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Abstract—Many Collective Adaptive Systems (CASs) exist in nature:
think of ant colonies, where large collectives of ants operate au-
tonomously but interact with other ants and the environment to provide
resilient global behaviours that sustain their colony. Following scientific
studies that were aimed at understanding and predicting the evolu-
tion of these systems, and fueled by technological advances, research
has started to investigate CAS engineering: the methods, tools, and
techniques for building CASs. This naturally leads to a vision where
collectives of humans and computational elements, situated both in
the digital and physical worlds, collaborate to give rise to “intelligent”
collective behaviour supporting novel kinds of applications and services.
Humans can be involved in two ways: both as users and as components
of the CAS, in the sense that human behaviours and limitations are often
integral to the system description. This has significant social implications
that need to be considered by CAS researchers: in this paper, we share
a discussion that took place between some experts thinking about CAS
engineering, focusing on the social implication of CASs and related
open research challenges. We hope that this provides a useful context
for future research projects, research grant proposals, and research
directions.

1 INTRODUCTION

Current technological and societal trends foster the develop-
ment of artificial systems composed of large-scale ensembles
of widely distributed, largely autonomous and heteroge-
neous entities situated both in the digital and physical
world. As business and societal demands upon services and
applications increasingly exceed the capabilities of individ-
ual devices, it becomes crucial to exploit higher levels of
system effects (“the whole is greater than the sum of the

parts”) and integration of human and artificial intelligence.
This can be afforded by systems made of collectives of
humans and computational components able to work in
some target environment in a co-ordinated fashion.

We envision a future where humans interact with, and
take part in, Collective Adaptive Systems (CASs) [1], [2], by
which we mean computational systems exhibiting collective
and decentralized adaptation mechanisms that must simul-
taneously address critical changes in run-time conditions
while maintaining the consistent functioning of the ensem-
ble. CASs consist of diverse heterogeneous entities or actors
– computers, services, devices, sensors, humans, networks,
robots, and so forth – that are individually autonomous
but that must co-operate with each other to accomplish
collective tasks [3]. As a rule, the environment in which such
systems operate is continuously changing. These changes
include those in the context in which entities live, the avail-
ability of new entities (or their exit from the system), and the
system requirements and preferences. This means that CASs
require continuous adaptation to operate in a continuously-
changing environment. Similar concepts have been studied
in various domains:

• Swarm Intelligence, where actors are essentially ho-
mogeneous and are able to adapt their behaviour
considering only local knowledge [4], [5];

• Autonomic and Self-Adaptive Computing, the field de-
voted to the theory and practice of self-* systems
(i.e., systems able to self-repair, self-optimise, self-
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configure, etc.) [6], [7];
• Service-Based Systems, where services are designed

independently by different service providers and are
composed to achieve a predefined goal [8];

• Multi-Agent Based Systems, where activities of dif-
ferent actors are regulated by certain collectively
defined rules (norms) [9], [10];

• Pervasive Computing and the Internet of Things, where
everyday objects and activities are mediated through
software; and

• Complex Adaptive Systems [11], in which many in-
dependent elements or agents interact, leading to
emergent outcomes that are often difficult (or impos-
sible) to predict simply by looking at the individual
interactions1.

All the initiatives, in the context of CAS, have the objective
of investigating the foundations of large-scale collabora-
tive systems by developing concepts and mechanisms for
the autonomous configuration of ensembles [12], collections
of autonomous entities, and their evolution through self-
adaptation. For the last decade the scientific community has
invested considerable effort into making distributed com-
puting systems adaptive across diverse scales. The grand
vision of enabling all computing resources around us to join
in and solve problems in a collective effort has been tackled
in various projects [13], [14], [15], [16], and has also opened
up many challenges that still need to be considered [17].

This article captures a vision of the social implications of
CASs and the corresponding open research challenges. The
idea comes from the 3rd eCAS Workshop on Engineering
Collective Adaptive Systems2 held in conjunction with the
12th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2018) in Trento, Italy3. We
synthesize the discussions emerged during this workshop
and build on the following three core topics:

1) what is the role of CASs for human society, their
benefits and risks?,

2) what is the role of humans in CASs, what values can
they provide?, and

3) what are the difficulties in engineering CASs for
people and the society, especially with regard to their
limitations and reliability?

