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Abstract— Big, transport-related datasets are nowadays pub-
licly available, which makes data-driven mobility analysis
possible. Trips with their origins, destinations and travel times
are collected in publicly available big databases, which allows
for a deeper and richer understanding of mobility patterns.

This paper proposes a low dimensional approach to combine
these data sources with weather data in order to forecast the
daily demand for Bike Sharing Systems (BSS). The core of this
approach lies in the proposed clustering technique, which re-
duces the dimension of the problem and, differently from other
machine learning techniques, requires limited assumptions on
the model or its parameters.

The proposed clustering technique synthesizes mobility data
quantitatively (number of trips) and spatially (mean trip origin
and destination). This allows identifying recursive mobility
patterns that - when combined with weather data - provide
accurate predictions of the demand.

The method is tested with real-world data from New York
City. We synthesize more than four million trips into vectors
of movement, which are then combined with weather data to
forecast the daily demand at a city-level. Results show that,
already with a one-parameters model, the proposed approach
provides accurate predictions. 1

I. INTRODUCTION

Bike Sharing Systems (BSS) proved to be an effective
scheme to complement public transportation and car sharing
services. If usually this mobility solution is associated to
sustainable urban development, reduction in greenhouse gases,
health benefits and reduction of on-road vehicles, recent
studies show that this scheme also brings significant economic
benefits for the urban economy [1]. Properly designed BBS
can, in fact, improve spatial-connectivity of transport systems
and deliver time-savings that far exceed commonly claimed
benefits [1].

Like for other transport modes, the success of BSS depends
on an optimal balance between the supply and the demand.
As spatial and temporal fluctuations of bike rentals lead to
a sub-optimal distribution of bikes between different urban
areas, the main challenge to handle BSS in an efficient way is
to understand the underlying structure of its demand avoiding
supply imbalance [2], [3].

1This research has been partially sponsored by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 754462 and the H2020 project NOESIS -
No769980

This paper contributes to the existing research on this topic
by introducing a new approach to forecast the expected BSS
demand. First, we synthesize mobility data into vectors to
identify similar daily mobility patterns and understand the
systematic mobility pattern of a day-type. Then, we refine
this general classification using contextual data (e.g. weather).
Under this assumption, we develop a framework to infer
recursive behaviour from a historical database of bike-sharing
trips and to use this information to predict the daily demand
for BSS.

While different approaches have already been proposed
in the literature, the proposed methodology brings two main
contributions. First, it is a low dimensional approach. This
means that the number of parameters to be calibrated in
order to achieve a good estimation is limited. In this paper,
satisfactory results are achieved with a one-parameter model.
Second, we show that – if weather data are included in
the model – prediction capabilities can largely improve. We
illustrate the method with publicly available trip data from
the New York public bike system. We collect and synthesize
trip data from summer 2016 (over 4 million bike trips) and
use these data to make an accurate prediction of the daily
demand for BSS service at a city level.

II. LITERATURE REVIEW

Bike Sharing Systems (BSS) can be grouped into two types:
station-based and free-floating. In the first case, people can
rent a bike from a certain dock – or station – and deliver it
to a different dock belonging to the same operator. In the
second case, users can leave their bike wherever they want,
removing the need for a specific station/infrastructure [2], [4].
[4].
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This system has two main advantages: first, it drastically
reduces start-up costs by removing the burden of building
new docking stations. Second, it allows more flexibility for
the user who can drop the bike close to his/her destination.
However, this flexibility comes with the major drawback
of making rebalancing operations even more complex and
ill-predictable

The last decade has witnessed an intensive research effort to
tackle these issues and provide optimal design and rebalancing
strategies for BSS. From the strategical point of view,
researcher mostly focused on the optimal network design
problem, which includes optimizing number and location of
dock stations in the BSS [5] or infrastructure design [6].

