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Abstract

In recent years backtrack search SAT solvers have been
the subject of dramatic improvements. These improvements
allowed SAT solvers to successfully replace BDDs in many
areas of formal verification, and also motivated the devel-
opment of many new challenging problem instances, many
of which too hard for the current generation of SAT solvers.
As a result, further improvements to SAT technology are ex-
pected to have key consequences in formal verification. The
objective of this paper is to propose heuristic approaches
to the backtrack step of backtrack search SAT solvers, with
the goal of increasing the ability of the SAT solver to search
different parts of the search space. The proposed heuris-
tics to the backtrack step are inspired by the heuristics pro-
posed in recent years for the branching step of SAT solvers,
namely VSIDS and some of its improvements. The prelim-
inary experimental results are promising, and motivate the
integration of heuristic backtracking in state-of-the-art SAT
solvers.

1. Introduction

Propositional Satisfiability is a well-known NP-complete
problem, with theoretical and practical significance, and
with extensive applications in many fields of Computer Sci-
ence and Engineering, including Artificial Intelligence and
Electronic Design Automation.

Current state-of-the-art SAT solvers incorporate sophis-
ticated pruning techniques as well as new strategies on
how to organize the search. Effective search pruning tech-
niques are based, among others, on nogood learning and
dependency-directed backtracking [15] and backjump-
ing [4], whereas recent effective strategies introduce
variations on the organization of backtrack search. Exam-
ples of such strategies are weak-commitment search [16],
search restarts [8] and random backtracking [9].

Advanced techniques applied to backtrack search SAT
algorithms have achieved remarkable improvements [7, 11,
12], having been shown to be crucial for solving hard

instances of SAT obtained from real-world applications.
Moreover, and from a practical perspective, the most effec-
tive algorithms are complete, and so able to prove what lo-
cal search is not capable of, i.e. unsatisfiability. Indeed, this
is often the objective in a large number of significant real-
world applications.

Nevertheless, it is also widely accepted that local
search [14] can often have clear advantages with re-
spect to backtrack search, since it is allowed to start the
search over again whenever it gets stuck in a locally op-
timal partial solution. This advantage of local search has
motivated the study of approaches for relaxing backtrack-
ing conditions (while still assuring completeness). The
key idea is to unrestrictedly choose the point to back-
track to, in order to avoid thrashing during backtrack
search. Moreover, one can think of combining differ-
ent forms of relaxing the identification of the backtrack
point. In this paper, we propose to use heuristic knowl-
edge to select the backtrack point. The heuristics that
we consider are inspired in the most promising branch-
ing heuristics proposed in recent years, namely the VSIDS
heuristic used by Chaff [12] and Berkmin’s branch-
ing heuristic [7].

The remainder of this paper is organized as follows.
The next section introduces the definitions that will be
used throughout the paper. Then we present a brief survey
of backtrack search SAT algorithms. Section 4 describes
heuristic backtracking and further relates heuristic back-
tracking with unrestricted backtracking. Afterwards, we re-
late our work with previous work on the same topic. Fi-
nally, we present preliminary experimental results and con-
clude with directions for future research work.

2. Definitions

This section introduces the notational framework used
throughout the paper. Propositional variables are denoted
��� � � � � ��, and can be assigned truth values � (or � ) or �
(or � ). The truth value assigned to a variable � is denoted
by ����. (When clear from context we use � � ��, where
�� � ��� ��). A literal � is either a variable � or its nega-
tion ��. A clause � is a disjunction of literals and a CNF
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formula � is a conjunction of clauses. A clause is said to be
satisfied if at least one of its literals assumes value �, un-
satisfied if all of its literals assume value �, unit if all but
one literal assume value �, and unresolved otherwise. Liter-
als with no assigned truth value are said to be free literals.
A formula is said to be satisfied if all its clauses are satis-
fied, and is unsatisfied if at least one clause is unsatisfied.
A truth assignment for a formula is a set of assigned vari-
ables and their corresponding truth values. The SAT prob-
lem consists of deciding whether there exists a truth assign-
ment to the variables such that the formula becomes satis-
fied.