In the rest of the article, we explore these issues with a view
to sharing with the community the vision of CAS as a key
approach to building future software systems for human
society.

2 THE RISE OF COLLECTIVE ADAPTIVE SYSTEMS

In recent decades we have witnessed huge technological
advances with tremendous impact on science, business, and
life in general. Computers are everywhere, and pervasive
networks connect the world and its inhabitants. More and
more devices are being deployed into our environments,
making ourselves, our homes and cities smarter and more
connected.

1. https://code.org/educate/science/files/CS in Science
Background papers.pdf

2. http://archive.ph/wip/QdnHm
3. https://saso2018.fbk.eu/

Two long-standing trends are at play in this evolution.
The first is the distribution of computing across components
and spaces, by which processing can be injected into mul-
tiple locations to parallelize activity, exploit locality, and
tolerate (some) faults. The other endows computational
devices with autonomic capabilities, in order to make them
adapt and evolve in a dynamic environment with little or no
human intervention.

These issues have especially been addressed in the
broad area of distributed artificial intelligence (DAI) [18] and,
in particular, in the context of multi-agent systems (MASs)
research [19]. A MAS is a system of autonomous entities,
agents, situated into some environment and interacting with
other agents to achieve both individual and collective goals.
Autonomy implies reactivity (responding to environmental
change), proactivity (taking the initiative), and sociality (in-
teracting and collaborating with other agents) [20], [21]. In
MASs, there are two key perspectives: of individual agents
(the micro level), which can be conceived according to a
strong or weak notion of agency (depending on whether or
not agents exhibit intelligence through human-like, mental
components); and of the agent society (the macro level), where
issues like co-ordination (the ordering of interaction) and
self-organization (having the system itself maintain its own
order) emerge. When agents in a MAS sense and respond
directly to their environment they are often referred to as
cyber-physical systems, and we shall use these terms largely
interchangeably in this article.

The scientific community in ICT has invested consid-
erable effort into constructing intelligent distributed com-
puting systems, with an initial focus on small scale ap-
plications. Notable advances have been made in the ar-
eas of robotics [22], [23], [24], [25], [26] and in selected
fields of distributed computing. We have seen new adap-
tive middleware systems [27], [28], [29], new programming
paradigms [30], [31], [32], bio-inspired computing [33], [34],
[35] and artificial intelligence [36].

As the density and scale of cyber-physical systems in-
creases, more and more emphasis is put on their collective
dimension and the ability of adapting groups of devices con-
sistently. This has led to specific research efforts to address
the problem of capturing the global, system-level behaviour
developed by groups of interacting entities. For instance,
swarm intelligence [37], – inspired by natural systems like
ant colonies or bird flocks – builds sophisticated global
behaviour (e.g., resilient or ordered responses) from inter-
actions based on very simple local rules. Work such as
reported by Beal et al. [32] develops this idea to engineer
robust distributed components of resilient behaviour, appli-
cable at any scale.

More generally, and especially when taking into account
the heterogeneity of modern cyber-physical systems which
may involve components with various capabilities, auton-
omy, and “smartness”, we stray into the field of collective
adaptive systems (CASs). A CAS can be defined as a distributed
cyber-physical system composed of entities that interact with each
other and are able to modify their behaviour to adapt to different
external or internal circumstances [2].
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3 CASS: CONCEPTS AND PERSPECTIVES

By definition, a CAS is a system: a set of interacting entities
that is crucially:

• collective – the behaviours of individuals have coher-
ence at the collective level; and

• adaptive – it is able to change its control rules as a
consequence of internal or external factors.

An example of a non-collective (but still possibly adaptive)
system is one in which all the individuals do interact but are
driven only by their own goals. An example of collective but
non-adaptive system is a cellular automaton, driven by fixed
rules.

