programs that the BG/P 

provides the separate collective tree network to perform them 

efficiently in hardware [BGP]. 

Similarly, collective IO is not a new concept in parallel 

computing. It is employed, e.g., by ROMIO [Thakur+1999], 

the most popular MPI-IO implementation, in its generalized 

two-phase IO implementation. When compute tasks want to 

perform IO, they first exchange information about their 

intentions, in an attempt to coalesce many small requests into 

fewer larger ones (an assumption being that the processes 

access the same file). When reading, in the first phase the 

processes issue large read requests, and in the second phase, 

they exchange parts of their read buffers with one another, 

using efficient MPI communication primitives so that each 

process ends up with the data it was interested it. For writing, 

the two phases are reversed. 

MPI collective communication and IO operations require 

applications to be at least loosely synchronous, in that progress 

 
Figure 6: ZOID/ZeptoOS and BG/P Torus Network 
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must be made in globally synchronized phases, and that all 

processes participate in a collective operation. These 

conditions restrict the use of standard collective operations in 

loosely coupled, uncoordinated scenarios, limiting them to 

initialization time (before any individual tasks start running), 

and possibly termination time (once all individual tasks have 

completed). 

Until recently, such uncoordinated jobs were primarily run 

on moderate scale clusters or on distributed (“grid”) resources. 

Most clusters were not large enough to encounter IO 

contention problems such as those described here. 

Furthermore, cluster nodes generally have considerable local 

disks suitable for storing large input and output data. The 

primary problem on such systems has thus been mainly to 

efficiently stage data and schedule jobs so that they can best 

benefit from the staged data [Khanna+2006; Khanna+2007]. 

File IO is a more significant problem with distributed 

resources. Condor provides a remote IO library that forwards 

system calls to a shadow process running on the “home” 

machine where the files actually reside. Global Access to 

Secondary Storage (GASS [Bester+1999]) available in Globus 

takes a different approach, transparently providing a 

temporary replica cache for input and output files. Our 

collective IO goes beyond these approaches to intelligently 

utilize local filesystems, and to provide intermediate file 

systems, broadcasting of input files, and batching of output 

files. Unlike Condor remote IO, our approach does not require 

relinking. Our approach makes it practical for tens to hundreds 

of thousands of processor cores now (and in a few years, a 

million cores) to perform concurrent, asynchronous IO 

operations. These numbers are easily an order of magnitude 

greater than what has been addressed in any previous 

implementation. 

5 Design and Implementation 
The requirements described to this point translate into a 

straightforward design for handling collective IO, which 

consists of three main components: 1) one or more 

intermediate file systems (IFSs) enabling data to be placed and 

cached closer to the computation (from an access-latency and 

bandwidth perspective) while overcoming the size limitation 

of the typical RAM-based local file systems that are prevalent 

in petascale-precursor systems; 2) a data distributor, which 

replicates sufficiently large common input datasets to 

intermediate file systems; and 3) a data collector mechanism, 

which collects output datasets on IFSs and efficiently writes 

the collected data to large archive files on the GFS.  

Our implementation of this design, which we have 

prototyped for performance evaluation, uses simple scripts to 

coordinate “off the shelf” data management components. All 

of our prototypes and measurements to date have been done on 

the Argonne BG/P systems (Surveyor, 4096 processors, and 

Intrepid, 163,840 processors). Not all of the design aspects 

described below exist yet in the prototype. These are indicated 

in the description. We executed all of our compute tasks under 

the Falkon lightweight task scheduler [Raicu+2007; 

Raicu+2008] running under ZeptoOS [ZeptoOS2008]. 

The structure of the system is shown in overview in Figure 

7, and in more detail in Figure 9, which depicts the flow of 

input and output data in our BG/P-based prototype. Within the 

BG/P testbed, the RAM-based file system of the local node, 

which contains about 1GB of free space, is used as the LFS. 

For input staging, the LFS of one or more compute nodes is 

set aside as a “file server” and is dedicated as an IFS for a set 

of compute nodes.  

 

 
We create large IFSs from fast LFSs by striping IFS 

contents over several LFS file systems, using the MosaStore 

file IO service [Al-Kiswany+2007]. Compute nodes access the 

IFS using the BG/P torus network [BGP]. The creation of the 

IFS and the partitioning of compute nodes between IFS 

functions and computing can be done on a per-workload basis, 

and can vary from workload to workload. In the same manner 

that compute node and IO node operating systems are booted 

when a BG/P job is started, the creation of the IFSs and the 

CN-to-IFS mapping can be performed as a per-workload setup 

task performed when compute nodes are provisioned by 

Falkon [Raicu+2007; Raicu+2008]. This enables the CN-to- 

IFS ratio to be tailored to the disk space and bandwidth needs 

of the workflow (Figure 8). 

