
Generating Precise Dependencies
for Large Software

Pei Wang, Jinqiu Yang, Lin Tan
University of Waterloo
Waterloo, ON, Canada

{p56wang,j233yang,lintan}@uwaterloo.ca

Robert Kroeger
Google Inc.

Kitchener, ON, Canada
rjkroege@google.com

J. David Morgenthaler
Google Inc.

Mountain View, CA, USA
jdm@google.com

Abstract—Intra- and inter-module dependencies can be a
significant source of technical debt in the long-term software
development, especially for large software with millions of lines
of code. This paper designs and implements a precise and scalable
tool that extracts code dependencies and their utilization for
large C/C++ software projects. The tool extracts both symbol-
level and module-level dependencies of a software system and
identifies potential underutilized and inconsistent dependencies.
Such information points to potential refactoring opportunities
and help developers perform large-scale refactoring tasks.

Index Terms—dependency, large scale, technical debt

I. INTRODUCTION

The size and complexity of software systems have been
increasing. Many modern software projects contain millions or
tens of millions of lines of code, e.g., Chromium, Firefox, and
the Linux kernel. They typically consist of tens or hundreds
of modules. Such software systems are often under active de-
velopment with daily or more frequent commits over years or
decades by hundreds or thousands of developers. Developers
constantly join and depart from the software development. Due
to the complexity and fast evolution of software, the coupling
between modules can deviate from the original design, which
hurts software maintainability. A recent study shows that inter-
module dependencies can be a significant source of technical
debt in long-term software development [7].

To manage such technical debt, a first and key step is to
provide developers with a precise view of the code dependen-
cies among modules. The benefits include: 1) identifying bad
dependencies that hurt software maintainability, and 2) help-
ing developers make informed decisions when they perform
system-wide or large-scale refactoring. We elaborate on these
two benefits below.
Identifying Bad Dependencies: Two main types of bad
dependencies are underutilized dependencies and inconsistent
dependencies. If only a small portion of a target module
is utilized by a client module, we call such a dependency
from the client module to the target module an underutilized
dependency. Underutilized dependencies often slow down the
building process and blow up the code size [7]. In addition,
underutilized dependencies can indicate poor cohesion of the
target because low utilization shows that a small portion of
the target may be loosely coupled with the rest, thus should
be separated to be a standalone module.

Inconsistent dependencies are dependencies that violate the
design of the software. For example, a project may want to
build its core modules without using any third-party libraries.
If a core module depends on a third-party library, such a
dependency is an inconsistent dependency. Programmers may
break the design rules and introduce inconsistent dependencies
for short-term gains (e.g., meeting the release deadline), which
hurt the long-term maintainability of the project, thus causing
technical debt.

Facilitating Large-Scale Refactoring: As software grows and
evolves, some large-scale refactoring becomes mandatory. In
2010 and 2011, the profile-guided optimization version of
Firefox failed to be built on 32-bit Windows because the code
base was too large and the linker ran out of virtual memory
address space. As a temporary fix, the developers turned off
and reverted a few pieces of new code. Noticing that the
monolithic design became a critical blocker for the evolution
of the project, the Firefox team finally decided to break a giant
module (libxul, the core part of Firefox) into several smaller
standalone libraries and build them separately. While the
detailed plan of this fix is still under investigation, comments
in several Bugzilla tickets (709721, 711386, 753056) show that
the dependencies are confusing the developers when they work
on such large-scale software refactoring tasks. Thus, a better
understanding of the inter- and intra-module dependencies can
help the developers choose the right points to refactor and
make the task easier.

We design and build a technique to generate code depen-
dencies precisely and automatically. For each dependency, we
also provide the pairwise utilization and overall utilization of
each target to help developers decide whether to adjust the
dependency or refactor the target. To the best of our knowl-
edge, our tool is the first one that scales to generate precise
dependencies and identify bad dependencies for millions of
lines of C/C++ code bases.

We make the following contributions:
• Scalable and precise dependency extraction and anal-
ysis: Our tool provides fine-grained and precise results. It
completes the dependency extraction and analysis for the
Chromium project with 6 million lines of code (6 MLOC)
in 123 minutes on a 3.1GHz Core i5 machine, showing that
the tool is scalable and efficient (Section V).

978-1-4673-6443-0/13

c� 2013 IEEE

MTD 2013, San Francisco, CA, USA

Accepted for publication by IEEE.

c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

47

• Full C++ Support: Our tool can process almost all salient
C++ features, e.g., template and operator overloading. In
addition, the analysis can handle some non-standard features
supported by the compiler (Section II).