SAT algorithms can be characterized as being either
complete or incomplete. Complete algorithms can establish
unsatisfiability if given enough CPU time; incomplete al-
gorithms cannot. Consequently, incomplete algorithms are
only used for satisfiable instances. Examples of complete
and incomplete algorithms are backtrack search and local
search algorithms, respectively. In a search context, com-
plete algorithms are often referred to as systematic, whereas
incomplete algorithms are referred to as non-systematic.

3. Backtrack Search SAT Algorithms

Over the years a large number of algorithms have been
proposed for SAT, from the original Davis-Putnam proce-
dure [3], to recent backtrack search algorithms [7, 11, 12]
and to local search algorithms [14], among many others.

The vast majority of backtrack search SAT algorithms
build upon the original backtrack search algorithm of Davis,
Logemann and Loveland [2]. The backtrack search algo-
rithm is implemented by a search process that implicitly
enumerates the space of �� possible binary assignments to
the � problem variables. Each different truth assignment de-
fines a search path within the search space. A decision level
is associated with each variable selection and assignment.
The first variable selection corresponds to decision level 1,
and the decision level is incremented by 1 for each new de-
cision assignment 1. In addition, and for each decision level,
the unit clause rule [3] is applied. If a clause is unit, then the
sole free literal must be assigned value � for the formula to
be satisfied. In this case, the value of the literal and of the as-
sociated variable are said to be implied. The iterated appli-
cation of the unit clause rule is often referred to as Boolean
Constraint Propagation (BCP).

In chronological backtracking, the search algo-
rithm keeps track of which decision assignments have
been toggled. Given an unsatisfied clause (i.e. a con-
flict or a dead end) at decision level �, the algorithm checks
whether at the current decision level the corresponding de-

1 Observe that all the assignments made before the first decision assign-
ment correspond to decision level 0.

cision variable � has already been toggled. If not, the
algorithms erases the variable assignments which are im-
plied by the assignment on �, including the assignment
on �, assigns the opposite value to �, and marks deci-
sion variable � as toggled. In contrast, if the value of �
has already been toggled, the search backtracks to deci-
sion level �� �.

Recent state-of-the-art SAT solvers utilize differ-
ent forms of non-chronological backtracking [7, 11, 12],
in which each identified conflict is analyzed, its causes
identified, and a new clause created to explain and pre-
vent the identified conflicting conditions. Created clauses
are then used to compute the backtrack point as the
most recent decision assignment from all the decision as-
signments represented in the recorded clause. More-
over, some of the (larger) recorded clauses are eventually
deleted. Clauses can be deleted opportunistically when-
ever they are no longer relevant for the current search
path [11].

4. Heuristic Backtracking

Heuristic backtracking consists of selecting the back-
track point in the search tree as a function of variables in the
most recently recorded clause. Different heuristics can be
envisioned. In this work we implemented different heuris-
tics:

1. One heuristic that decides the backtrack point given
the information of the most recently recorded conflict
clause.

2. Another heuristic that is inspired in the VSIDS branch-
ing heuristic, used by Chaff [12].

3. Finally, one heuristic that is inspired by Berkmin’s
branching heuristic [7].

In all cases the backtrack point is computed as the variable
with the largest heuristic metric. Completeness is ensured
by marking the recorded clause as non-deletable.

We should observe that heuristic backtracking can be
viewed as a special case of unrestricted backtracking [9].
While in unrestricted backtracking any form of backtrack
step can be applied, in heuristic backtracking the back-
track point is computed from heuristic information, ob-
tained from the current and past conflicts.

Next, we describe how the three different approaches of
using heuristics are implemented in the heuristic backtrack-
ing algorithm.

4.1. Plain Heuristic Backtracking

Under the plain heuristic backtracking approach the
backtrack point (i.e. decision level) is computed by select-
ing the decision level with the largest number of occur-
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rences in a recorded clause. Afterwards, the search process
backtracks to that decision level.

4.2. VSIDS-like Heuristic Backtracking

The second approach to heuristic backtracking is based
on the variable state independent decaying sum (VSIDS)
branching heuristic of Chaff [12]. As in Chaff, a metric is
associated with each literal, which is incremented when a
new clause containing the literal is recorded; after every �

decisions, the metric values are divided by a small constant.
With the VSIDS-like heuristic backtracking, the assigned
literal with the highest metric (of the literals in the recorded
clause) is selected as the backtrack point.