Key for a characterization of a collective system is the
definition of at least two levels – the micro level of the
units, and the macro level of the whole. In true system-
building style a collective may consist of multiple (transient
or permanent) sub-collectives and may be part of super-
collectives. The boundaries and containment of collectives
essentially depend on the perspective taken for both analy-
sis and synthesis.

As for MASs, CASs often consist of autonomous enti-
ties. Autonomy, generally conceived as the ability to “self-
govern”, is actually a complex notion that can have multiple
characterizations and is not simply a black-or-white feature.
Importantly for systems designers, autonomy is often a
source of unpredictability as behaviours and responses vary
depending on an individual agent’s self-determination or
collective determination of the system. The challenge in
CASs, as for MASs, is to promote collaboration between
components, such that together they can carry out tasks that
none of them, as an individual component, would be able to
perform [9]. This is especially hard in competitive settings,
where each component is fully self-interested, but has to
interact with other components to achieve its goal [38]; this
may involve negotiation and trust.

The other key source for unpredictability is the environ-
ment, because it generally has complex dynamics that are at
most partially observed. CASs are essentially situated: they
are made up of components that are immersed into some
(logical and/or physical) environment and are engaged in
non-trivial interactions with it. Indeed, such systems are
adaptive just because they need to evolve in order to respond
to changes in the environment, the input patterns, or the
responses required.

From a structural point of view, a CAS may exhibit var-
ious dynamic structures, often built and sustained through
self-organization: a robust, internal process by which order
is continually sought, often in an emergent way [39]. The
presence of several (autonomous) components requires an
appropriate organization to be enforced so as to assign roles
and responsibilities to the components themselves [40] and
promote the ordered development of collective behaviour.
This is closely related to the dual idea of co-ordination,
where rules are enacted to constrain interaction.

Crucially, CASs often feature emergence, whereby macro-
level properties and behaviours spring from decentralized,
micro-level activity. The key point is that the global proper-
ties arising from the interactions within the system cannot
easily be traced back to the properties and behaviours of
the individual parts. This poses significant challenges in

the understanding, design, and control of CASs, the extent
that many engineering approaches attempt to eliminate the
phenomenon. However, emergent behaviour must often be
expected in CASs consisting of autonomous components
and featuring decentralized control, since there is no single
locus of control over behaviour. Moreover decentralization
is fundamental in allowing systems to scale (adding more
components to avoid overloading) and to achieve robust-
ness (as functionality is not confined to few, critical compo-
nents).

CASs exist in the world, in our minds as mental models,
in theory as mathematical models, and in software [41]. Na-
ture has been a great source of inspiration for mechanisms
used by engineers to endow artificial systems with features
like self-organization and resilience [42]. CAS-oriented fea-
tures are especially useful in scenarios that are highly dy-
namic with complex dynamics, highly open with a changing
component population, and operate at a very large scale.

3.1 CASs and humans

Humans are prosumers of CASs. In general they actively par-
ticipate in the CAS by directly producing data (for example
through handheld or wearable devices), by monitoring and
controlling components, or by providing specific services in
a larger workflow. At the same time, they are consumers
of the information and services provided by the CASs, as
the ultimate goal of the system is to provide some form of
utility to human users. Of course, humans are autonomous,
generally unpredictable, have goals evolving with time
and context, and are definitely not directly controllable:
humans are therefore at the same time one of the most
valuable components, and one of the largest sources of
design challenges, for CASs. The ultimate value of humans
in CASs is simply that software, whatever its intelligence,
cannot always substitute for human experience and skill in
evaluating situations.

Among the most relevant issues a CAS needs to tackle
when leveraging users’ data is privacy. Although the work
on privacy in computational systems is large and well-
developed, little is found specifically devoted to CASs de-
spite the fact that their peculiarities seem to call for tailored
practices. Due to the very nature of a CAS being “collective”
at its core, data may be processed by multiple agents in
multiple locations, and it can therefore be challenging to
provide guarantees on where and when data in CASs is
being used and processed. This may be in conflict with
specific privacy requirements. To the best of our knowledge,
no CAS-specific best practices for privacy assurance have
been proposed so far.