A second branch of research focuses instead on the optimal
BSS management. In order to keep a high level of service,
BSS operators need to ensure a certain distribution of bikes
among different docking stations. However, during the day,
this distribution changes, leading to a lower level of service. A
redistribution operation is thus required in order to re-establish
optimality. This process is known in the literature as Bike
Rebalancing problem [7]. Models dealing with this issue can
be classified according to strategy and type [4]. Rebalancing
strategies are mostly divided into operator-based or user-
based strategies. In the first case, the operator leverages a
fleet of vehicles to redistribute bikes among different stations
while in the second case users are encouraged to self-balance
the system [4]. Concerning the type, rebalancing strategies
are divided into static and dynamic. In the former case the
redistribution operation is performed when the system is
not operating (for instance at night) while in the latter is
performed in real-time [3].

Finally, many works focus on predicting demand patterns
of bike sharing systems. Demand is, in fact, a fundamental
input for the rebalancing problem. These models – called
Bike Sharing Demand Prediction models – can be classified
based on their spatial granularity according to three main
groups: City-level, Cluster-level and Station-level [2]

As the name suggests, the difference between these three
groups depends on the precision level of the prediction model.
In the first case – City-level - the goal is to predict the
overall demand for a large urban area [8]. Cluster-level
models assume that stations within a certain group (not
necessarily within the same area) are correlated. Consequently,
the demand prediction model estimates the demand for each
cluster by assuming that the demand within the cluster will
self-equilibrate– i.e. users will find at least one station with
an available bike [9]. Finally, Station-level approaches are
the most precise, as they aim at predicting the demand for
every single station in the system [10]. The main advantage
is that correlations between different docks can be estimated
and used to have more reliable and interpretable results [2].
On the other hand, given a certain number of observations,
the potential estimation error increases with the number of
variables [11]. Additionally, these solutions are not applicable
to free-floating BSS.

To conclude big datasets of bike data are often used in
system control and optimization (e.g. rebalancing), but their

utilization in demand analyses is still not fully exploited. In
this paper we show how to synthesize big mobility data and
how to utilzie it in sytem performance predictions.

III. METHODOLOGY

A. The methodology at a glance

In this work, we assume that the demand for bike-
sharing services can be modelled as the combination of two
components: a systematic component, composed of highly
predictable travel patterns identified at the clustering level, and
a non-systematic component, which is highly irregular and ill-
predictable. Under this assumption, this section introduces a
new framework to infer recursive behaviour from a historical
database of bike-sharing trips. Contextual data (weather data)
are then used to study their heterogeneity and daily variability
and to predict the demand for a group of stations.

The conceptual framework of the proposed Low Dimen-
sional (LD) model for BSS demand forecasting - simply
called LD-BSS in the rest of this paper - is showed in
Figure 1. In essence, for a given group of stations and trip
data, the so-called Vectors of movements - formally defined
in the next subsection - are calculated. Then, days with
similar mobility patterns (indetified through similarity of
above vectors) are grouped to provide generic prediction of
the systematic demand based on the day-type (working, non-
working, ...). Finally, additional information about historical
weather condition is used to study the variability of the
demand and provide weather-specific demand predictions.

We can thus break down the proposed approach into two
main steps, named Aggregation and Clustering and Prediction
and Disaggregation.

Aggregation and Clustering (AaC): In this phase, we
synthesize mobility data into “so-called” vectors of movement.
They connect the centre of gravity of trip origins with the
centre of gravity of trip destinations in AM and PM peaks
respectively. This synthetic representation of mobility allows
reducing the set of recorded trips into a compact structure
convenient for further processing. Such vector formulation
allows for comparison with classical similarity measures
(e.g. cosine similarity). Thanks to this, we can formulate the
clustering problem and build the similarity measure between
mobility patterns.

Prediction and Disaggregation (PaD): The AaC phase
groups historical observations on bike-sharing trips in clusters
of similar day type. However, for the same day type, different
demand values can be observed. This is an expected output, as
the demand for bike sharing systems not only fluctuates within
the day but also changes with respect to other phenomena,
among the other, season and weather conditions [9]. As a
consequence, the prediction model identifies the most likely
“vector of movement” for a given season and meteorological
condition, which are well-known to be the main elements
influencing the bike sharing demand, and disaggregate this
information in demand values that can be used to provide
weather specific demand forecasting [2], [9].