4.3. BerkMin-like Heuristic Backtracking

The third approach for implementing heuristic back-
tracking is inspired in BerkMin’s branching heuristic [7].
This heuristic is similar to the VSIDS heuristic used in
Chaff, but the process of updating the metrics of the liter-
als differs. In Berkmin’s heuristic, the metrics of the liter-
als of all clauses that are directly involved in producing the
conflict, and so in creating the newly recorded clause, are
updated when a clause is recorded. As in the case of the
VSIDS-like backtracking heuristic, the assigned literal with
the highest metric (of the literals in the recorded clause) is
selected as the backtrack point.

4.4. Relation with Unrestricted Backtracking

As mentioned above, heuristic backtracking can be
viewed as a special case of unrestricted backtracking [9],
the main difference being that while in unrestricted back-
tracking any form of backtrack step can be applied,
in heuristic backtracking the backtrack point is com-
puted from heuristic information, obtained from the cur-
rent and past conflicts. As with unrestricted backtracking,
a number of techniques can be used to ensure complete-
ness. These techniques are analyzed in [9], and can be
organized in two classes:

� Marking recorded clauses as non-deletable. This solu-
tion may yield an exponential growth in the number of
recorded clauses.

� Increasing the number of conflicts in between appli-
cations of heuristic backtracking. This solution can be
used to guarantee a polynomial growth of the number
of recorded clauses.

5. Related Work

Dependency-directed backtracking and nogood learning
were originally proposed by Stallman and Sussman in [15]

in the area of Truth Maintenance Systems (TMS). In the
area of Constraint Satisfaction Problems (CSP), the topic
was independently studied by J. Gaschnig [4] as different
forms of backjumping.

The introduction of relaxations in the backtrack step is
also related with dynamic backtracking [5]. Dynamic back-
tracking establishes a method by which backtrack points
can be moved deeper in the search tree. This allows avoid-
ing the unneeded erasing of the amount of search that has
been done thus far. The objective is to find a way to di-
rectly ”erase” the value assigned to a variable as opposed to
backtracking to it, moving the backjump variable to the end
of the partial solution in order to replace its value without
modifying the values of the variables that currently follow
it. More recently, Ginsberg and McAllester combined local
search and dynamic backtracking in an algorithm which en-
ables arbitrary search movement [6], starting with any com-
plete assignment and evolving by flipping values of vari-
ables obtained from the conflicts.

In weak-commitment search [16], the algorithm con-
structs a consistent partial solution, but commits to the par-
tial solution weakly. In weak-commitment search, when-
ever a conflict is reached, the whole partial solution is aban-
doned, in explicit contrast to standard backtracking algo-
rithms where the most recently added variable is removed
from the partial solution.

Moreover, search restarts have been proposed and shown
effective for hard instances of SAT [8]. The search is re-
peatedly restarted whenever a cutoff value is reached. The
algorithm proposed is not complete, since the restart cut-
off point is kept constant. In [1], search restarts were jointly
used with learning for solving hard real-world instances of
SAT. This latter algorithm is complete, since the backtrack
cutoff value increases after each restart. One additional ex-
ample of backtracking relaxation is described in [13], which
is based on attempting to construct a complete solution,
that restarts each time a conflict is identified. More re-
cently, highly-optimized complete SAT solvers [7, 12] have
successfully combined non-chronological backtracking and
search restarts, again obtaining remarkable improvements
in solving real-world instances of SAT.

6. Experimental Results

This section presents the experimental results of apply-
ing heuristic backtracking to different classes of problem
instances. In addition, we compare heuristic backtracking
with other forms of backtracking relaxations, namely search
restarts [8] and random backtracking [9] 2. Our goal here
has been to test the feasibility of heuristic backtracking al-

2 With random backtracking, and whenever a conflict is found, the back-
track point is randomly selected.
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gorithm using three different heuristics: a default heuristic,
the VSIDS heuristic and the Berkmin’s heuristic.