Security is related to privacy, but focuses on how to
detect and counteract malicious intrusion. As with privacy,
very little work currently specifically addresses CAS secu-
rity [43], [44]; works found in literature do not generally
tackle the issue at large, but typically propose designs inher-
iting security properties from the underlying platform [45],
or investigate collective resilience to attacks in specific
settings [46]. Fortunately, related fields such as autonomic
computing have developed a body of literature that can be
leveraged as a starting point for new, CAS-specific practices
for both detection and response to attacks.
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The situation is much brighter for safety, the ability to
respond to accidental disruption or degradation. CASs are
designed for resilience, and in many cases can promptly
return a nominal state after disruptive events. A sub-set of
such events may include damage by an attacker.

To what degree do users need to understand a CAS
before they will trust it? Human behaviour is strongly influ-
enced by knowledge about the services and perceived rep-
utation of providers. If there is insufficient understanding
and of over- or under-trust in its provider, humans can be
reluctant to exploit services or – possibly worse – be prone
to misuse them beyond their designed scope. There are sev-
eral examples of these phenomena in adaptive automotive
systems [47], [48]. Human trust in a system is influenced,
among other thing, by its usability and observability. The
former is related to the ease to access, use, and control a
service: high usability of a well-functioning system leads
to increased trust. The latter can be a double-edged sword:
an “inscrutable” black box may serve people correctly and
lower the learning curve, and positively influence usability,
but poor or incorrect service may then remain imperceptible
until an unacceptably late stage.

Finally we should consider liability. It is as yet unclear,
both ethically and legally, who should be held account-
able for unwanted, unwarranted, illegal, or dangerous be-
haviours in a CAS—as is indeed the case for many other
classes of systems. The matter is becoming pressing [49]
because of the technological advances leading to general
availability of autonomous systems, such as in the automo-
tive domain.

3.2 On human-oriented CAS design and engineering

While CASs can be extremely useful, with broad impact
on humans and the society, they are not easy to engineer
and often feature significant unavoidable complexity. Their
design and construction is further complicated when human
interactions enter the equation.

CASs usually rely on learning and emergence to cope
with change and unpredictability [50]. Both techniques (of-
ten used in conjunction) need subsequent phases of design,
validation, and tuning. Once the overall approach for the
realization of a CAS has been devised and a first candidate
prototype has been readied, a verification phase is necessary.

Unfortunately, nominal conditions of operation can often
not be produced on demand: consequently, validation is
performed using techniques that either operate on a model
of the system, or emulate the environment in which the final
system will operate. Techniques include formal verification
(proofs of theorems on a mathematical model of the system),
model checking (verification of properties through complete
or probabilistic state space exploration [51]), and simulation
(stochastic sampling of the execution of a system model).
These approaches complement each other and verify a sys-
tem at different levels of granularity. Comprehensive valida-
tion of a CAS should, when possible and applicable, include
all of them. Very frequently, however, verification is per-
formed without considering the human and societal aspects.
As a consequence, a promising system may actually fail
once it is deployed through the developers having missed
relevant aspects within the modelling and/or simulation

environments. Some recent work aims to capture some of
the cognitive, emotional, and interpersonal aspects into a
computational model [52], but these approaches remain
limited.

4 APPLICATION DOMAINS

In this section we present some applications of CASs in
order to deepen their social implications.

4.1 Ambient Intelligence
CASs can be used to make environments “smart”.

When collectives with adaptation capabilities are de-
ployed pervasively into an environment, cyber-physical
ecosystems emerge to realise Weiser’s vision [53] of truly
pervasive computing. By spreading collective computation
and connectivity into the spaces attended by humans (in-
cluding homes, offices, streets, green spaces, and other
places), it becomes possible to provide contextual services
and adapt their provisioning to user preferences and situ-
ations while also providing continuity and coherence. By
co-ordinating their activities, CAS entities can adjust the en-
vironment in which they reside to make it more ergonomic
or functional for the humans who inhabit that environment.
In a conference room, for example, a CAS involving the
lights, projectors, and thermostats could reactively modu-
late the environment to make presenters and their audience
comfortable. In a different scenario, an ensemble of smart
screens and speakers could dynamically provide content
to a person based on her preferences, even tracking her
while she was walking [16]. In an office, chairs, desks,
and monitors may adapt their height and inclination to the
preferences of a worker moving to a new workstation.