• Potential bad dependencies detected in Chromium: By
applying our analysis to the Chromium browser, we found
some underutilized modules, of which only less than 20%
of the symbols are utilized by the other modules, meaning a
considerable portion of the modules may be dead code. We
also identified several dependencies potentially inconsistent
with the software design (Section V).

II. DESIGN OVERVIEW

Informally we define dependency as that, when the interface
of module A is modified, if the content of module B should
be modified accordingly to keep the whole project buildable,
then there is a dependency from B to A. This definition makes
dependencies discussed in this paper fall into the category of
structural dependencies [3].

To obtain precise module-level dependencies, we build
module-level dependencies from symbol-level dependen-
cies. For example, symbol func_foo depends on symbol
func_bar if func_foo calls func_bar. If func_foo
is part of module A and func_bar is part of module B,
then A depends on B. Similar to the previous work [7], we
define the pairwise utilization from module A to B as the
proportion of symbols in B on which A depends. The overall
utilization of a module B is the proportion of symbols in B
on which all other modules in the project depends. We rank
the dependencies by pairwise utilization and rank modules by
overall utilization when reporting them.

Figure 1 visualizes part of our analysis result for the
Chromium browser, showing the dependencies between some
key components of the browser. In the graph, each node is a
module and each edge denotes a pairwise dependency.

webkit

v8_base

glue

net

base

ui

content_common

ipc

renderer

Fig. 1. Dependencies between key components of Chromium. The thickness
of the edges indicates the pairwise utilization.

LLVM

Compiler

configuration

source

code

IR

Analyzer

LLVM IR

Post

Processor

grouping strategy

symbol-level

dependencies

module-level

dependencies

Fig. 2. Design overview. The component with dotted lines is existing facility;
and the components with solid lines are implemented by us.

Figure 2 shows the three main steps of our technique:
1) Compilation. Compile the source files into LLVM Inter-

mediate Representation (IR) with debug information.
2) IR Analyzer. Extract the symbol-level dependencies from

the LLVM IR instructions.
3) Post Processor. Group the symbol-level dependencies to

construct the module-level dependencies. The grouping
strategy, i.e., which symbols belong to which module,
can be based on any information reflecting the system’s
structure (e.g., code directory layout and build files).

III. SYMBOL-LEVEL DEPENDENCY EXTRACTION

A. Basic Approach

In this section, we summarize the difficulties in performing
dependency analysis on C++ programs and explain why we
choose LLVM IR rather than source code or abstract syntax
tree (AST) as the abstraction level for our tool to work on.

1) Function Overloading and Default Parameters: Without
type checking, it is nearly impossible for tools based on pure
pattern-matching to match overloaded functions correctly in
the source code, and the default parameters of overloaded
functions further aggravate the difficulty.

2) Non-Standard Language Syntax: Production compilers
usually support non-standard language syntaxes, some of
which can alter symbol linkage or set link-time alias, and
it is hard for pattern-matching techniques to recognize all
of them. We confirmed such a real-world case that shows
the impact of non-standard syntaxes on dependency analysis.
In the Chromium project, a function in the content browser
module is assigned a link-time alias, overriding a function
in the standard library and making every module calling that
standard function depends on content browser.

3) Implicit Call Sites: In C++, many functions (e.g., copy-
constructors and overloaded operators) are called without
using the conventional “()” operator. Several other kinds of
call sites, e.g., default object construction and destruction, do
not even show up in the source code.

4) Templates: Template instances are not directly defined
in the source code but are instantiated separately at compile
time. The instantiation information is usually not available in
the AST [5].

For the challenges above, we decide to go further than AST-
based tools and choose the LLVM IR as the abstraction level to
work on. LLVM IR is close to native code but still keeps rich
source code information. It is a language-independent format,
which gives tools built upon them the potential to support
languages other than C and C++.

48

B. Extraction Details

We obtain the symbol references by traversing LLVM IR
instructions. Since LLVM IR is a close-to-native format, the
instructions include implicit call sites, all template instances,
and linkage aliases. In IR, symbol names are mangled, saving
us the effort to distinguish overloaded function calls.

However, even with well formatted abstraction, there are
still challenges to address:

1) Template-Related Dependencies: Template is a special
feature in C++ which provides compile-time polymorphism
for different types sharing common interfaces. A programmer
needs to fill in the template with one or more types to obtain
an instance of the template before using it as a normal function
or class. This flexibility, however, causes dependencies that do
not match our dependency definition in Section II.