Experimental evaluation of the different algorithms has
been done using the JQUEST SAT framework [10], a Java
framework for prototyping SAT algorithms. All the ex-
periments were run on the same P4/1.7GHz/1GByte of
RAM/Linux machine. The CPU time limit for each instance
was set to 2000 seconds, except for instances from Bei-
jing family, for which the maximum run time allowed was
5000 seconds. In all cases where the algorithm was unable
to solve an instance was due to memory exhaustion. The to-
tal run time for solving different classes of benchmarks are
shown in Table 1 and results for some specific instances are
shown in Table 2. In both tables, Time denotes the CPU time
and X denotes the number of aborted instances. In addition,
each column indicates a different form of backtracking re-
laxation:

� RST indicates that the search restart strategy is applied
with a cutoff value of 100 backtracks and is kept fixed.
All recorded clauses are kept to ensure completeness.

� RB indicates that random backtracking is applied at
each backtrack step.

� HB(P) indicates that plain heuristic backtracking is ap-
plied at each backtrack step. All recorded clauses are
kept.

� HB(C) indicates that the Chaff’s VSIDS-like heuris-
tic backtracking is applied at each step. All recorded
clauses are kept.

� HB(B) indicates that the Berkmin-like heuristic back-
tracking is applied at each step. All recorded clauses
are kept.

As can be concluded from the experimental results, heuris-
tic backtracking can yield significant savings in CPU time,
and also allow for a smaller number of instances to be
aborted. This is true for several of the classes of prob-
lem instances analyzed.

7. Conclusions and Future Work

This paper proposes the utilization of heuristic back-
tracking in backtrack search SAT solvers. The most well-
known branching heuristics used in state-of-the-art SAT
solvers were adapted to the backtrack step of SAT solvers.
The experimental results illustrate the practicality of heuris-
tic backtracking.

The main contributions of this paper can be summarized
as follows:

1. A new heuristic backtrack search SAT algorithm is
proposed, that heuristically selects the point to back-
track to.

2. The proposed SAT algorithm is shown to be a special
case of unrestricted backtracking, where different ap-
proaches for ensuring completeness can be utilized.

3. Experimental results indicate that significant savings
in search effort can be obtained for different organiza-
tions of the proposed heuristic backtrack search algo-
rithm.

Besides the preliminary experimental results, a more
comprehensive experimental evaluation is required. In ad-
dition, future work entails deriving conditions for selecting
among search restarts and heuristic backtracking.
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Benchmarks #I RST RB HB(P) HB(C) HB(B)
Time X Time X Time X Time X Time X

bmc-galileo 2 1885.93 0 3052.19 1 1575.97 0 1570.48 0 1553.83 0
bmc-ibm 11 3486.17 1 5781.31 1 4326.73 1 4340.53 1 4318.04 1
Hole 5 317.35 0 2318.71 1 245.69 0 244.27 0 240.27 0
Hanoi 2 2208.09 1 3560.72 1 2113.51 1 2113.02 1 2111.94 1
BMC-barrel 8 4764.22 2 7498.39 3 4505.44 2 4504.73 2 4505.00 2
BMC-queueinvar 10 96.92 0 776.87 0 78.30 0 76.32 0 76.52 0
Beijing 16 1190.09 2 5751.29 3 4539.51 2 4513.11 2 4520.41 2
Blocksworld 7 937.45 0 1312.18 0 324.07 0 325.73 0 320.41 0
Logistics 4 11.9 0 31.09 0 12.73 0 12.27 0 12.13 0
par16 10 972.39 0 1968.87 0 256.89 0 251.34 0 250.40 0
ii16 10 39.19 0 102.10 0 120.22 0 119.64 0 118.62 0
ucsc-ssa 102 29.89 0 37.59 0 29.41 0 29.56 0 29.48 0
ucsc-bf 223 78.10 0 106.57 0 85.05 0 78.93 0 79.78 0

Table 1. Performance of different algorithms on different classes of benchmark

Instances RST RB HB(P) HB(C) HB(B)
Time Time Time Time Time

Beijing2bitadd 10 942.70 � ���� 4083.75 4061.04 4070.14
Beijing3bitadd 31 � ���� � ���� � ���� � ���� � ����

Beijing3bitadd 32 � ���� � ���� � ���� � ���� � ����

BMC-longmult7 263.55 � ���� 165.46 165.30 163.89
BMC-longmult8 � ���� � ���� 1234.53 1223.3 1227.76
crypto-cnf-r3-b1-k1.1 16.61 127.31 46.20 45.58 45.91
crypto-cnf-r3-b1-k1.2 123.89 556.65 109.24 108.28 108.31

Table 2. Performance of different algorithms on some specific instances
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