4.2 Smart Logistics
In the domain of smart mobility and transport, the general
goal is to improve the efficiency and/or the quality of the
movement of people and goods. In particular, since people
and goods often have common needs (many people may
need to be at some location at some point in time, or many
goods may need to be transported to nearby destinations
with the same packaging conditions), these needs can be
satisfied in a co-ordinated, collective fashion so that both
individual and global costs can be reduced by sharing
strategies and efforts.

4.2.1 Moving people
Smart mobility systems aim to support the efficient ex-
ploitation of the city transport facilities as well as providing
sustainable mobility within an urban environment. To ac-
complish this, systems must take into account the dynamic
variabilities in the environment such as users’ mobility
requirements and service availability. When we consider the
common needs of users moving around, in addition to the
emergence of the sharing economy such as ride-sharing and
car-pooling, CASs may play a relevant role. They may be
successfully exploited for forming and managing collectives
of users sharing common goals, as well as dynamically
adapting these collectives in the face of changes in user
needs or changes in the environment.
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A relevant example is given by the urban mobility sys-
tem [15], where heterogeneous available services, including
traditional transportation services and ride-share services,
are integrated to support all the phases of users’ journeys
for the whole duration of travel. In case of context changes
affecting users’ journeys, the system may offer alternative
solutions by exploiting the adaptation capabilities of the
collective.

Users may also be called upon to actively participate in
the system they use by playing different roles. For instance,
users can act both as consumers (by requiring a ride-share)
and as providers (by offering ride sharing or car-pooling).
Moreover they may be actively and collectively involved
in the dynamic evolution of the system, which may be
regulated by complex collaboration patterns such as negoti-
ation, competition and collaboration [9]. Leveraging CASs to
induce users to prefer collective mobility solutions can also
be considered as a means to support sustainable mobility
and reduce the congestion in city centres. However, keeping
people engaged with collectives, for example when common
needs evolve or are overcome by individual requirements,
pose challenges in terms of ensuring user satisfaction. The
CAS needs to make collective solutions continually more
attractive with respect to traditional ones.

4.2.2 Moving goods
Logistics scenarios refer to the transfer and delivery of
goods from manufacturers to retailers and then to end-users.
Logistics systems aim to support an efficient management
of goods, for any kind of goods (with their specific require-
ments), while taking account of different-sized transporta-
tion networks and geographical areas covered by diverse
vehicle types [54]. To accomplish this, logistics systems must
deal with different dynamics and constraints (legal, environ-
mental, economical) at different levels of granularity [55].
Given the large number of diverse actors involved (includ-
ing importers, authorities, middlemen, and logistics service
providers) that must organize and co-ordinate themselves,
CASs may be seen as a natural solution for automation.

Despite working at different levels of the system and
with different responsibilities, the various actors mostly
share common goals – for example to deliver goods in time,
in an acceptable condition, at minimal cost. For each flow
of goods, the actors should behave as a collective able to
execute efficient and decentralized decision making during
the nominal execution of the system and promptly react to
changes affecting the delivery process.

Although CASs are intuitively suitable for logistics sce-
narios, interesting challenges arise when looking at the
impact of runtime adaptation on those actors who actually
carry out the deliveries. For instance, truck drivers are di-
rectly affected by dynamic re-allocation of routes or goods.
In these contexts, CASs must balance adaptation in pursuit
of global optima against the local needs of drivers and other
service providers. One advantage of a CAS solution is that
these ethical issues can be encoded into the fabric of the
automation.

4.3 Public Safety and Security
Public safety and security involve countermeasures for pro-
tection against threats to the safety and integrity of the

general public, including natural disasters as well as crimes.
CASs may be usefully leveraged for monitoring and for the
co-ordination of responses to dangerous situations.