 
Figure 7: Logical Distributor/Collector Design 

 
Figure 8: Allocation and mapping of compute nodes to IFS 

servers: 2:64 ratio (top) and 4:64 ratio (bottom) 



 

5.1 Input Distribution 
The input distributor stages common input data efficiently 

to LFS or IFS. This mechanism is used to cache files that will 

be frequently re-read, or that will be read in inefficient buffer 

lengths, closer to the compute nodes. The key to this operation 

is to use broadcast or multicast methods, where available, to 

move common data from global to local or intermediate file 

systems. For accessing input data, we stage input datasets as 

follows: 

• Small input datasets are staged from GFS to the LFS of 

the compute nodes which read them. 

• Datasets read by only one task but that are too large to be 

staged to an LFS are staged to an IFS of sufficient size. 

• All large datasets that are read by multiple tasks are 

replicated to all IFSs that serve the set of compute nodes 

involved in a computation. 

In our prototype implementation, data is replicated from  

GFS to multiple IFSs by the Chirp replicate command 

[Thain+2008]. (Steps 1 and 2 in Figure 7.) We employ two 

functions: the first identifies if a given compute node is a data-

serving or application-executing node. The second maps 

executor compute nodes to its IFS data server. The decision of 

whether to place an input file on LFS or IFS is made explicitly 

(i.e., hard-coded in our prototype). Each IFS is mounted on all 

associated compute nodes, and accessed via FUSE.  

5.2 Output Collection 
The output collector gathers (small) output data files from 

multiple processors and aggregates them into efficient units 

for transfer to GFS. In this way, we reduce greatly the number 

of files created on the GFS (which reduces the number of 

costly file creation operations) and also increase the size of 

those files (which permits data to be written to GFS in larger, 

more efficient block sizes and write buffer lengths). The use of 

the output collector also enables data to be cached on LFS or 

IFS for later analysis or reprocessing. 

Our goal is that files which can fit on the LFS can be 

written there by the application program, while larger output 

files can be written directly to IFS, and output files too large to 

fit on the LFS or IFS are written directly to GFS. (This 

differentiation is not implemented in the prototype). In this 

way, we can optimize the performance of output operations 

such as file and directory creation and small write operations.  

The collector operates as follows. When application 

programs complete, any output data on the LFS is copied to an 

IFS (Figure 7, Step 3). When the copy is complete, the data is 

atomically moved to a staging directory, where the following 

algorithm (Step 4) is used: 
 
while workload is running 
  if time since last write > maxDelay 
     or data buffered > maxData 
     or free space on IFS < minFreeSpace 
  then write archive to GFS from staging dir 
 

One consequence of this design is that short tasks can 

complete quicker, without having each task remain on a 

compute node waiting for its data to be written to GFS, as the 

staging of data from IFS to GFS is handled asynchronously by 

the collector, as 

shown in Figure 

10. In our 

prototype, the IO 

node (ION) file 

system serves as 

the IFS, and data 

moving relies on 

POSIX atomicity 

semantics for data 

integrity. Files are 

moved from LFS 

to IFS via tar, and 

are then 

transferred to GFS 

using dd with a 

large efficient 

blocksize. 

In our 

prototype, the LFS and IFS file systems are both RAM-based, 

and behave somewhat like an in-memory message exchange 

system, in which messages are moved by read() and write() 

from one namespace (file server) to another. While these 

“messages” may be more expensive than MPI messages (the 

difference remains to be measured), this approach lets users 

integrate existing application programs into larger application 

workflows without requiring disk IO.  

 

5.3 Downstream data processing 
The fact that data managed by the output collector on LFSs 

or IFSs can be retained for subsequent processing makes it 

possible to re-process the output data of one stage of a 

workflow far more efficiently than if the data had to be 

retrieved from GFS. When previously written output does 

need to be retrieved from GFS, the ability to access files in 

parallel from a randomly accessible archive (as described 

below) further improves performance. And intermediate 

output data that doesn’t need to be retained persistently can be 

left on LFS or IFS storage without moving it to GFS at all. 