Fig. 1. LS-BSS conceptual framework

B. Data
Generic record in the mobility pattern is a trip Ti (eq.1).

While the complete trip description is complex and might
include a full path in space and time, the proposed method
is suited for typically available minimal description of trip
origin Oi destination Di, start time ti and duration ∆Ti.
Such representation can be obtained both from classical travel
survey and from automatic data collection systems (e.g. bike-
sharing, car-sharing or taxi data) exploited in this paper.
Trips origins and destinations are understood as their spatial
coordinates and are often predefined, e.g. in station-based
BSS where bicycles can be rented at stations only while trip
duration is given explicitly, the trip distance can only be
inferred since the exact route is not given. Due to privacy
issues, the personal information are not recorded and personal
trip pattern cannot be traced.

Ti = {Oi, Di, ti,∆ti} (1)
Trips recorded over a given time period (day, hour, or

week) form a set of observations (eq.2). In this paper we
illustrate the proposed LD-BSS with daily mobility patterns,
i.e. set of trips conducted during a given day:

Mi = {T1, T2, . . . , Tn} (2)

C. Synthesizing mobility pattern: Vectors of movements
Numerous trips, comprising a mobility pattern form a

complex system. Typical cardinalities are thousands or even
millions of trips, with various origins, destinations and start
times and durations. It is far from obvious when two mobility
patterns are similar.

We presume the fundamental set features like cardinality,
total and mean trip duration are not enough to identify
mobility pattern similarities and dissimilarities. Therefore
we propose the following mapping.

We start from the concept of gravity centre (mass centre),
an arithmetic mean of trip origins and/or destinations. Then
we introduce vectors spanning between them. Due to the
particular meaning of peak hours in the mobility patterns, we
introduce a vector for AM and PM peak hours. For generic
mobility pattern M we introduce centre of gravity for origins
(eq.3) and destinations (eq.4) and the vector of movement
(eq.5) spanned between them.

OM = E(Oi : i ∈M) (3)

DM = E(Di : i ∈M) (4)

~V =
−−−−−→
OMDM (5)

From the daily mobility we analyse trips of the AM and
PM peaks (which are most important). Peaks are identified
from the average recorded temporal profile as the two busiest
morning and afternoon hours. From mobility pattern two
subsets are selected: MAM = {Ti : Ti ∈M, ti ∈ AM}, and
MPM = {Ti : Ti ∈M, ti ∈ AM} respectively. Two vectors
of movement computed for the two subsets of mobility pattern
for the mapping utilized in the method:

M → {~VAM , ~VPM} (6)
In fact, the above mapping transforms any number of trips
into four points: AM origin and destination, PM origin
and destination. Such interpretation synthesizes all main
characteristics of mobility patterns.

D. Similarity measure

With such representation, pairwise comparison of days,
which was troublesome for a set of recorded trips, becomes
possible. We propose to compare two generic vectors ~V and
~V ′ with a cosine similarity (eq.7) which returns similarity
from range 0 to 1, 1 for vectors of equal length and direction
and 0 for either orthogonal vectors or vectors of different
lengths. Importantly, cosine similarity does not use the actual
location. Nonetheless, it happens to be sensitive to the day
type.

S(~V , ~V ′) =
~V · ~V ′

|~V || ~V ′|
(7)

Consequently, we can introduce the pairwise distance
measure between two days N and M:

d(N,M) =

α · S( ~MAM , ~NAM ) + (1− α) · S( ~MAM , ~NAM )
(8)

With α being normalized weight, treated as a parameter of
the procedure (we use default α = 0, 5 in the case-study). If
contextual data are directly combined with cosine similarity
in order to obtain a pairwise distance that takes into account
both day type and weather condition, (eq.8) becomes:

d(N,M) =

β1 · [α · S( ~MAM , ~NAM ) + (1− α) · S( ~MAM , ~NAM )]

+β2 · S(~θM , ~θN )

(9)

Where β1 and β2 are weights assigned to each com-
ponent depending on the trust that one has on the data
while S(θM , θN ) represents the similarity between weather
conditions during the two days. In this paper, we use the
average daily temperature as a proxy for weather conditions
and the similarity is calculated as:

S(θM , θN ) =
|θM − θN |

θN
(10)



With θM and θN the average temperature for day M and
N , respectively. Such metrics can be applied for most of the
clustering methods.