A motivating example is a distributed surveillance sys-
tem, where a collection of cameras are employed for in-
trusion detection, target identification and tracking, or be-
havioural analysis. The key problems with multi-camera
configurations are co-ordination and control of individual,
heterogeneous cameras such that they perform collabora-
tively [56]. The set of cameras should in other words behave
as a CAS in order to react to local and global contingencies,
and to provide distributed global functions [57].

Regulation in emergency situations is another task that
can be best performed in a collective-adaptive manner. For
instance, coordinating the movement of people in dan-
gerous situations such as in overcrowded spaces requires
timely, co-ordinated adaptation, since it is easy for indi-
vidual and small-scale deviations to escalate into global
chaos, leading to disaster. This problem is tackled by crowd
engineering approaches, which are often founded on CAS
paradigms [32], [58].

Environmental monitoring (discussed in more detail
in Section 4.4) can also be considered from the perspective
of public safety, as it supports timely identification and
intervention in natural disasters.

However, safety-critical applications pose challenges for
CASs related to verification and validation, real-time guar-
antees, and to the satisfaction of “hard” constraints that are
difficult to provably satisfy in highly variable and possibly
unknown scenarios [59]. This remains an area requiring
significant research.

4.4 Ecology

The ecology domain offers a wide range of scenarios that
can benefit from the application of collective approaches and
strategies to better handle common needs. These scenarios
span from environmental monitoring (for alerts manage-
ment in case of wildfires or floods) to rubbish collection (in
the cities as well as the seas) and the protection for endan-
gered animal species. Such ecology-oriented systems aim to
support the management of medium-to-large areas (e.g., city,
sea, national park) while by guaranteeing efficient operation
during the nominal behaviour of systems (such as forest
monitoring), and effective adaptation in case of constraints
violations (such as hunting of protected animals) or prob-
lems detection (such as burning forests). Moreover most
of the adaptation needs of these systems strongly require
timely decision-making and co-ordinated and co-operative
intervention. Different actors are involved (including police,
firemen, rangers, navy, national parks, protected reserves,
municipalities, environmental managers, and citizens) with
diverse physical distribution and diverse responsibilities
in a hierarchy of managerial roles (for example where a
fire brigade unit intervenes on the spot while headquarters
remotely coordinates several units).

With these parameters, it is easy to see the advan-
tages of using CASs for the overall operation and dynamic
adaptation of systems where heterogeneous entities can
efficiently operate only by collectively sharing strategies
and efforts [60]. Furthermore, ecology-oriented systems are
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also included in the Internet of Things domain, since smart
devices are often exploited in ecology scenarios, which
further increases system complexity. For instance, smoke
sensors, motion sensors, GPS, and the like can be used for
monitoring tasks, and even though the IoT might be an
enabler of ecology-oriented systems it might also emphasize
the problems of heterogeneity and interoperability among
the involved agents.

Interesting challenges arise when thinking about the
roles played by different kinds of actor. Smart devices can
both act as passive actors (for example smoke sensors in a
monitoring phase) and as active actors during an adaptation
phase (for example drones flying over a fire to measure
its extent and guide rescue efforts). The same idea applies
to humans. Another interesting challenge comes from how
and to what extent human actors and devices co-operate,
support, or complement each other in specific situations. In
these contexts, CASs can represent a proper base from which
to investigate dynamic role assignment and communication
protocols, taking account of a wide range of diverse actors,
constraints, peculiarities and uncertainties.

4.5 Operations Support

One final scenario comes from using CASs to create re-
silient, adaptive structures that can aid, sustain, protect, or
replace, human activity in dynamic, unknown, and risky
environments. Collaboration between humans and robots is
generally useful in situated problem solving scenarios [61]
such as city maintenance or waste collection.