To facilitate multi-stage workflows, in which the output of 

one stage of a parallel computation is consumed by the next, 

we incorporate two capabilities in our design: 1) the use of an 

archive format for collective output that can be efficiently re-

processed in parallel, and 2) the ability to cache intermediate 

results on LFS and/or IFS file systems. 

We base our output collector design on the use of a 

relatively new archive utility xar [XAR], which unlike 

traditional tar (and similar) archive formats includes an 

updateable XML directory containing the byte offset of each 

 
Figure 10: Output staging: synchronous, top, without collector; 

asynchronous, bottom with collector. 

 
Figure 9: Data flow on BG/P 



 

archive member. This directory enables files to be extracted 

via random access, and hence xar (unlike tar) archives can be 

processed efficiently in parallel in later stages or a workflow. 

In the future, it is likely that we can implement parallel IO to 

an xar archive from multiple compute nodes, thus enhancing 

write performance potential even further. To enable testing of 

such re-processing of derived data from LFS, we employ a 

prototype of a new primitive collective execution operation  

“run task x on all compute nodes” which enables all previous 

outputs on LFS to be processed. Our prototype does not yet 

use xar, but rather tar, which has a similar interface. 

6 Performance Evaluation 
We present measurements from the Argonne ALCF BG/P, 

running under ZeptoOS and Falkon. We have evaluated 

various features on up to 98,304 (out of 163,840) processors. 

Dedicated test time on the entire facility is rare, so all tests 

below were done with the background noise of activity from 

other jobs running on other processors. Nonetheless, the trends 

indicated are fairly clear, and we expect that they will be 

verifiable in future tests in a controlled, dedicated 

environment. We have made measurements in both areas of 

the proposed collective IO primitives (denoted as CIO 

throughout this section), such as input data distribution, and 

output data collection. We also applied the collective IO 

primitives to a molecular dynamics docking application at up 

to 96K processors.  

6.1 Input Data Distribution 
Our first set of results investigated how effectively 

compute nodes can read data from the IFSs (over the torus 

network), examining various data volumes and various 

IFS/LFS ratios. We used the lightweight Chirp file system 

[Thain+2008] and the Fuse interface to read files from IFS to 

LFS. Figure 11 shows higher aggregate performance with 

larger files, and with higher ratios, with the best IFS 

performance reaching 162 MB/s for 100 MB files and a 256:1 

ratio. However, as the bandwidth is split between 256 clients, 

the per-node throughput is only 0.6 MB/s. Computing the per-

node throughput for the 64:1 ratio yields 2.3 MB/s, a 

significant increase. Thus, we conclude that a 64:1 ratio is 

good when trying to maximize the bandwidth per node. Larger 

ratios reduce the number of IFSs that need to be managed; 

however, there are practical limits that prohibit these ratios 

from being extremely large. In the case of a 512:1 ratio and 

100 MB files, our benchmarks failed due to memory 

exhaustion when 512 compute nodes simultaneously 

connected to 1 compute node to transfer the 100 MB file. This 

needs further analysis. 

Our next set of experiments used the lightweight 

MosaStore file system [Al-Kiswany+2007] to explore how 

effectively we can stripe LFSs to form a larger IFS. Our 

preliminary results in Figure 12 show that as we increase the 

degree of striping we get significant increases in aggregate 

throughput, up from 158 MB/s to 831 MB/s. 
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Figure 11: Read performance while varying the ratio of LFS to 

IFS from 64:1 to 512:1 using the Torus network. 

The best performing configuration was 32 compute nodes 

aggregating their 2GB-per-node LFSs into a 64 GB IFS. This 

aggregation not only increases performance, but also allows 

compute nodes to keep their IO relatively local when working 

with large files that do not fit in a single compute node 2GB 

RAM-based LSF. 

Our final experiment for the input data distribution section 

focused on how quickly we can distribute data from GFS to a 

set of IFSs, or potentially to LFSs. As in our previous 

experiment, we use Chirp (see Figure 13). Chirp has a native 

operation that allows a file (or set of files) to be distributed to 

a set of nodes over a spanning tree of copy operations. The 

spanning tree has the benefit of requiring fewer data transfers: 

log(n) instead of n, where n is the number of nodes.  

In the case of a naïve data distribution in which compute 

nodes read data directly from GFS (GPFS in our case as noted 

in the figure), computing the aggregate throughput is 

straightforward: throughput = nodes*dataSize/workloadTime. 