E. Clustering

Clustering procedure yields cluster membership map, i.e.
labels each day with a cluster id c(Mi), consequently the
cluster is the subset of days belonging to a given cluster
C = {Mi : c(Mi) = C}.

In this research, we apply the agglomerative hierarchical
clustering algorithm. Specifically, we exploit the implementa-
tion proposed in Scikit-learn, which is an open-source library
developed in Python [12]. Yet any alternative method can be
applied.

F. Cluster decomposition

If a sufficient number of observations is available, results
from the clustering procedure can be adopted to forecast
the mobility demand Mc for current cluster and associated
day-types (working day, holiday, etc.) with (eq.11).

Mp = E(Mi : i ∈ C) (11)

However, the predicted mobility patter Mc for a given day
should change significantly according to weather conditions
and seasonality. This phenomenon is not explicitly modelled if
(eq.9) is used within the clustering procedure. We thus include
additional information concerning the average temperature
to further classify mobility patterns based on the average
temperature of each day.

In this work, we adopt the concept of temperature class
Θc to combine weather data within the proposed LD-BSS
framework. Let us define θi as the average temperature related
to a certain set of observations Mi. Let us also define θlow
and θup as the minimum and maximum average temperature
for a certain class Θc, respectively. Then, each observation
Mi can be associated to a certain class, as showed in (eq.12):

CΘc = {θlow < θi ≤ θup : i ∈ Θc) (12)

Where CΘc represents the subset of observations belonging
to the temperature class Θc. The improved prediction model
can then be written as:

C∗ = C ∩ CΘc (13)

Mp = E(Mi : i ∈ C∗) (14)

Which provides the most likely mobility pattern for a given
cluster and temperature.

G. Validation

Obtained results may be verified at the two levels. First,
by internally looking at the clustering quality, i.e. the within-
cluster consistency and between-cluster separation. This may
be observed by looking at the clustering quality measures, like
silhouette score [13]. Apart from this the proposed method is
validated by assessing quality of its predictions, namely by

looking at how well the actual (empirically observed) system
variables are reproduced on the test set using predictions
made from the train set. The performance measure adopted
in this study is the Root Mean Squared Error (RMSE):

RMSEi =

√√√√ 1

N

N∑
t=1

(ŷti − yti)2 (15)

Where ŷti and yti are respectively the predicted and observed
number of trips for day i and time interval t.

IV. CASE STUDY

We test the proposed LD-BSS method with publicly
available trip data from the New York City bike system.
We collect and synthesize trip data between 01/06/2016 to
30/09/2016 (over 4 millions bike trips). City Bike NYC allows
using one of over 12 000 bicycles to travel between more
than 750 stations located in New York City and Jersey City,
New Jersey. Basic statistics are presented in Table I.

TABLE I
DATASET USED TO TEST AND ILLUSTRATE THE METHOD.

first 2016-06-01
last 2016-06-30
#stations 831
#bicycles 14 851
#trips 4 034 347
#daily trips avg 47 462
– min 22 397
– max 58 674

For each trip information about its origin, destination start
and end time is available.

For the same time period, historical weather data are also
available2. In this study, data about the average temperature
in New York Central Park area have been assumed to be
representative of the entire study area. While more detailed
information is available (higher spatial accuracy, precipitation
data, snow depth), this study is an exploratory analysis
aimed at answering two questions. First, if the proposed low
dimensional model can provide accurate predictions of the
demand for a given database. Second, the influence of weather
data within the proposed framework. For these reasons, we
focused on investigating the relationship between temperature
and trip data, leaving spatial granularity for later studies.