A particularly relevant case is that of humanitarian relief
operations [62], where people need to be rescued after
environmental catastrophes such as hurricanes, tsunamis,
floods, or during conflict. In these situations, teams of robots
(unmanned ground or aerial vehicles) and possibly humans
going on missions need to self-organize in an insecure
environment. This may involve setting up ad hoc communi-
cation networks to replace damaged infrastructure, partially
repairing physical structures or building temporary ones,
and organizing field activity [63].

Another interesting case is exploration in unknown or
“human off-limits” environments such as ocean depths or
planetary surfaces. There, the CAS need to be resilient to
unexpected hazards while preserving collected information
and leveraging collective knowledge and physical possibili-
ties to safely overcome obstacles.

5 CHALLENGES AND FUTURE AGENDA

Inevitably, CASs influence and are influenced by human be-
haviour. The same “classic” software system may yield very
different results if adopted to different human communities,
and this effect is exacerbated in the context of self-adaptive
systems that would try to tailor themselves to the specific
context, with final effects being hard to predict.

In fact, adaptive software systems interacting with a
society of humans inevitably undergo a co-adaptation, as
depicted in Figure 1 borrowing notation from control theory:
while the adaptive part tries to steer the system towards the
desired goal, the co-adaptation introduced by human be-
haviour may change the global effect. The two adaptations

adaptive
software

controlled
system

input
output

adaptive
software

controlled
system output

human
adaptation

input

Fig. 1. (Top) Adaptive software is usually conceptualized as steering the
behaviour of a controlled system by sensing its outputs and acting on
its inputs, in a manner familiar from control theory. (Bottom) When the
whole system (including controller and controlled) operates in the con-
text of a human-populated society, the system becomes more similar to
a double-loop control structure with humans co-evolving and responding
themselves to the system adaptation. Concurrent adaptation by users
and software may result in hard-to-predict behaviours.

together are similar to a double-control loop structure [64],
which can be very difficult to design and analyse for con-
flicts.

5.1 Designing CASs with and for humans
Human behaviour is currently often considered in CASs
in a very simplistic way – often treated as part of the
“unpredictability” that may affect the system and tackled
as any other perturbation, i.e., by relying on the resilience
and adaptivity of the system to compensate for unpredicted
behavior. This approach is hardly sufficient for systems
meant to enrich the society.

An attempt at better modeling human behaviour can be
found in literature devoted to creating models of cognitive
agents [52], where beliefs, desires, and intentions are con-
sidered as part of the human model. Such approaches allow
designers to model (and mimic) phenomena such as fear
contagion, opening the door to more in-depth design and
verification of these aspects of CASs. More broadly, scaling
up realism in the verification phase has the potential to
retroactively impact the entire design process: one might be
able to verify correct and coherent (with respect to human
expectations) system adaptations even in case of human
behaviour considered (arguably correctly) irrational, and as
such (arguably wrongly) usually discarded entirely.

This is only a side of a multifaceted issue. Besides
being able to model human behaviour more realistically,
CASs must be able to explain themselves to their users. It
is somewhat a case of mutual understanding: the system
needs to understand society better to serve it, and society
understands the system so as to harmoniously co-adapt
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with it. Humans tend to resist changes that require effort
to be understood unless they solve a pressing and evident
problem, especially if they are very accustomed to “the way
things are”. Examples of such behaviour can be found in
relation to traditional software: a study conducted on the
user acceptance of a new interface for a common word
processor found that, the higher the experience with the
traditional interface (and hence the higher the experience
with the tool), the higher the resistance to change [65].
The same issues appear in safety critical contexts such as
healthcare. Longitudinal studies have found that resistance
to the adoption of novel technologies is found in all groups
of stakeholders, mirroring the complexity of the target or-
ganization [66]. Further work suggests that time is a key
variable, as different individuals accept and adapt changes
at different rates [67].

Adaptation cannot be allowed to preclude explanation.
In fact, not providing clear and understandable justifications
for a behaviour may trigger counter-reactions on the part of
users, with detrimental effect on the global (cyber-physical)
system behaviour. Ongoing work in self-explanation of
adaptive systems is trying to tackle such issue [68]. In
order to improve our understanding and capacity to model
human and collective responses to changes in the technolog-
ical environment, we suggest deeper collaboration among
experts in collective adaptive systems and the social and
psychological studies communities.