We illustrate the problem in Figure 3. In b.cc, function
bar instantiates foo<T> from the function template foo

with type T. The symbol references indicate two dependencies
(denoted by dashed lines): (1) bar depends on the template
instance foo<T>; (2) foo<T>, whose template definition is
in a.h, depends on T.interface. The first dependency
matches our dependency definition, but the second one does
not, because if the prototype of T.interface is changed, it
is usually the function bar in b.cc that should be changed
accordingly. The developer of bar may subclass T, add a
new interface compatible with foo, or just reimplement bar
to make the program buildable and functional. But he or she
should not touch the template definition in a.h since it is
possibly used by other modules out of his or her control. Based
on this scenario, we adjust the template-related dependencies
to the form denoted by the solid lines in Figure 3.

template<typename Type>
void f oo (Type t) {

t . i n t e r f a c e () ; . . .

}

a.h

class T {
public :

void i n t e r f a c e () ; . . .

} ;

c.h

#include <a . h>
#include <c . h>

void bar () {
T loca lT ;

foo<T>(l oca lT) ; . . .

}

b.cc

Fig. 3. Template-related dependency. The dashed dependencies are indicated
by symbol references. The solid ones are expected dependencies from the
view of software design (bar depends on foo<T> and T.interface).

2) Virtual Function Calls: Typically, an analysis tool, that
focuses on structural dependencies rather than behavioral
dependencies, should not be bothered by virtual function calls.
However, unlike dependency extraction tools for Java, most
of which perform analysis at the class level, our analysis
handles symbol-level dependencies. For that reason, if we
ignore virtual function calls, many classes will get close-
to-zero overall utilization, which may be too far from the
truth. Currently, we circumvent this problem by reporting

two extreme results. Firstly we get the conservative result
by assuming only virtual functions in the base classes are
called. Then we get the aggressive result by propagating virtual
function calls in the conservative result to every derived class.

IV. MODULE-LEVEL DEPENDENCY ANALYSIS

With the symbol-level dependency information extracted,
we further construct the module-level dependency model by
linking and grouping the symbols. Our tool connects separate
pieces of symbol-level dependency data together through a
mock linking process. We resolve the symbol linkages accord-
ing to the Itanium C++ Application Binary Interface. After the
linking, we calculate the pairwise utilization of every module-
level dependency and the overall utilization of every module
to identify potential bad dependencies.

The pairwise utilization is used to measure the dependency
between two modules quantitatively. For example, module A
directly uses some symbols defined in module B. We first get
the dependency transitive closure of the directly dependent
symbols in module B (If f calls g and g calls h, then h is
in f’s dependency transitive closure). Then we calculate the
total number of symbols in module B by merging the symbols
derived from the same templates. The pairwise utilization will
be the size of the transitive closure divided by the size of the
target module B.

The overall utilization represents the overall usage of a
module within the project. For example, a module with 100%
overall utilization means that every symbol in this module is
utilized at least once by other modules in the project directly
or indirectly.

V. EVALUATION

We evaluate our tool on a popular open source web
browser—the Chromium project (svn revision 171054, 6 mil-
lion lines of C/C++ code). The scale of the analysis is
presented in Table I. Our tool can finish the analysis of this
scale in 123 minutes (88 minutes’ compilation time and 35
minutes’ analysis time) on a 3.1GHz Core i5 machine. All
tasks performed in the experiment are single-threaded. The
peak memory usage during the analysis phase is 5.6 GB. Since
there is no other tool, to the best of our knowledge, handling
the same or similar analysis on large-scale C/C++ projects,
we are not able to set any opponent for our results. However,
we believe that our tool is eligible for practical deployment
encouraged by the absolute numbers reported above.

TABLE I
ANALYSIS DETAILS OF CHROMIUM

of Symbols 470,797
of Symbol References 13,912,651
of Modules 238

Underutilized dependencies: Our analysis shows that some
modules in Chromium have low utilization (<20%). Although
most of them are third-party modules included by Chromium,
some others are Chromium’s internal modules. This indicates

49

that 80% or more of these internal modules are dead code in
the worst case (for Chromium, some unused symbols can be
provided for plugins, thus should not be treated as dead code).
Table II lists some of the non-third-party modules with less
than 20% overall utilization in Chromium.

TABLE II
PARTIAL LIST OF UNDERUTILIZED MODULES IN CHROMIUM

Module # of Symbols Overall Util†
notifier 181 4.4⇠17.1%
ppapi cpp objects 1195 17.5⇠17.6%
dbus 334 18.9⇠18.9%
ppapi ipc 3228 19.4⇠19.4%
remoting jingle glue 97 12.4⇠19.6%

†The range shows the impact of virtual function calls.