In order to answer these two questions, the database has
been divided into two parts. About 70% of the data - 85
days in total - have been used to train the model and to
generate the prediction model. Then, this model has been
adopted to predict the demand for the reaming 37 days. Two
different experiments have been performed to investigate
the relationship between vectors of movements and weather
data. First, to use only vector of movements during the
training phase and to leverage the decomposition scheme
proposed in Section III-F to further improve predictions.
Then, we investigate the effect of combining weather data

2Source: https://w2.weather.gov/climate



Fig. 2. Demand Profiles within each Cluster - Observations (Black) and Prediction (Red)

Fig. 3. (a) Within-Cluster distribution of the demand; (b) Vector of Movements

and vectors of movements within the clustering, as showed
in (eq.9). On the one hand, this solution simplifies the model
by removing the decomposition phase. On the other hand,
additional parameters need to be properly calibrated in order
to provide accurate predictions.

A. Aggregation and clustering

This section introduces the results from the clustering
procedure, meaning clustering map and average prediction
model.

The aggregation and clustering phase estimated six typical
day-types. Figures 2 and 3a show the clustering results,

while Figure 3b graphically illustrates how these vectors
of movements look like.

Concerning the clustering, results clearly identify two main
groups of observations. Cluster (2) contains observations
about typical behaviour during working days (Monday to
Friday), while Cluster (1) mostly represents weekends and
public holidays. Most importantly, Clusters (1-2) are con-
sistent in terms of parameters not-included in the clustering
procedure but significant to mobility, such as the total number
of trips and temporal profile (as visible on 2 and 3a).
Clusters (0,3,4,5) represent outliers, typical for agglomerative
clustering technique used in the paper. They cannot be used for



prediction purposes, as this approach captures only systematic
behaviour.

While Figure 2 supports the claim that vectors of move-
ments are sufficient to infer human mobility and detect
mobility patterns, Figure 3 shows that demand profiles within
a cluster largely vary. This means that the average prediction
model - marked with the red line in Figure 2 - could provide
a biased prediction of the daily demand patterns. Additional
information is required to reduce the variance within each
cluster and provide accurate predictions.

B. Disaggregation

In this section, we show how the decomposition scheme
proposed in Section III-F reduces results variability without
introducing additional parameters. In order to generate the
refined cluster C∗, temperature data have been divided into
six classes Θ:

0.000◦F < Θ1 ≤ 57.50◦F

57.40◦F < Θ2 ≤ 65.25◦F

65.25◦F < Θ3 ≤ 73.00◦F

73.00◦F < Θ4 ≤ 80.75◦F

80.75◦F < Θ5 ≤ 88.50◦F

88.50◦F < Θ6

(16)

By accordingly decomposing each cluster, a total of 22
refined clusters C∗ have been obtained. Figure 4 shows the
results and, specifically, the average prediction error in terms
of Root Mean Square Error (RMSE). The x axis represents
instead the precision of the model. To each refined cluster C∗

corresponds, in fact, a specific prediction model. However,
when few observations for a certain temperature class Θc or
for a certain day type C are available- the decomposition
process can return a refined cluster C∗ with one or zero
elements. This means that the prediction model will also be
calculated only on a very limited amount of data.

In Figure 4, Number of observations within the cluster
equals to one means that even refined clusters C∗ with one
single observation have been used to forecast the demand for
BSS. By contrast, a Number of observations within the cluster
equals to 5 means that only refined clusters C∗ with more
than 5 observations have been accepted within the improved
prediction model, while the others have been discarded.

We can observe that, when the average error over all days
is computed (Number of observations within the cluster is
1), the average RMSE is lower when weather data are not
considered within the estimation process. However, this is
reasonable, as this means that the historical database has
limited or no information for that combination of day type
and temperature. Thus, when weather data are not available,
the normal average prediction based on all available data is
providing a better estimation.