From a safety perspective, CASs operating in a society
must provide mechanisms for monitoring to detect undesir-
able behaviours or responses. A key contribution in this con-
text may be provided by exploring a closer integration with
control theory, which might provide bounds on adaptativity
and thereby exclude by design a whole class of potentially
dangerous behaviours.

5.2 Evaluating CASs
The pervasive integration of CASs into human society make
research into CAS systems engineering of utmost impor-
tance, from both a quantitave and qualitative perspective.
Feng et al. [69] consider the problem of defining useful
performance measure for CASs. The authors classify perfor-
mance measures derived from probability distributions that
can be extracted from a CAS model. Innes and Booher [70]
propose a framework for evaluating consensus-building in
complex adaptive systems. Loreti et al. [71] build a language
based on stochastic process algebra for the specification
and analysis of CASs. Vandin and Tribastone [72] review
a number of techniques dealing with the problem of ef-
ficiently analyzing large-scale CASs for quantitative prop-
erties. From the perspective of correctness-by-construction,
Viroli et al. [73] address the resilience of large-scale systems
by formally proving the self-stabilization properties of basic
distributed building blocks and their functional composi-
tion.

CASs provide collective behaviour by making use of
shared resources. Privacy and ethical issues therefore have
to become first-class citizens when designing and evaluating
these systems. Hartswood et al. [74] discuss these issues in
the context of peer profiling within CASs. They propose to
return the control of data to users, supporting the princi-
ples of privacy and transparency. Other privacy-preserving

mechanisms based on decentralized data ownership are
proposed in the literature as a way to enhance privacy [75],
[76]. However, in a world dominated by centralized plat-
forms making profits out of the users’ personal data, design-
ers face a major socio-technical challenge in executing such
a paradigm shift. The centralized/decentralized dichotomy
affects the scalability of the proposed CAS solutions too, of
course, and so centralization may contain within itself the
seeds of a move towards more decentralized solutions on
technical grounds [77].

6 CONCLUSIONS

The social implications of CASs already lie deep in the
technology of the sharing economy, crowd-sourcing, crowd-
funding and other domains. This is an indication that so-
cial aspects have a potential to change the way adaptive
software systems are and will be designed. A wide variety
of stakeholders are interested in building social CAS appli-
cations, ranging from public administrations to businesses,
informed by the “data for good” and other movements. But
nobody yet knows how to build these systems effectively.

In this article we presented a number of challenges that
can be considered as research directions for the CAS field.
This is especially pertinent when humans are involved in:

• designing CASs that consider the often unpredictable
human behaviour;

• designing CASs where humans are part of the sys-
tem;

• providing a support to evaluate CASs, both quanti-
tatively and qualitatively; and

• addressing privacy, reliability, usability, observabil-
ity, and liability in CASs.

Only when these aspects are addressed will Collective
Adaptive Systems be able to fulfill their potential as the
foundation for the next generation of cyber-physical sys-
tems.
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A. Nowak, A. Rychwalska, J. V. Pitt, J. Shalhoub, F. Rossi, P. Silin-
gardi, and P. Bernardeschi, “All together now: Collective intel-
ligence for computer-supported collective action,” in 2015 IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, SASO Workshops 2015, Cambridge, MA, USA, September
21-25, 2015, 2015, pp. 13–18.

[21] K. L. Bellman, J. Botev, H. Hildmann, P. R. Lewis, S. Marsh, J. Pitt,
I. Scholtes, and S. Tomforde, “Socially-sensitive systems design:
Exploring social potential,” IEEE Technol. Soc. Mag., vol. 36, no. 3,
pp. 72–80, 2017.

[22] S. Keller, R. Hausmann, L. Kressner, and A. Koenig, “An approach
of a computerized planning assistant to the system design of col-
laborative robot installations,” in 21st IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA 2016, Berlin,
Germany, September 6-9, 2016, 2016, pp. 1–4.
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