For the spanning tree distribution, computing the actual 

throughput is problematic since the number of transfers is 

lower than in the naïve method. To make the comparison fair, 

we compute throughput for the spanning tree distribution with 

the same formula as for the naïve data distribution, although 

the actual network traffic would have been significantly less. 

We believe this is the correct way to compare the two 

approaches, as it emphasizes the time to complete the 

workload. On up to 4K processors, GPFS achieves 2.4 GB/s at 

the largest scale (2.4 MB/s per node). This is the peak rated 

performance for the file system we tested (/home). However, 

the spanning tree approach achieves an equivalent of 12.5 

GB/s on 4K processors. We plan to explore the performance 

of the spanning tree distribution at larger scales to find the 

torus network saturation point. We expect to achieve at least 

one order of magnitude better performance (for distributing a 

set of files to many compute nodes) at large scales when using 

the spanning tree approach as opposed to the naïve approach 

which reads each file from GPFS directly.  
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Figure 12: Read performance, varying the degree of striping of 

data across multiple nodes from 1 to 32 using the torus network 
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Figure 13: CIO distribution via spanning tree over Torus 

network vs. GPFS over Ethernet & Tree networks 

6.2 Output Data Collection 
Our second goal for the collective IO primitives was to 

support the aggregation and transfer of many files from 

multiple LFSs or IFSs to the GFS. When writing from many 

compute nodes directly to GPFS (the GFS on the BG/P), care 

must be taken to avoid locking contention on metadata. One 

way to avoid this problem is to ensure that each compute node 

writes files to a unique directory. It is desirable to have as few 

clients as possible writing to GFS concurrently to limit any 

locking contention, and to allow the largest buffer sizes and 

aggregation and potentially small files into larger ones. It is 

also desirable to make write operations as asynchronous as 

possible to allow the overlap of computing and data transfer 

from the compute node. To achieve all these desirable 

features, we have implemented an output data collector (CIO, 

which we previously discussed) that resides on an IFS and acts 

as an intermediate buffer space for output generated on 

compute nodes. We use a ratio of 64:1 IFS to LFS, which 

significantly reduces the number of clients that write to GFS.  

Our measurements (see Figure 14 and Figure 15) show that 

the CIO collector strategy yields close to the ideal efficiency 

when compared to compute tasks of the same length with no 

IO. For example, in Figure 14 we show the efficiency 

achieved with short tasks (4 seconds) that produce output files 

with sizes ranging from 1KB to 1MB. We see that CIO (the 

dotted lines) is able to achieve > 90% efficiency in most cases, 

and almost 80% in the worst case with larger files. In contrast, 

the same workload achieved only 10% to < 50% efficiency 

when using GPFS. We also observed an anomaly: a slight 

efficiency increase at the largest scale of 32K processors. One 

possible cause of this is that we reached the limit of Falkon 

dispatch throughput.  
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Figure 14: CIO vs. GFS efficiency for 4 second tasks, varying 

data size (1KB to 1MB) on 256 to 32K processors 
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Figure 15: CIO vs GPFS efficiency for 32 second tasks, varying 

data size (1KB to 1MB) for 256 to 96K processors. 

Figure 15 is similar to Figure 14, but uses 32 second tasks. 

We see a similar pattern, in which CIO achieves 90% 

efficiency, while GPFS achieves almost 90% efficiency with 

256 processors but less than 10% on 96K processors.  

We also extract from these experiments the achieved 

aggregate throughput (shown in Figure 16). We limit this plot 

to the 1 MB case for readability. Notice the extremely poor 

GPFS write performance as the number of processors 

increases, peaking at only 250 MB/s. The CIO throughput is 

almost an order of magnitude higher, peaking at 2100 MB/s, 

and is within a few percent of the ideal case (tasks with the 

same duration, but with only local IO to RAM-based LFS, 

labeled 4sec+RAM and 32sec+RAM).   
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Figure 16: CIO collection write performance compared to GPFS 

write performance on up to 96K processors 

6.3 Application Evaluation 
We have shown significant performance and scalability 

improvements for synthetic data-intensive workloads. To 

determine how these improvements translate into real 

application performance, we evaluated the utility of collective 

IO on a molecular dynamics workflow which screens 

candidate drug compounds against metabolic protein targets 

using the DOCK6 application [DOCK] to simulate the 

“docking” of small molecules to the “active sites” of large 

macromolecules. A compound that interacts strongly with a 

receptor, such as a protein molecule, associated with a disease, 

may inhibit its function and thus act as a beneficial drug. In 

this application run, a database of 15,351 compounds was 

screened against nine proteins that perform key enzymatic 

functions in the metabolism of bacteria and humans. 