On the other hand, for clusters with more than 5 observa-
tions, the improvement becomes systematic. This suggests
that, if enough weather data are available, the decomposition
step can largely improve the prediction. In this specific case
study, results show that the reduction is particularly effective

Fig. 4. Average prediction error as a function of the number of observations

Fig. 5. Average prediction error as a function of the parameters

for larger errors. When the average error is calculated for
refined clusters with more than 15 elements, the largest
improvement is achieved.

C. Sensitivity analysis

The model discussed in the previous sub-sections is a one-
parameter model. The only parameter is in fact the number
of clusters, which was assumed equal to 6. In this section,
we evaluate model performances for different number of
clusters. Additionally, we include weather information within
the clustering phase to investigate the difference between
using the decomposition step and relying on the clustering to
directly infer refined clusters C∗. We thus study the average
prediction error (RMSE) in three cases: (i) only vector of
movements are used to create the average prediction model
[Cosine similarity] (eq.8), (ii) only weather data are used
[Temperature] ((eq.9) and β1 = 0) and, finally, (iii) their
combined effect [Cosine+Temperature] ((eq.9) and β1, β2 6=
0). Results are shown in Figure 5.

Concerning the base-case, the first conclusion is that - for
the database adopted in this study - a number of clusters



between four and seven is convenient when cosine similarity
is the sole similarity measure. Since vectors of movements
mostly identity day-type and systematic mobility patterns,
when too many clusters are created, the model over-fits
available observations losing its predicting capabilities.

Weather data, on the other hand, provide a relatively poor
estimation. For a small number of clusters, the error is
significantly higher than for both other approaches and it
slowly increases for an increasing number of clusters. This
suggests that weather data alone are not suited to predicting
BSS demand.

Finally, when weather data and vectors of movements are
combined together, the model provides the best performance.
Cosine and Cosine+Temperature show almost the same
performance for a number of clusters equal or less than
seven. The reason is that a higher number of clusters is
needed to leverage weather data. In the previous experiment,
starting from an initial set of six clusters, 22 refined clusters
have been identified during the decomposition phase. As
a consequence, when the number of clusters increases,
the combined approach takes advantage of the additional
information to avoid overfitting the data.

An additional consideration can be done by comparing
Figures 4 and 5. When weather data are used within the
clustering algorithm, the proposed LD-BSS provides overall
a better estimation. The average error is in fact calculated as
the average error over all 37 days and it is still lower than
the best result showed in Figure 4. However, when weather
data and vectors of movement are combined together, weights
β1 and β2 need also to be calibrated. If these parameters
are not calibrated together with the number of clusters,
prediction capabilities of the model decrease drastically. On
the other hand, the decomposition scheme allows a systematic
improvement of the results without introducing additional
parameters.

V. CONCLUSIONS

This paper introduces a Low Dimensional (LD) model for
Bike Sharing demand forecasting. The proposed model lever-
ages a two phases approach to exploit available information
while keeping the number of parameters to be tuned low.

There are two main innovative elements First, we propose a
new method to synthesize big, multidimensional trip data sets.
This synthetic description of daily mobility through vectors
of movement (morning and afternoon) significantly reduces
the problem size and allows to introduce pairwise distance
measure and, consequently, to apply clustering methods,
which was not possible on the raw trip data. Second, we
combined said vectors of movements with temperature data
- which is assumed to be a proxy for weather conditions
in this study. We show that the combined effect of these
two elements can substantially improve the accuracy of the
prediction model.

Two ways of combining vectors of movements and weather
data have been investigated. First, we propose a two-phase
approach, which allows to include additional data without
increasing the number of parameters of the model. Then we

investigate the possibility of combining weather data within
the clustering algorithm. Both approaches provide satisfactory
estimations.

This paper applied the proposed methodology with publicly
available trip data from the New York City bike system to
forecast BSS demand at a city-level. However, the same
approach can be adopted to clusters, thus guaranteeing a
higher spatial granularity.

Future work will focus on investigating and combining
more weather data (precipitation data, snow depth, ...) and a
higher spatial granularity.
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