Potential Inconsistent dependencies: We investigate whether
there is any dependency violation to the design in Chromium.
We started with the “base” module, which contains common
code shared by all sub-projects of Chromium. According to
the design, “base” should not depend on any other modules;
however, we found that “base” depends on eight modules even
without considering potential virtual function calls.

Among the eight modules, there are two marked by the
developers as acceptable exceptions to the design after we
showed them the results. In the future, we would like to add a
whitelist to allow developers to specify such acceptable excep-
tions. Nonetheless, it is beneficial for developers in the team to
be aware of such exceptions. The remaining six dependencies
point to third-party libraries, which are potentially inconsistent
with the design of “base”.

VI. RELATED WORK

A recent study describes the build debt problem at Google
and builds the Clipper tool to detect underutilized dependen-
cies [7]. While Clipper analyzes dependencies at the class
level, this paper analyzes dependencies at the more fine-
grained symbol-level. Since a class can contain a large number
of methods, e.g., the RenderViewImpl class in Chromium
contains more than 200 methods, our symbol-level analysis
is more precise in detecting underutilized dependencies. In
addition, we analyze C/C++ projects instead of Java projects,
which has its unique challenges such as implicit call sites,
linkage resolution, and template analysis.

Murphy [8] proposed a lexical dependency extraction tech-
nique. Lexical techniques are typically lightweight and effi-
cient, but inaccurate. The quality of such analysis depends
heavily on patterns specified by the users of the tools.

Syntactical approaches are more flexible and can tackle
a wider range of dependency-related problems than lexical
ones. Modern IDEs such as Eclipse CDT [1] can provide
rich dependency information to assist basic code refactoring
by traversing the AST. DSketch [4] utilizes the island gram-
mar technique [6] to excavate dependencies from polylingual
systems based on fuzzy patterns, and focuses on interactions
between different programming languages (e.g., calling SQL
from Java). Neither CDT nor DSketch reveals the inter- or
intra-module dependencies of large-scale software projects.

In addition to code-based facts, researchers also exploit soft-
ware release histories to further explore software dependencies
and potential design violations [11], [12].

Many papers assume dependencies are given and focus on
dependency analysis. Bouwers et al. [2] build the dependency
profiles for the systems and quantify the encapsulation and
independency of the modules. Lattix Inc’s dependency man-
ager [9] helps manage the architecture of Java projects by
leveraging design structure matrices (DSM) [10], a known
metric about modularity.

Commercial tools CodeSurfer1 and CppDepend2 can extract
structural and behavioral dependencies for C/C++ projects,
but neither provides utilization-driven dependency analysis
according to the publicly available information.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a new tool for extracting fine-grained
dependencies from large-scale C/C++ software systems with
millions of lines of code. Our tool performs utilization analysis
at the module level to prioritize bad dependencies. We believe
that our analysis can be instructive to various kinds of software
enhancement and maintenance activities. We implemented the
tool on top of LLVM and evaluated the performance on
the Chromium project with 6 MLOC. The results show that
our tool is efficient enough for practical deployment. In the
future, we plan to apply the tool to real-world large software
refactoring problems.

ACKNOWLEDGMENT

We thank Sanjay Bhansali, Robert Bowdidge, and Stephanie
Van Dyk for their early discussion and investigation. The work
is partially supported by the National Science and Engineering
Research Council of Canada and a Google gift grant.

REFERENCES

[1] Eclipse CDT. http://www.eclipse.org/cdt/.
[2] E. Bouwers, A. van Deursen, and J. Visser. Dependency profiles for

software architecture evaluations. ICSM’11.
[3] T. B. Callo Arias, P. van der Spek, and P. Avgeriou. A practice-driven

systematic review of dependency analysis solutions. Empirical Software
Engineering, 2011.

[4] B. Cossette and R. J. Walker. DSketch: Lightweight, adaptable depen-
dency analysis. FSE’10.

[5] K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, F. Juelich,
R. Rivenburgh, C. Rasmussen, and B. Mohr. A tool framework for
static and dynamic analysis of object-oriented software with templates.
CDROM’2000.

[6] L. Moonen. Generating robust parsers using island grammars.
WCRE’01.

[7] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali. Searching
for build debt: Experiences managing technical debt at google. MTD’12.

[8] G. C. Murphy. Lightweight structural summarization as an aid to
software evolution. PhD thesis, 1996. AAI9704521.

[9] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using dependency
models to manage complex software architecture. OOPSLA’05.

[10] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The structure
and value of modularity in software design. ESEC/FSE’01. ACM.

[11] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting software modularity
violations. ICSE’11.

[12] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version
histories to guide software changes. TSE, June 2005.

1http://www.grammatech.com/research/technologies/codesurfer
2http://www.cppdepend.com/

50