The molecular dynamics docking workflow has 3 stages: 1) 

read input, compute the docking, and write output; 2) 

summarize, sort, and select results; and 3) archive results. In 

out tests, the DOCK6 invocations averaged 10KB of output 

every 550 seconds. 

In the simple case where we use GFS, the input data of 

stage 1 is read from GFS to LFS, the application reads from 

LFS and writes its output to LFS, and finally the output is 

synchronously copied back to GFS. Stage 1 is parallelized to 

process each DOCK invocation on a separate processor core. 

Both stage 2 and stage 3 were originally a single process 

application that would run on a login node and access input 

data directly from GFS. In the case of using CIO, the stages 

are a bit different: stage 1 writes the output data from LFS to 

IFS asynchronously; stage 2 is parallelized across all 

processors and works on IFS; stage 3 copies the data from IFS 

to GFS. Figure 17 shows the breakdown of the 3 stages, and 

where time was being spent, for a total of 1412 seconds for 

CIO and 2140 seconds for GPFS. The first stage is negligibly  

faster with CIO (1.06X), and the third stage is 1.5X faster, but 

the second stage is 11.7X faster with 694 seconds being 

reduced down to 59 seconds. Stage 2 summarizes, sorts and 

filters the results, which CIO can handle much better in a 

distributed fashion (as opposed to the centralized GFS 

solution) with data accesses localized to IFS instead of GFS.  
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Figure 17: DOCK6 application summary with 15K tasks on 8K 

processor comparing CIO with GPFS 

In order to see the effects of CIO at larger scale, we also 

ran the DOCK6 stage 1 with 135K tasks on 96K processors. 

The net result was a 1.12X speedup using CIO (1772 seconds) 

as compared to GPFS (1981 seconds) – a negligible speedup, 

as we expected for this compute-bound workload. 

7 Future Work 
The prototype implementation we describe here, while in its 

early stages of development, has been sufficient to make a 

reasonable assessment of the performance and usability 

potential of a file-based collective IO model that can handle at 

least O(100K) BG/P processors. Our next major focus will be 

to integrate the model into the Swift parallel programming 

environment [Zhao+2007], so that BG/P users can benefit 

from this higher-level programming model without explicitly 

programming the collective IO operations. 

We intend to investigate algorithmic questions and 

enhancements, such as determining the optimal ratio of IFS 

nodes to compute nodes for various workloads; determining 

when we can effectively use the compute nodes of IFS data 

hosts for computing in addition to file serving; automatically 

optimizing input data placement on LFSs vs. IFSs; 

determining if we can learn from the IO patterns of previous 

runs where best to locate a given input or output file; finding 

algorithms for automating output data caching in IFSs and 

LFSs for re-processing by subsequent workflow stages; and 

determining when data on IFSs/LFSs can be removed. 

Lower-level implementation issues we intend to explore 

include the use of the tree network to enhance the performance 

of input broadcast, and comparing the performance and 

reliability benefits of MosaStore, Chirp, and native Linux 

approaches to IFS striping. We also intend to explore how the 

random access capabilities of archive formats such as xar can 

enable parallel reading and parallel archive creation, and what 

role compression should play in the output process. 

We will continue to drive this work with an expanding 

measurement effort, on both synthetic and actual applications. 

We are particularly interested in measuring the behavior of 

applications (such as BLAST runs on large databases) that will 

benefit greatly from striped IFS capabilities. 



 

8 Conclusion 
We have identified, characterized, and started to address a 

critical problem for enabling the use of petascale 

supercomputers by a far larger community of scientific 

applications and users: how to enable efficient file-based IO 

by large numbers of independent parallel tasks, as required by 

many-task computing applications involved in loosely coupled 

parallel programming.  

Our results indicate that it is possible to adapt principles of 

collective data operations to the world of parallel scripting 

linked by file interchange. While our results are preliminary, 

and are based on simple prototypes, they suggest that 

collective IO primitives, when effectively integrated into 

parallel scripting programming systems and languages (such 

as Falkon and Swift) can yield excellent performance on 

100,000 processors – and likely well beyond – while greatly 

enhancing scientific programming productivity. 
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